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REPRESENTING CLIQUISH FUNCTIONS
AS QUASIUNIFORM LIMITS OF

QUASICONTINUOUS FUNCTIONS

Abstract

It is shown that every cliquish function f mapping a pseudometriz-
able space X into a separable metric space Y can be expressed as the
quasiuniform limit of a sequence of quasicontinuous functions fk.

1 Representing Cliquish Functions on Pseudometrizable
Spaces

Let X be a topological space and let (Y, dY ) be a metric space. A function f :
X → Y is called quasicontinuous at the point x0 ∈ X if, for every neighborhood
U of x0 and every ε > 0, there exists a non-empty open set G ⊆ U such that
dY (f(x), f(x0)) < ε for all x ∈ G (cf. [10]). The function f is said to be
cliquish at x0 if, under the same conditions as above, dY (f(x), f(y)) < ε for
all x, y ∈ G (cf. [15]). Accordingly, f is called quasicontinuous or cliquish if f
is quasicontinuous or cliquish, respectively, at every point x0 ∈ X.

Quasicontinuous functions in general form a proper subclass of the class
of all cliquish functions. However, under reasonable restrictions on X and Y
it turns out that cliquish functions can be represented as pointwise or even
quasiuniform limits of quasicontinuous functions. We recall that a sequence
(fk)∞k=1 of functions fk : X → Y quasiuniformly converges to f : X → Y if f
is the pointwise limit of (fk)∞k=1 and

∀ε > 0 ∀m ≥ 1 ∃p ≥ 1∀x ∈ X :
min{dY (fm+1(x), f(x)), . . . , dY (fm+p(x), f(x))} < ε
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(cf. [13], p. 143)1. The origin of this concept goes back to Arzelá’s theo-
rem concerning the continuity of pointwise limits of continuous functions on
compact spaces.

In [6] Grande proved that a function f : R → R is cliquish if and only if
it is the pointwise limit of a sequence of quasicontinuous functions, provided
that the domain R is equipped with the usual topology or with the density
topology. In [8] the analogous result was obtained for real-valued functions
f on the topological space Rm with the density topology. In his paper [3]
Borśık showed that every cliquish function f : R → R can be expressed as
the quasiuniform limit of a sequence of quasicontinuous functions fk. He
considered the usual topology on R. In [7] the last result was sharpened in so
far as the functions fk can be assumed to have the Darboux property.

The main result of the present paper is the following fairly general repre-
sentation theorem. The proof will be given in a separate section.

Theorem 1.1. Let f : X → Y be a cliquish function mapping a pseudometri-
zable space X into a separable metric space (Y, dY ). Then f is the quasi-
uniform limit of a sequence of quasicontinuous functions fk : X → Y . In
particular,

∀m ≥ 1 ∀x ∈ X : min{dY (f2m(x), f(x)), dY (f2m+1(x), f(x))} < 1
m . (1)

If f is bounded, then one can require the functions fk to be bounded, too.2

The separability of (Y, dY ) is a necessary assumption in Theorem 1.1. In
fact, let f : R2 → R be defined by

f(ξ1, ξ2) =
{
ξ1 if ξ2 = 0,
0 if ξ2 6= 0,

the domain R2 being the Euclidean plane, the range R, however, being equip-
ped with the metric dR(ξ, η) = 1 if ξ 6= η. Then (R, dR) is non-separable.

1In the literature different definitions of the concept of a quasiuniform limit appear. In
[1], p. 265, a real-valued function f on a topological space X is called the quasiuniform
limit of functions fk, k ≥ 1, if f is the pointwise limit of (fk)∞k=1 and if, for all ε > 0
and all m ≥ 1, there exist an at most countable open cover {Gi : i ∈ I} of X and a
corresponding set {pi : i ∈ I} of natural numbers such that, for all i ∈ I and all x ∈ Gi,
|f(x) − fm+pi (x)| < ε. This is equivalent to Sikorski’s definition if X is compact and all
functions fk are continuous.

2Theorem 1.1 becomes false if one uses Aleksandroff’s concept of a quasiuniform limit
instead of Sikorski’s definition. Indeed, one easily checks that the cliquish function f : R→ R
with f(0) = 1 and f(x) = 0 for x 6= 0 can not be expressed as the quasiuniform limit of a
sequence of quasicontinuous functions in the sense of Aleksandroff.
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Of course, f is cliquish. We assume f to be the pointwise limit of a se-

quence (fk)∞k=1 of quasicontinuous functions. Then R =
∞⋃
k=1

Rk where Rk =

{ξ ∈ R : dR(fk(ξ, 0), f(ξ, 0)) < 1} = {ξ ∈ R : fk(ξ, 0) = ξ}. Hence there
exists an uncountable set Rk0 . The quasicontinuity of fk0 at a point (ξ, 0),
ξ ∈ Rk0 , yields that there exists an non-empty open set Gξ ⊆ R2 such that
dR(fk0(η1, η2), ξ) = dR(fk0(η1, η2), fk0(ξ, 0)) < 1 for all (η1, η2) ∈ Gξ. That is,
fk0 |Gξ = ξ, fk0 |Gξ denoting the restriction of fk0 to Gξ. This way we have
found uncountably many non-empty open sets Gξ ⊆ R2, ξ ∈ Rk0 , which are
pairwise disjoint. This clearly is impossible, since every set Gξ must contain
points from the countable set Q2, where Q denotes the set of rational numbers.

Theorem 1.1 gives rise to a characterization of cliquish functions on pseu-
dometrizable Baire spaces.

Corollary 1.2. Let f : X → Y be a function mapping a pseudometrizable
Baire space X into a separable metric space Y . Then the following are equi-
valent.

(i) f is cliquish.

(ii) f is the quasiuniform limit of a sequence of quasicontinuous functions
fk : X → Y .

(iii) f is the pointwise limit of a sequence of quasicontinuous functions fk :
X → Y .

Proof. The implication (i)⇒(ii) rests on Theorem 1.1. (ii)⇒(iii) is trivial.
Let us assume that f is represented as claimed under (iii). In [2] it is

shown that then the discontinuity points of f constitute a set of the first
category, provided that X is metrizable. However, the same proof applies to
a pseudometrizable space X. Hence the continuity points of f are dense in X,
since X is a Baire space. This obviously implies that f is cliquish.

In Corollary 1.2 the supposition “Baire” can not be omitted. For instance,
every function f : Q → {0, 1} on the rational numbers Q = {q1, q2, q3, . . .}
equipped with the usual distance dQ(qi, qj) = |qi− qj | can be expressed as the
quasiuniform limit of a sequence of quasicontinuous functions fk : Q→ {0, 1}.
Indeed, if

{
r
(m)
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2 < . . . < r

(m)
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and

f2m+1(q) =


f(q) if q ∈
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(m)
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(m)
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,

0 if q ∈
(
−∞, r(m)

1

)
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(
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(m)
2 , r
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∪ . . . ∪

(
r
(m)
2m ,+∞

)
are quasicontinuous and we obtain lim

k→∞
fk(q) = f(q) for all q ∈ Q, since

f2m|{q1,q2,...,q2m} = f2m+1|{q1,q2,...,q2m} = f |{q1,q2,...,q2m}. Moreover,

min{|f2m(q)− f(q)|, |f2m+1(q)− f(q)|} = 0

for all q ∈ Q and m ≥ 1. Hence f is the quasiuniform limit of the sequence
(fk)∞k=2.

2 Quasicontinuous and Cliquish Functions on More Ge-
neral Topological Spaces

Obviously, a non-constant cliquish function from a space X into a space Y can
not be represented as the limit of a sequence of quasicontinuous functions if all
quasicontinuous functions are constant. This section is devoted to spaces X
on which all quasicontinuous or cliquish functions, respectively, are constant.
We restrict our considerations to the case Y = R, though most of the claims
obviously can be proved for more general spaces Y .

Quasicontinuous and cliquish functions on an arbitrary topological space
X can be expressed by the aid of functions from particular basic subclasses,
which have been introduced and studied in [12]. We recall some important
concepts and claims from this paper. A partition P = {Pι : ι ∈ I} of X into
pairwise disjoint subsets Pι is called semi-open if all partition sets Pι are semi-
open; that is, Pι ⊆ cl(int(Pι)) (cf. [11]), cl(·) and int(·) denoting the closure
operator and the interior operator, respectively. The partition P is said to be
almost semi-open if

⋃
ι∈I

int(Pι) is dense in X. A function ϕ : X → R is called a

semi-open step function or an almost semi-open step function if it is piecewise
constant on the sets of a semi-open or an almost semi-open partition P of
X, respectively. Every semi-open step function is quasicontinuous and every
real-valued quasicontinuous function on X is the uniform limit of a sequence
of semi-open step functions. Similarly, every almost semi-open step function is
cliquish and every real-valued cliquish function can be uniformly approached
by almost semi-open step functions.
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Proposition 2.1. A topological space X admits a non-constant quasiconti-
nuous function f : X → R if and only if there exist two non-empty disjoint
open subsets G1, G2 ⊆ X.

Proof. IfG1, G2 ⊆ X are non-empty, disjoint, and open then P = {cl(G1), X\
cl(G1)} is a semi-open partition, since cl(G1) is semi-open being the closure
of an open set and since X \ cl(G1) is open. Hence the characteristic function
Icl(G1) is quasicontinuous, where Icl(G1)|G1 = 1 and Icl(G1)|G2 = 0.

Conversely, if f is a non-constant quasicontinuous function, say f(x1) 6=
f(x2), then the existence of two non-empty disjoint open sets G1, G2 ⊆ X is
a direct consequence of the definition of quasicontinuity.

Proposition 2.2. A topological space X admits a non-constant cliquish func-
tion f : X → R if and only if X is not connected or there exists a non-empty
nowhere dense subset N ⊆ X.

Proof. If X is not connected, then X can be decomposed into two non-empty
open sets G1 and G2. In this case the characteristic function IG1 even is an
example of a non-constant continuous function on X. If X contains a non-
empty nowhere dense subset N , then IN is a non-constant cliquish function.

Now we suppose that there is a non-constant cliquish function f : X → R.
Then there must exist a non-constant almost semi-open step function ϕ, since
f is the uniform limit of functions of this type. The function ϕ is defined on
an almost semi-open partition P = {Pι : ι ∈ I} consisting of at least two sets.
We fix an index ι0 ∈ I. Then Q = {Q1, Q2} with Q1 = Pι0 and Q2 =

⋃
ι 6=ι0

Pι

is an almost semi-open partition, too. Hence int(Q1)∪ int(Q2) is a dense open
subset of X. The complement N = X \ (int(Q1) ∪ int(Q2)) is nowhere dense.
If N 6= ∅, we have found the required non-empty nowhere dense subset of X.
In the case N = ∅ we note that ∅ = N = cl(Q1) ∩ cl(Q2) is the boundary of
Q1 as well as of Q2. Then Q1 and Q2 are open. Hence X is not connected
being the union of Q1 and Q2.

In [4] Borśık considered the space X = R with the system of open sets
{R, ∅} ∪ {(a,+∞) : a ∈ R}. This is a second countable T4-space, but does
not fulfil T1. By Proposition 2.1, all real-valued quasicontinuous functions on
X are constant. However, Proposition 2.2 says that there exist non-constant
cliquish functions f : X → R, since a set A ⊆ R is nowhere dense in X
provided that supA < +∞. In fact, one easily checks that f : X → R is
cliquish if and only if lim

x→+∞
f(x) exists in R.

An example of a T1-space is given by the cofinite topology on an arbitrary
infinite set X. Here a subset G ⊆ X is open if and only if G = ∅ or X \G is
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finite (cf. [14], p. 49). Again Proposition 2.1 yields that there exist constant
quasicontinuous functions only. By Proposition 2.2 we obtain non-constant
cliquish functions, because every finite subset of X is nowhere dense. However,
in the case of an infinite T1-space one can show a stronger result.

Proposition 2.3. Every infinite T1-space X admits a cliquish function f :
X → R with infinite range.

Proof. Let (xi)∞i=1 be a sequence of mutually distinct points in X and let
(λi)∞i=0 be a sequence of reals such that lim

i→∞
λi = 0. We shall see that the

function f = λ0 +
∞∑
i=1

λiI{xi} : X → R is cliquish. This yields the above claim

if the values λi, i ≥ 1, are mutually different.
Every partition P = {X \ {x0}, {x0}} of X with arbitrary x0 ∈ X is

almost semi-open. Indeed, if x0 is an isolated point; i.e., {x0} is open, then
int(X\{x0})∪int({x0}) = (X\{x0})∪{x0} is dense in X. If x0 is not isolated,
then int(X \{x0})∪ int({x0}) = (X \{x0})∪∅ is dense as well. Consequently,
every function I{x0} is an almost semi-open step function. Hence the functions

fk = λ0 +
k∑
i=1

λiI{xi}, k ≥ 1, are cliquish, since they are sums of cliquish

functions. Then the uniform limit f = lim
k→∞

fk is cliquish, too.

Passing from T1-spaces to Hausdorff spaces we obtain a similar result con-
cerning quasicontinuous functions.

Proposition 2.4. Every infinite Hausdorff space X admits a quasicontinuous
function f : X → R with infinite range.

Proof. First we show that every semi-open set A ⊆ X containing at least
two points can be decomposed into two non-empty semi-open subsets A1 and
A2; that is, A = A1 ∪ A2, A1 ∩ A2 = ∅. Since A ⊆ cl(int(A)), we can find
two distinct points x1, x2 ∈ int(A). These two points can be separated by two
open sets G1, G2 ⊆ int(A). Now let A1 = cl(G1) ∩ A and A2 = A \ cl(G1).
The first set is semi-open, because A1 ⊆ cl(G1) ⊆ cl(int(A1)). The set A2

is semi-open, since A2 = A ∩ (X \ cl(G1)) is the intersection of a semi-open
set and an open set. Moreover, A1 and A2 are non-empty, for G1 ⊆ A1 and
G2 ⊆ A2.

Let (λi)∞i=1 be a sequence of reals such that lim
i→∞

λi = λ exists in R. We

want to construct a function f : X → R with (λi)∞i=1 ⊆ f(X). Therefore
we inductively define a sequence of semi-open partitions of the form Pk =
{P1, P2, . . . , Pk−1, Qk}, k ≥ 1, where the sets Qk are infinite. We start with
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P1 = {Q1} = {X}. Given Pk, the above argument shows that Qk can be
decomposed into two non-empty semi-open subsets Pk and Qk+1. We can
assume that Qk+1 is infinite, since Qk is an infinite set. This way we obtain the
desired partition Pk+1. Every partition Pk allows the definition of a semi-open

step function ϕk = λIQk +
k−1∑
i=1

λiIPi . By lim
i→∞

λi = λ, the sequence (ϕk)∞k=1

converges uniformly to a function f : X → R. Thus f is quasicontinuous and
(λi)∞i=1 ⊆ f(X), for f |Pi = λi.

Proposition 2.4 illustrates that every Hausdorff space gives rise to a large
variety of quasicontinuous functions. This is remarkable in so far as there exist
infinite regular Hausdorff spaces on which all real-valued continuous functions
are constant (cf. [14], pp. 111-113). We do not know if Theorem 1.1 can be
generalized in so far as the assumption on X to be pseudometrizable can be
weakened.

3 Proof of Theorem 1.1

We use the following notation. Given a function f mapping a topological
space X into a metric space (Y, dY ), the oscillation of f on a set A ⊆ X is
given by ωf (A) = sup{dY (f(x1), f(x2)) : x1, x2 ∈ A}. The oscillation of f
at a point x0 ∈ X is defined by ωf (x0) = inf{ωf (U) : U is a neighborhood
of x0}. If the space X is equipped with a pseudometric dX , we denote the
open ball of radius r > 0 centered at the point x0 ∈ X by BX(x0, r) = {x ∈
X : dX(x, x0) < r}. For a subset A ⊆ X and a radius r > 0, we define a
corresponding neighborhood of A by BX(A, r) =

⋃
x∈A

BX(x, r). The proof of

Theorem 1.1 is based on two technical lemmas.

Lemma 3.1. Let f : X → Y be a cliquish function mapping a pseudometri-
zable space X into a metric space (Y, dY ). Then there exist functions gm :
X → Y , m ≥ 1, and an increasing sequence of nowhere dense closed subsets
F1 ⊆ F2 ⊆ F3 ⊆ . . . ⊆ X such that

(i) dY (gm(x), f(x)) < 1
m for all m ≥ 1, x ∈ X,

(ii) gm|Fm = f |Fm for all m ≥ 1,

(iii) gm|X\Fm is quasicontinuous for all m ≥ 1,

(iv) ωf (x) < 1
m for all m ≥ 1, x ∈ X \ Fm.
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Proof. Let m ≥ 1 be fixed. We define Fm =
{
x ∈ X : ωf (x) ≥ 1

m

}
. Then

Fm is closed and nowhere dense, because f is cliquish. Now we consider a point
x ∈ X\Fm. Since ωf (x) < 1

m , there exists an open neighborhood Ux ⊆ X\Fm
of x such that ωf (Ux) < 1

m . We can choose another open neighborhood Vx
of x such that cl(Vx) ⊆ Ux, for X is a normal space (see [9], p. 120). Then
V = {Vx : x ∈ X \ Fm} is an open cover of X \ Fm such that cl(Vx) ⊆ X \ Fm
for all x ∈ X \Fm. The open subset X \Fm of X is a pseudometrizable space
itself and hence paracompact (see [9], p. 160). Thus there exists a locally finite
open cover W = {Wι : ι ∈ I} of the space X \ Fm which is a refinement of V.
Let the index set I be well-ordered. Then we define a locally finite partition
P = {Pι : ι ∈ I} \ {∅} of X \ Fm by Pι = cl(Wι) \

⋃
κ<ι

cl(Wκ). We fix a point

xι ∈ Pι for every Pι ∈ P. Now we define gm : X → Y by

gm(x) =

{
f(x) if x ∈ Fm,
f(xι) if x ∈ Pι.

We have F1 ⊆ F2 ⊆ F3 ⊆ . . ., (ii), and (iv) as immediate consequences of
the definitions of Fm and gm. In order to prove (i), let x0 ∈ X \ Fm be fixed.
Then there exist an index ι ∈ I and a set Vx ∈ V such that x0, xι ∈ Pι ⊆
cl(Wι) ⊆ cl(Vx) ⊆ Ux. Hence

dY (gm(x0), f(x0)) = dY (f(xι), f(x0)) ≤ ωf (Ux) <
1
m
,

which shows (i). Finally, every set Pι = cl(Wι) ∩
(
X \

⋃
κ<ι

cl(Wκ)
)

is semi-

open, since cl(Wι) is semi-open being the closure of the open set Wι and since
X \

⋃
κ<ι

cl(Wκ) is open, becauseW is locally finite. Thus gm|X\Fm is piecewise

constant on the semi-open partition P of X \ Fm. Obviously, a function of
this type is quasicontinuous. This proves (iii).

The following claim is taken from Borśık’s paper [5].

Lemma 3.2. Let X be a pseudometrizable space, F ⊆ X a nowhere dense
closed subset of X, and G ⊆ X an open set such that F ⊆ cl(G). Then there
exist pairwise disjoint classes Kn of non-empty open sets, n ≥ 1, such that

the sets K belonging to the family K =
∞⋃
n=1
Kn are subject to the following

conditions.

(i) cl(K) ⊆ G \ F for all K ∈ K,
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(ii) for every x ∈ X \F , there exists a neighborhood V of x such that the set
{K ∈ K : V ∩ cl(K) 6= ∅} has at most one element,

(iii) for every x ∈ F and for every neighborhood U of x, there is a number
n0 ≥ 1 such that, for all n ≥ n0, there exists K ∈ Kn with cl(K) ⊆ U .

Proof of Theorem 1.1 1. Preliminaries. We assume that f is represented
as the limit of functions gm according to Lemma 3.1. For technical reasons we
add the set F0 = ∅ to the sequence (Fm)∞m=1.

Given m ≥ 1, we apply Lemma 3.2 to the nowhere dense closed set F = Fm
and the open set G = X in order to obtain a corresponding family K(m) =
∞⋃
n=1
K(m)
n . In every set K ∈ K(m) we fix a point xK ∈ K. In addition to the

claims of Lemma 3.2 we can assume that

ωf (cl(K)) < 1
m for all K ∈ K(m). (2)

Indeed, if ωf (cl(K)) ≥ 1
m , then we choose an open neighborhood K ′ ⊆ K

of xK with ωf (K ′) < 1
m . This is possible by Lemma 3.1 (iv), because xK ∈

K ⊆ X \ Fm. Now we can fix an open neighborhood K ′′ of xK such that
cl(K ′′) ⊆ K ′, since X is normal. Then xK ∈ K ′′ ⊆ K and ωf (cl(K ′′)) < 1

m .
Hence we can replace K by K ′′ without affecting the claims of Lemma 3.2,
which justifies (2).

Let (yl)∞l=0 be dense in Y . We put (zl)∞l=0 = (y0, y0, y1, y0, y1, y2, y0, y1, y2,
y3, . . .). Then the sequence (zl)∞l=l0 is dense in Y for every l0 ≥ 0.

We assume that X is equipped with a pseudometric dX .

2. Definition of the functions f2m+p, m ≥ 1, p ∈ {0, 1}.

f2m+p(x0) =



zl if there exist l ≥ 0, i ∈ {1, 2, . . . ,m},
and K ∈ K(m)

2(lm+i)+p such that
x0 ∈ cl(K), cl(K) ⊆ BX

(
Fi,

1
m

)
, and

dY (zl, f(xK)) < 1
m + sup

x∈X\Fi−1

ωf (x),

gm(x0) otherwise.

(3)

This definition is correct, since the sets cl(K), K ∈ K(m), are pairwise disjoint
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according to Lemma 3.2 (ii). We have f2m+p|X\Lm,p = gm|X\Lm,p where

Lm,p =
⋃{

cl(K) : there exist l ≥ 0, i ∈ {1, 2, . . . ,m}, and

K ∈ K(m)
2(lm+i)+p such that cl(K) ⊆ BX

(
Fi,

1
m

)
and dY (zl, f(xK)) < 1

m + sup
x∈X\Fi−1

ωf (x)
}
.

3. Quasicontinuity of f2m+p. Let x0 ∈ X be fixed. In case x0 ∈ Lm,p,
we find a set K ∈ K(m) and a number l ≥ 0 such that x0 ∈ cl(K) and
f2m+p|cl(K) = zl. Hence every open neighborhood U of x0 has a non-empty
open intersection G = U ∩ K with K such that f2m+p|G = zl = f2m+p(x0).
Thus f2m+p is quasicontinuous at x0.

Now let x0 ∈ X \ Lm,p. If x0 ∈ X \ Fm, then, by Lemma 3.2 (ii), there
exists an open neighborhood U ⊆ X \Fm of x0 such that U ∩Lm,p = ∅. Hence
f2m+p|U = gm|U and gm|U is quasicontinuous by Lemma 3.1 (iii). Accordingly,
f2m+p is quasicontinuous at x0.

It remains to show that f2m+p is quasicontinuous at an arbitrary point
x0 ∈ Fm. Let a neighborhood U of x0 and a bound ε > 0 be fixed. We
have Fm ⊆ X \ Lm,p, since Lm,p ⊆

⋃{
cl(K) : K ∈ K(m)

}
and since Fm ⊆

X \
⋃{

cl(K) : K ∈ K(m)
}

by Lemma 3.2 (i). Hence f2m+p|Fm = gm|Fm and,
by Lemma 3.1 (ii),

f2m+p|Fm = f |Fm . (4)

There exists a uniquely determined i ∈ {1, 2, . . . ,m} such that x0 ∈ Fi \
Fi−1, for ∅ = F0 ⊆ F1 ⊆ . . . ⊆ Fm. We choose a neighborhood U ′ of x0 such
that ωf (U ′) < ωf (x0) + 1

2m . Now we define an additional neighborhood U ′′ of
x0 by U ′′ = U ∩U ′ ∩BX

(
Fi,

1
m

)
. By Lemma 3.2 (iii), there exists l0 ≥ 0 such

that, for all l ≥ l0, there is a set K ∈ K(m)
2(lm+i)+p with cl(K) ⊆ U ′′. We can

pick l1 ≥ l0 such that dY (zl1 , f(x0)) < min
{

1
2m , ε

}
, because (zl)∞l=l0 is dense

in Y . Then we find a corresponding set K1 ∈ K(m)
2(l1m+i)+p with cl(K1) ⊆ U ′′.

Hence in particular

cl(K1) ⊆ BX
(
Fi,

1
m

)
. (5)

The inclusions x0 ∈ U ′ and xK1 ∈ K1 ⊆ U ′′ ⊆ U ′ yield dY (f(x0), f(xK1)) ≤
ωf (U ′) < ωf (x0)+ 1

2m . Hence dY (f(x0), f(xK1)) < sup
x∈X\Fi−1

ωf (x)+ 1
2m , since
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x0 ∈ X \ Fi−1. This gives rise to

dY (zl1 , f(xK1)) ≤ dY (zl1 , f(x0)) + dY (f(x0), f(xK1))

<
1

2m
+ sup
x∈X\Fi−1

ωf (x) +
1

2m
=

1
m

+ sup
x∈X\Fi−1

ωf (x).
(6)

Properties (5) and (6) together with definition (3) show that f2m+p|cl(K1) =
zl1 . Thus we have found a non-empty open set K1 such that K1 ⊆ U , since
cl(K1) ⊆ U ′′, and, by applying (4) to x0 ∈ Fm,

dY (f2m+p(x), f2m+p(x0)) = dY (zl1 , f(x0)) < ε

for all x ∈ K1. Hence f2m+p is quasicontinuous at x0.

4. Pointwise convergence of (fk)∞k=2 to f . Let x0 ∈ X. If x0 ∈
∞⋃
m=1

Fm, say

x0 ∈ Fm0 , then x0 ∈ Fm for all m ≥ m0. Hence, by (4), f2m+p(x0) = f(x0)
whenever m ≥ m0, p ∈ {0, 1}, so that trivially lim

k→∞
fk(x0) = f(x0).

Now let x0 /∈
∞⋃
m=1

Fm and let ε > 0 be fixed. We choose m0 ≥ 1 with

3
m0
≤ ε. Since x0 /∈ Fm0 , we find m1 ≥ m0 such that x0 /∈ BX

(
Fm0 ,

1
m1

)
.

We shall show that

dY (f2m+p(x0), f(x0)) < ε for all m ≥ m1, p ∈ {0, 1}. (7)

In the case x0 ∈ X \ Lm,p we have f2m+p(x0) = gm(x0). Then claim (7) is
a consequence of Lemma 3.1 (i), namely dY (f2m+p(x0), f(x0)) = dY (gm(x0),
f(x0)) < 1

m < 3
m0
≤ ε.

Next we assume that x0 ∈ Lm,p. Then there exist l ≥ 0, i ∈ {1, 2, . . . ,m},
and K ∈ K(m)

2(lm+i)+p such that x0 ∈ cl(K), cl(K) ⊆ BX
(
Fi,

1
m

)
, and also

dY (zl, f(xK)) < 1
m + sup

x∈X\Fi−1

ωf (x). Definition (3) yields f2m+p(x0) = zl.

Hence

dY (f2m+p(x0), f(x0)) ≤ dY (zl, f(xK)) + dY (f(xK), f(x0)). (8)

We obtain i > m0, because i ≤ m0 would yield x0 ∈ cl(K) ⊆ BX
(
Fi,

1
m

)
⊆

BX

(
Fi,

1
m1

)
⊆ BX

(
Fm0 ,

1
m1

)
contrary to x0 /∈ BX

(
Fm0 ,

1
m1

)
. Thus by

Lemma 3.1 (iv) sup
x∈X\Fi−1

ωf (x) ≤ sup
x∈X\Fm0

ωf (x) ≤ 1
m0

and

dY (zl, f(xK)) < 1
m + sup

x∈X\Fi−1

ωf (x) ≤ 1
m + 1

m0
≤ 2

m0
. (9)
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On the other hand,

dY (f(xK), f(x0)) < 1
m ≤

1
m0
, (10)

since xK , x0 ∈ cl(K) and ωf (cl(K)) < 1
m by (2). Inequalities (8), (9), and

(10) amount to dY (f2m+p(x0), f(x0)) < 3
m0
≤ ε. This proves (7).

5. Quasiuniform convergence of (fk)∞k=2 to f in the sense of (1). Let m ≥ 1
be fixed. Lemma 3.2 (ii) shows that cl(K1)∩cl(K2) = ∅ for all K1,K2 ∈ K(m),
K1 6= K2. Hence

Lm,0∩Lm,1 ⊆
⋃{

cl(K) : K ∈
∞⋃
j=1

K(m)
2j

}
∩
⋃{

cl(K) : K ∈
∞⋃
j=1

K(m)
2j+1

}
= ∅

and thus (X\Lm,0)∪(X\Lm,1) = X. Now f2m+p|X\Lm,p = gm|X\Lm,p implies
that, for every x ∈ X, f2m(x) = gm(x) or f2m+1(x) = gm(x). In this situation
Lemma 3.1 (i) yields (1): namely, min{dY (f2m(x), f(x)), dY (f2m+1(x), f(x))} ≤
dY (gm(x), f(x)) < 1

m .
6. Boundedness of f2m+p. We assume that f(X) is bounded. It will turn

out that f2m+p(X) ⊆ BY (f(X), 1 + ωf (X)) , which obviously implies that
f2m+p is bounded, too.

Let x0 ∈ X. If x0 ∈ X \ Lm,p, then, by Lemma 3.1 (i),

f2m+p(x0) = gm(x0) ∈ BY
(
f(x0),

1
m

)
⊆ BY (f(X), 1 + ωf (X)) .

In the case x0 ∈ Lm,p definition (3) says that f2m+p(x0) = zl, where in par-
ticular dY (zl, f(xK)) < 1

m + sup
x∈X\Fi−1

ωf (x) for certain l ≥ 0, i ∈ {1, 2 . . . ,m},

and K ∈ K(m). Then

f2m+p(x0) = zl ∈ BY
(
f(xK),

1
m

+ sup
x∈X\Fi−1

ωf (x)
)
⊆ BY (f(X), 1 + ωf (X)).
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