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CONSTRUCTING ∆0
3 USING

TOPOLOGICALLY RESTRICTIVE
COUNTABLE DISJOINT UNIONS

Abstract

In a zero-dimensional Polish space, the Borel sets are generated from
the clopen sets by repeatedly applying the operations of countable dis-
joint union and complementation. Here we look at topologically restric-
tive versions of the general countable disjoint union of sets, and obtain
“construction principles” for ∆0

3, i.e., sets which are both Fσδ and Gδσ.

Throughout this paper, we work in an arbitrary but fixed zero-dimensional
Polish space X; e.g., the Cantor space or the space of irrationals. Suppose
that a set A is the countable disjoint union of the sets A1, A2, . . . , An, . . .:

A =
∞⋃

n=1

An (Ai ∩Aj = Ø for i 6= j, i, j = 1, 2, . . .). (1)

In the following definition, we put successively stronger topological restrictions
on how the above countable disjoint union (1) is formed.

Definition. We say that the countable disjoint union in (1) above is:

(a) a separated union if the sets (An)∞n=1 are pairwise separated; i.e.,

Ai ∩Aj = Ø = Ai ∩Aj for i 6= j (i, j = 1, 2, . . .);

(b) a strongly separated union if the sets (An)∞n=1 have pairwise disjoint
closures; i.e.,

Ai ∩Aj = Ø for i 6= j (i, j = 1, 2, . . .); and
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(c) a uniformly clopen separated union if there is a pairwise disjoint sequence
of clopen sets (Bn)∞n=1 with each Bn containing the corresponding An;
i.e.,

An ⊆ Bn, Bn clopen ,(n = 1, 2, . . .),
Bi ∩Bj = Ø for i 6= j (i, j = 1, 2, . . .).

It is a standard fact that the class of sets generated from the clopen sets
by repeatedly forming countable disjoint unions and taking complements is
the class of Borel sets. If we now restrict the operation of forming countable
disjoint unions to one of its restricted versions listed above (instead of allowing
arbitrary countable disjoint unions), then of course some subclass of the Borel
sets is generated.

In particular, a known result due to Hausdorff, Steel and Van Wesep (see
[3]) is that the smallest class of sets containing the clopen sets and closed
under uniformly clopen separated unions and complements is the class of ∆0

2

sets, that is, sets which are both Fσ and Gδ.
In this paper we show that for both separated unions and strongly sep-

arated unions, the generated class is ∆0
3, sets which are both Fσδ and Gδσ.

This may be viewed as a “construction principle” for ∆0
3.

Theorem 1. In a zero-dimensional Polish space X, let S be the smallest
class of sets containing the clopen sets and closed under separated unions and
complements, and let C denote the smallest class of sets containing the clopen
sets and closed under strongly separated unions and complements. Then S =
C = ∆0

3.

Proof. Clearly C ⊆ S. Also every uniformly clopen separated union is also a
strongly separated union, so by the Hausdorff-Van Wesep-Steel result, ∆0

2 ⊆ C.
We also have the following assertion.

Lemma 2. ∆0
3 is closed under separated unions.

Proof of Lemma 2. Let (An)∞n=1 be a sequence of ∆0
3 sets such that Ai ∩

Aj = Ø = Ai ∩Aj for all i < j. Let Dn = Anr∪i<nAi. Thus the Dn’s form a
disjoint sequence of ∆0

2 sets with each Dn containing An, so ∪nAn is ∆0
3.

From this lemma it follows that S ⊆ ∆0
3. Thus we have

∆0
2 ⊆ C ⊆ S ⊆ ∆0

3.
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Thus to prove the theorem, it is enough to show that ∆0
3 ⊆ C.

For this, we use a more delicate version of the usual proof of the Lusin
separation theorem, and actually show that any two disjoint Π0

3 sets can be
separated by a set in C.

Lemma 3. In a zero-dimensional Polish space, given any ε > 0, any Fσ set
is a countable disjoint union of closed sets each of diameter < ε.

Proof of Lemma 3. The proof is routine.

Now let P and Q be disjoint Π0
3 (Fσδ) sets. We may write

P =
∞⋂

n=1

∞⋃
m=1

Pm,n and Q =
∞⋂

n=1

∞⋃
m=1

Qm,n,

where Pm,n and Qm,n are closed sets for m,n = 1, 2, . . .. By Lemma 3, we may
assume that for each n, the sets P1,n, P2,n, . . . , Pm,n, . . . form a pairwise dis-
joint sequence of closed sets; and similarly, that for each n, Q1,n, Q2,n, . . . , Qm,n,
. . . are pairwise disjoint closed sets. Moreover, we can assume that each of the
sets Pm,n and Qm,n has diameter less than 1/n.

Let N<N denote the set of all finite sequences of positive integers. For any
finite sequence [m1,m2, . . . ,mk] ∈ N<N, put

S([m1,m2, . . . ,mk]) =
k⋂

i=1

Pmi,i and T ([m1,m2, . . . ,mk]) =
k⋂

i=1

Qmi,i.

Now each of S and T is a Suslin scheme in the sense that it assigns a closed set
to each [m1,m2, . . . ,mk] ∈ N<N; also, we have diam S([m1,m2, . . . ,mk]) → 0
as k →∞. Similarly for diam T ([m1,m2, . . . ,mk]).

Note also that for i 6= j, S([m1,m2, . . . ,mk, i]) and S([m1,m2, . . . ,mk, j])
are disjoint closed sets, and similarly for T . We apply the Suslin operation
(A-operation) to the Suslin schemes S and T .

A[S] =

{
x | x ∈

∞⋂
k=1

S([m1,m2, . . . ,mk]) for some sequence (mk)∞k=1

}
,

and similarly set A[T ].
It is then easy to verify that

P = A[S] and Q = A[T ].
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We also define, for each [m1,m2, . . . ,mk] ∈ N<N, the set P ∗[m1,m2,...,mk] to be
the set of all x such that

x ∈
∞⋂

j=1

S([m1,m2, . . . ,mk, n1, n2, . . . , nj ]) for some sequence (nj)∞j=1,

and similarly define the set Q∗[m1,m2,...,mk].
Notice that P ∗[] = P , Q∗[] = Q, and for any [m1,m2, . . . ,mk] ∈ N<N,

P ∗[m1,m2,...,mk] =
∞⋃

j=1

P ∗[m1,m2,...,mk,j], and Q∗[m1,m2,...,mk] =
∞⋃

j=1

Q∗[m1,m2,...,mk,j],

where each of the last two countable unions is a strongly separated union.

Lemma 4. The class C is closed under intersection with closed sets, that is
if E ∈ C and F is closed, then E ∩ F ∈ C.

Proof of Lemma 4. The proof is a simple inductive argument.

Lemma 5. Suppose that (Am)∞m=1 and (Bn)∞n=1 are two sequences of sets each
of which is pairwise strongly separated. Suppose that each Am can be separated
from each Bn using a C set; that is, there is a set Cm,n ∈ C separating Am

and Bn. Then there is a set C ∈ C which separates ∪mAm and ∪nBn.

Proof of Lemma 5. The set

C = Xr
∞⋃

n=1

(
Bnr

∞⋃
m=1

(
Cm,n ∩Am

))

separates ∪mAm and ∪nBn. Now using Lemma 4 and the fact that each of
the sequence of sets (Am)∞m=1 and (Bn)∞n=1 is pairwise strongly separated, we
see that C ∈ C.

The result now follows by contradiction when we assume that the sets
P = P ∗[] and Q = Q∗[] cannot be separated by a set in C. (The rest of the proof
is exactly like the proof by contradiction of the Lusin separation theorem.)

We note that we could also give a more constructive proof using bar-
recursion as done in [1] or [2].
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