A. V. Medvedev ^{*}, Department of Mechanics and Mathematics, Moscow State University, Moscow, Russia. e-mail: andrey@medvedev.mccme.ru

ON A CONCAVE DIFFERENTIABLE MAJORANT OF A MODULUS OF CONTINUITY

Abstract

In this paper we prove that for any modulus of continuity on $[0, \infty)$ there exists a concave majorant that is infinitely differentiable on $(0, \infty)$ and satisfies an additional inequality. This extends the results of Stechkin and Korneychuk obtained previously without the requirement that majorants be differentiable.

Recall that a real function ω on $[0, \infty)$ or on [0, l], $0 < l < \infty$, is called a modulus of continuity if ω is continuous, semiadditive, nondecreasing and $\omega(0) = 0$. The concavity of ω is sometimes a desirable property but in general ω fails to be concave. In certain cases this difficulty can be surmounted by using a concave majorant of ω . Throughout this paper we assume that ω differs from the zero function. The following lemma is due to S. B. Stechkin. It was published and applied for the first time in [1].

Lemma A. Let ω be a modulus of continuity on $[0, \pi]$. Then there exists a concave modulus of continuity $\bar{\omega}$ such that $\omega(t) \leq \bar{\omega}(t) < 2\omega(t)$ for $t \in (0, \pi]$. Moreover, the constant 2 cannot be reduced.

The proof in [1] remains valid if π is replaced by any positive number l. Later N. P. Korneychuk [2] proved the following lemma.

Lemma B. Let ω be a modulus of continuity on $[0, \infty)$ and $\bar{\omega}$ be the minimal concave majorant of ω . Then $\bar{\omega}(\mu t) < (1 + \mu)\omega(t)$ for any t > 0, $\mu > 0$. This inequality is best possible for each t > 0 and each natural μ .

Key Words: modulus of continuity, majorant, concave

Mathematical Reviews subject classification: 26A15

Received by the editors October 2, 2000

^{*}This research was carried out with the partial financial support of the Russian Foundation for Basic Research (grant no.99-01-00062) and the program "Leading Scientific Schools" (grant no.00-15-96143).

¹²³

The construction of $\bar{\omega}$ in [1, 2] proves that any modulus of continuity has a minimal concave majorant which is a modulus of continuity as well. As is known any concave function of one variable is differentiable at each point in its domain except at most a countable set. The question that we are dealing with was suggested by P. L. Ul'janov. Let ω be a modulus of continuity on $[0, \infty)$. The question is whether there exist a constant c and a concave modulus of continuity ω_0 on $[0, \infty)$ so that the restriction of ω_0 to $(0, \infty)$ has a given order of smoothness and satisfies $\omega(t) \leq \omega_0(t) < c\omega(t)$. It is natural in view of Lemma B to consider the problem with the inequality of the form $\omega_0(\mu t) < c(\mu)\omega(t)$. The next theorem yields an answer to Ul'janov's problem.

Theorem. Let ω be a modulus of continuity on $[0,\infty)$ and I be a closed interval in $(0,\infty)$. Then there exists a concave modulus of continuity ω_0 on $[0,\infty)$ such that the restriction of ω_0 to $(0,\infty)$ is infinitely differentiable and satisfies $\omega(\mu t) \leq \omega_0(\mu t) < (1+\mu)\omega(t)$ for t > 0 and $\mu \in I$. Moreover, if $\omega'(0) < \infty$, then $\omega_0(t) = \omega'(0)t$ on some neighborhood of zero.

To prove the theorem we need two more lemmas. In Lemma 1 it is possible that $\bar{\omega}'(0) = \infty$.

Lemma 1. Let ω be a modulus of continuity on $[0,\infty)$ and $\bar{\omega}$ be the minimal concave majorant of ω . Then $\lim_{t\to\infty} \frac{\omega(t)}{t} = \lim_{t\to\infty} \frac{\bar{\omega}(t)}{t} < \infty$ and $\omega'(0) = \bar{\omega}'(0)$.

PROOF. Note that $\frac{\bar{\omega}(t)}{t}$ is a nonincreasing function on $(0, \infty)$ since $\bar{\omega}$ is concave. This ensures the existence of $\lim_{t\to\infty} \frac{\bar{\omega}(t)}{t}$. The proof of Lemma B in [2] contains the inequality

$$\bar{\omega}(t) < \frac{\omega(t_0)}{t_0}t + \omega(t_0), \text{ for } t > 0 \text{ and } t_0 > 0.$$
 (1)

Hence $\lim_{t \to \infty} \frac{\bar{\omega}(t)}{t} \leq \frac{\omega(t_0)}{t_0} \leq \frac{\bar{\omega}(t_0)}{t_0}$ and the first statement of the lemma follows.

Since $\bar{\omega}$ is concave, it has a finite or infinite derivative from the right $\bar{\omega}'(0)$. By passing to the limit as $t_0 \to 0^+$ in (1) we get $\bar{\omega}(t) \leq t \liminf_{t \to 0} \frac{\omega(t)}{t}$; whence $\bar{\omega}'(0) \leq \liminf_{t \to 0} \frac{\omega(t)}{t}$. On the other hand, $\limsup_{t \to 0} \frac{\omega(t)}{t} \leq \bar{\omega}'(0)$. So $\omega'(0) = \bar{\omega}'(0)$.

Below we make use of the following smoothing method [3]. For every $\delta > 0$ let $\varphi(\delta, t)$ be an even infinitely differentiable function on $(-\infty, \infty)$ with $\varphi(\delta, t) > 0$ on $(-\delta, \delta)$ and $\varphi(\delta, t) = 0$ elsewhere. Assume also $\int_{-\delta}^{\delta} \varphi(\delta, t) dt = 1$.

A Concave Differentiable Majorant

Then given a continuous function f on $(-\infty, \infty)$ the function of t defined by

$$f(\delta,t) = \int_{-\infty}^{\infty} f(x) \varphi(\delta, x-t) \, dx = \int_{-\delta}^{\delta} f(x+t) \varphi(\delta, x) \, dx$$

is infinitely differentiable and $\lim_{\delta \to 0} f(\delta, t) = f(t)$ uniformly over any compact set in $(-\infty, \infty)$ [3, p. 46]. It is easy to show that if f is concave, then so is $f(\delta, t)$.

Actually, this method will be applied to special functions defined on a finite interval. Specifically, let f be a continuous function defined on [p, q] so that f is affine on $[p, p_1]$ and $[q_1, q]$ with different slopes, $p < p_1 < q_1 < q$. Further without special mention f is extended to $(-\infty, \infty)$ so that the resulting function is affine on $(-\infty, p_1]$ and $[q_1, \infty)$ respectively. For convenience the extension of f is also denoted by f. It is easy to check that such a function satisfies $f(\delta, t) = f(t)$ outside $(p_1 - \delta, q_1 + \delta)$. We will adhere to the following convention. If L is the tangent at a point (x, y) to the graph of some function, then we say simply that L is the tangent to the graph at the point x. The topology on any interval is induced, as usual, by that on $(-\infty, \infty)$.

Lemma 2. Let $y = k_1t + d_1$ and $y = k_2t + d_2$ be the tangents to the graph of a concave function v at points a < b respectively. Suppose that these tangents meet outside the graph of v. Then given any $\varepsilon > 0$ there exists an infinitely differentiable concave function u on [a, b] with the following properties:

- 1. $0 \le u(t) v(t) < \varepsilon$ for all $t \in [a, b]$;
- 2. $u(t) = k_1t + d_1$ on some neighborhood of a and $u(t) = k_2t + d_2$ on some neighborhood of b.

PROOF. Denote by (c, y_0) the point of intersection of the two tangents. Clearly $k_1 > k_2$, a < c < b and $y_0 > v(c)$. The function v_1 defined by $v_1(t) = k_1t + d_1$ on [a, c] and $v_1(t) = k_2t + d_2$ on [c, b] is concave. Let $\varepsilon > 0$. Set $v_0(t) = \min\{v_1(t), v(t) + \frac{\varepsilon}{2}\}, a \leq t \leq b$. Then $0 \leq v_0(t) - v(t) \leq \frac{\varepsilon}{2}$. If t = a or t = b, then $v_0(t) - v(t) = 0$, while $v_0(c) - v(c) > 0$. Consequently, there are an $\varepsilon_0 > 0$ and points $a_1 \in (a, c), b_1 \in (c, b)$ such that $\varepsilon_0 < \frac{\varepsilon}{2}$ and $v_0(a_1) - v(a_1) = v_0(b_1) - v(b_1) = \varepsilon_0$. The definition of v_0 and the concavity of v imply $v_0(t) = v_1(t)$ for $t \in [a, a_1] \cup [b_1, b]$ and $v_0(t) - v(t) \geq \varepsilon_0$ for $a_1 \leq t \leq b_1$. By the continuity of v_0 and v we have also $v_0(t) - v(t) \geq \frac{1}{2}\varepsilon_0$ for $t \in [a_1 - \delta, b_1 + \delta]$ if δ is sufficiently small, $\delta > 0$, provided $a_1 - \delta > a$ and $b_1 + \delta < b$.

Let us smooth v_0 by means of the above method. For a sufficiently small δ we get an infinitely differentiable concave function $u(t) = v_0(\delta, t)$ with the

following properties. The inequality $|u(t) - v_0(t)| < \frac{1}{2}\varepsilon_0$ holds for all $t \in [a, b]$ and hence $u(t) - v(t) < \varepsilon$. If $t \in [a, a_1 - \delta] \cup [b_1 + \delta, b]$, then $u(t) = v_1(t) \ge v(t)$. If $t \in [a_1 - \delta, b_1 + \delta]$, then $u(t) - v(t) = u(t) - v_0(t) + v_0(t) - v_1(t) > -\frac{1}{2}\varepsilon_0 + \frac{1}{2}\varepsilon_0 = 0$, completing the proof.

PROOF OF THE THEOREM. Observe that $\omega(\mu t) \leq \omega_0(\mu t) < (1+\mu)\omega(t)$ for all t > 0 and $\mu \in I$ if and only if $\omega(t) \le \omega_0(t) < (1+\mu)\omega(\frac{t}{\mu})$ for all t > 0 and $\mu \in I$. Let $\bar{\omega}$ be the minimal concave majorant of ω and let $I = [\mu_1, \mu_2]$. First we construct ω_0 sometimes disregarding the statement concerning $\omega_0(t) = \omega'(0)t$. Let us consider different cases. The case with a linear $\bar{\omega}$ is trivial. Assume that $\bar{\omega}$ is of the form: $\bar{\omega}(t) = k_1 t$ on $[0, t_0]$ and $\bar{\omega} = k_2 t + d$ on $[t_0, \infty)$ with $k_1 > k_2$ and some $t_0 > 0$. The minimality of $\bar{\omega}$ implies $\bar{\omega}(t_0) = \omega(t_0)$. If $k_2 = 0$, then $\omega(t) = \bar{\omega}(t) = d$ on $[t_0, \infty)$. Therefore $(1 + \mu)\omega(\frac{t}{\mu}) - \bar{\omega}(t) = \mu d \ge \mu_1 d$ for all $\mu \in I$ and sufficiently large t. If $k_2 > 0$, then we argue as follows. By Lemma 1, $\lim_{t \to \infty} \frac{\omega(t)}{t} = \lim_{t \to \infty} \frac{\bar{\omega}(t)}{t} = k_2$. Then given any $\varepsilon > 0$ there is an arbitrarily large $\tau > 0$ such that $\frac{1}{t}\bar{\omega}(t) \leq (1+\varepsilon)k_2$ and $\frac{\mu}{t}\omega(\frac{t}{\mu}) \geq (1-\varepsilon)k_2$ for $t \geq \tau$ and all $\mu \in I$. If ε is sufficiently small, then a simple calculation shows that $(1+\mu)\omega(\frac{t}{\mu}) - \bar{\omega}(t) \geq \frac{1}{2}k_2\tau\mu_2^{-1}$, where $t \geq \tau, \mu \in I$. Thus in both cases: $k_2 = 0$ and $k_2 > 0$, we have $\min_{t \ge t_0, \mu \in I} \left((1+\mu)\omega(\frac{t}{\mu}) - \bar{\omega}(t) \right) = 2m$ with m > 0. Denote by (t_1, y_1) the point of intersection of the lines $y = k_1 t$ and $y = k_2 t + d + m$. Set $\omega_1(t) = k_1 t$ for $0 \le t \le t_1$ and $\omega_1(t) = k_2 t + d + m$ for $t \ge t_1$. Then $\omega_1(t_1) > \bar{\omega}(t_1)$ and $\bar{\omega}(t) \le \omega_1(t) < (1+\mu)\omega(\frac{t}{\mu})$ for all t > 0. By smoothing we obtain a function $\omega_0(t) = \omega_1(\delta, t)$ with all the desired properties if δ is sufficiently small.

Consider the case, where $\bar{\omega}(t) = k_1 t$ on $[0, a_1]$ and $\bar{\omega}(t) = k_2 t + d$ on $[b_1, \infty)$ with $0 < a_1 < b_1$ provided the lines $y = k_1 t$ and $y = k_2 t + d$ meet outside the graph of $\bar{\omega}$. In this case the conclusion of the theorem follows at once from Lemma 2.

Assume now that $\bar{\omega}(t) = kt$ on some interval $[0, b_1]$, but $\bar{\omega}$ is not affine on any infinite interval. We suppose $\bar{\omega}'(b_1) = k$, since otherwise b_1 can be replaced by a smaller positive number. Choose a $b_2 > b_1 + 1$ so that $\bar{\omega}'(b_2)$ exists and the tangents to the graph of $\bar{\omega}$ at b_1 and b_2 meet outside the graph. Such a choice is possible, since otherwise $\bar{\omega}$ would be affine on some infinite interval. Again, choose a $b_3 > b_2 + 1$ so that $\bar{\omega}'(b_3)$ exists and the tangents at b_2 and b_3 meet outside the graph of $\bar{\omega}$. Continuing this process we obtain a sequence $\{b_i\}_{i=1}^{\infty}$ such that $b_{i+1} > b_i + 1$ and the tangents at b_i and b_{i+1} meet outside the graph of $\bar{\omega}$. Denote by L_i the tangent at b_i , $i \in \mathbb{N}$. Set $\varepsilon_i = \min_{b_i \leq t \leq b_{i+1}, \mu \in I} \left((1 + \mu) \omega(\frac{t}{\mu}) - \bar{\omega}(t) \right)$. By Lemma 2 for each $i \in \mathbb{N}$ there is infinitely differentiable concave function ω_{i0} on $[b_i, b_{i+1}]$ such that $0 \leq \omega_{i0}(t) -$

A Concave Differentiable Majorant

 $\bar{\omega}(t) < \varepsilon_i$ and hence $\omega(t) \leq \omega_{i0}(t) < (1 + \mu)\omega(\frac{t}{\mu}), t \in [b_i, b_{i+1}], \mu \in I$. Moreover, the graph of ω_{i0} coincides with L_i on some neighborhood of b_i and with L_{i+1} on some neighborhood of b_{i+1} . Set $\omega_0(t) = kt$ on $[0, b_1]$ and $\omega_0(t) = \omega_{i0}(t)$ on $[b_i, b_{i+1}], i \in \mathbb{N}$. The values of ω_{i0} on consecutive intervals are coordinated so that ω_0 is infinitely differentiable. The concavity of ω_0 is obvious. Thus the conclusion of the theorem holds.

Consider the case where $\bar{\omega}(t) = kt+d$ on some half-line $[a_1, \infty), a_1 > 0$, and $\bar{\omega}$ is not linear on any neighborhood of zero. We can assume that $\bar{\omega}'(a_1) = k$. As in the preceding case we choose a decreasing sequence $\{a_i\}_{i=1}^{\infty}$ so that $a_i \to 0$ as $i \to \infty$ and the tangents at a_i, a_{i+1} meet outside the graph of $\bar{\omega}$. Applying again Lemma 2 and setting $\omega_0(0) = 0$ we construct a function ω_0 so that ω_0 has the desired properties except for the last statement of the theorem.

Suppose that $\bar{\omega}$ is not affine on $[t_1, \infty)$ as well as on $[0, t_2]$ for any positive t_1, t_2 . Choose an $a_1 > 0$ so that $\bar{\omega}'(a_1)$ exists and set $b_1 = a_1$. We determine two sequences $\{a_i\}_{i=1}^{\infty}$ and $\{b_i\}_{i=1}^{\infty}$ in the same way as in the two previous cases. The further construction being clear we omit the details.

We have still to prove the last statement of the theorem when $\omega'(0) < \infty$ and $\bar{\omega}$ is not linear on any neighborhood of zero. To this end let us change our construction somewhat. Choose $\varepsilon > 0$ so that $(1 + \mu_2^{-1})(1 - \varepsilon) > 1$. By Lemma 1 $\omega(t) \sim \bar{\omega}'(0)t$ as $t \to 0$. Then for all $\mu \in I$ and t sufficiently small

$$(1+\mu)\omega(\frac{t}{\mu}) \ge \frac{1+\mu}{\mu}(1-\varepsilon)\bar{\omega}'(0)t \ge (1+\mu_2^{-1})(1-\varepsilon)\bar{\omega}'(0)t > \bar{\omega}'(0)t.$$

Therefore, while constructing the sequence $\{a_i\}_{i=1}^{\infty}$ one can single out a j such that $\bar{\omega}'(0)t < (1+\mu)\omega(\frac{t}{\mu})$ for $t \in (0, a_j]$ and $\mu \in I$. We define ω_0 on $[a_j, \infty)$ just as above. If $0 < t < a_j$, then we construct ω_0 in a different way. Let B denote the point $(a_j, \bar{\omega}(a_j))$. The tangent at B to the graph of $\bar{\omega}$ meets the line $y = \bar{\omega}'(0)t$ at a point A with an abscissa $a \in (0, a_j)$. The union of the line segments OA and AB is the graph of some function ω_2 on $[0, a_j]$. The segment AB, except for A, lies under the half-line OA. It follows that $\omega_2(t) < (1+\mu)\omega(\frac{t}{\mu})$ for $t \in (0, a_j]$ and $\mu \in I$. Observe also that $\omega_2(a) > \bar{\omega}(a)$. Smoothing ω_2 with a sufficiently small $\delta > 0$, $\delta < \min\{a, a_j - a\}$, and setting $\omega_0(t) = \omega_2(\delta, t)$ on $[0, a_j]$ we finally obtain ω_0 on $[0, \infty)$ with all the properties claimed in the theorem.

Clearly, the unimprovability asserted in Lemma B remains valid for ω_0 .

Let us remark that the condition of the theorem cannot be weakened by assuming only $\mu \in (0, \infty)$ instead of $\mu \in I$. Indeed, take ω such that $\omega(t) = t$ on [0,1] and $\omega(t) = 1$ on $[1,\infty)$. Then $\omega_0(t) = \omega(t)$ for $0 \le t \le 1$, since otherwise $\omega'_0(0) \ne \omega'(0)$. In order that ω_0 be a concave differentiable majorant of ω it is necessary that $\omega_0(t) > \omega(t)$ for t > 1 and, in particular, $\omega_0(2) > 1$. If $\omega_0(2) < (1 + \mu)\omega(\frac{2}{\mu})$ for all $\mu > 0$, then taking the limit as $\mu \to 0$ we obtain $\omega_0(2) \le 1$ contradicting $\omega_0(2) > 1$. It remains unclear if the condition $\mu_1 \le \mu \le \mu_2$ can be weakened by assuming only $\mu \ge \mu_1 > 0$.

Lemma A does not answer the question if the factor 2 can be replaced by a smaller value depending on ω . Lemma B gives rise to a similar question with any $\mu > 0$. It is also noteworthy that $\bar{\omega}(\mu t) < (1 + \mu)\omega(t)$ if ω is defined on a finite interval [0, l], since ω can be extended to $[0, \infty)$ by setting $\omega(t) = \omega(l)$ for t > l. However, in this case the unimprovability of the indicated inequality requires a complementary study. Indeed, taking $\mu = 1$ and t = l we can write $\bar{\omega}(l) = \omega(l)$ instead of $\bar{\omega}(l) < 2\omega(l)$. Below we construct an example which shows the unimprovability of $\bar{\omega}(\mu t) < (1+\mu)\omega(t)$ in a sense different from that in Lemma B and thereby we complement our theorem. Incidentally, the same example enables us to remove in Lemma B the restriction that μ be a natural number.

Take a sequence of positive numbers $\{q_m\}_{m=-\infty}^{\infty}$ so that $q_m \to \infty$ as $|m| \to \infty$. Let $a_0 = c_0 = 1$. For each integer m we determine inductively a triple a_m, b_m, a_{m+1} that forms a geometric progression with q_m as the ratio. Applying again induction on m we define a continuous nondecreasing function ω on $[0, \infty)$ as follows. $\omega(0) = 0, \omega(t) = c_m$ for $a_m \leq t \leq b_m$ and $\omega(t) = \frac{c_m}{b_m} t$ for $b_m \leq t \leq a_{m+1}$ with suitable constants c_m . Note the following property of the graph of ω . Given any x > 0, the points of the chord joining (0,0) and $(x, \omega(x))$ lie under or on the graph. It follows that ω is semiadditive. Thus, ω is a modulus of continuity.

Let ω_l denote the restriction of ω to the finite interval [0, l] and let φ_l be a concave majorant of ω_l . Fix a $\mu > 0$. Consider only those integers m that satisfy $a_{m+1} \leq l$ and $\mu b_m \in [a_m, a_{m+1}]$. The points (a_m, c_m) and (a_{m+1}, c_{m+1}) belong to the graph of ω_l . It is not hard to check that the line segment joining these points is described by $y = \frac{c_m}{q_m+1}(\frac{t}{a_m} + q_m)$, $a_m \leq t \leq a_{m+1}$. If t = μb_m , then $y = \frac{(1+\mu)q_m}{q_m+1}\omega_l(b_m)$. It follows that $\varphi_l(\mu b_m) \geq \frac{(1+\mu)q_m}{q_m+1}\omega_l(b_m)$ since φ_l is a concave majorant of ω_l . The same argument is valid for any concave majorant φ of ω on $[0, \infty)$. Clearly $\frac{(1+\mu)q_m}{q_m+1} \to 1 + \mu$ as $|m| \to \infty$. Thus, there is a single modulus of continuity ω such that any factor $1 + \mu$ in $\bar{\omega}(\mu t) < (1+\mu)\omega(t)$ cannot be reduced, no matter if we consider functions on a finite or infinite interval.

The function ω constructed above can be used in another way. Let $\mu > 0$ and $t_0 > 0$ be given. For any integer m set $\omega(t,m) = \omega(\frac{b_m}{t_0}t), t \ge 0$. If $\psi(t)$ is concave majorant of $\omega(t,m)$, then $\varphi(t) = \psi(\frac{t_0}{b_m}t)$ is a concave majorant of

A Concave Differentiable Majorant

 $\omega(t)$. Therefore $\psi(\mu t_0) \geq \frac{(1+\mu)q_m}{q_m+1}\omega(t_0,m)$. Since q_m is arbitrarily large, it follows that the last statement of Lemma B remains valid with any $\mu > 0$. Acknowledgment

The author is grateful to P. L. Ul'janov for the setting of the problem and his advice.

References

- A. V. Efimov, Linear methods of approximating continuous periodic functions, Math. Sb., 54 (1961), 51–90. (Russian)
- [2] N. P. Korneychuk, On the precise constant in Jackson's inequality for continuous periodic functions, Math. Zametki, 32 (1982), 669–674. (Russian)
- [3] M. W. Hirch, Differential topology, Sprynger-Verlag, New York, etc., 1976.

A. V. MEDVEDEV