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DIFFERENTIABILITY AS CONTINUITY

Abstract

We characterize differentiability of a map f : R→ R in terms of
continuity of a canonically associated map bf . To characterize pointwise
differentiability of f, both the domain and range of bf can be made
topological. However, the global differentiability of f is characterized
by the continuity of bf whose domain is topological but whose range is
a convergence space.

1 Introduction.

A calculus student is well aware of the difference between continuity and dif-
ferentiability of a map f : R → R. For such a student, continuity is always
understood as continuity for the usual topology of R. After a first topology
course, this same student may wonder if there is a way to find two topologies τd

and τr such that the differentiability of a function f : R → R is characterized
by the continuity of f : (R, τd)→ (R, τr). This natural question was answered
negatively by R. Geroch, E. Kronheimer and G. McCarty in [1]. This is in
stark contrast with A. Machado’s result [2, Propositions 2.2.1 and 2.2.2] that
a map f : C → C is analytic if and only if f̂ : Ĉ→Ĉ is continuous, where
the map f̂ is canonically associated to f . However, the structure Ĉ used by
Machado is not carried by C but by C2 and is not a topology but a more gen-
eral structure called convergence (see end of Section 2). Moreover Machado’s
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result doesn’t apply to the differentiability of a map f : R → R. Hence, this
could be seen both as yet another contrast between R-differentiability and C-
differentiability and as a striking illustration that what fails in the realm of
topologies can often be fixed within more general “topological-like” structures
like convergence spaces.

A closer look at the proofs in [2] gives however a different picture: the
arguments can be modified (and simplified) to apply to real functions and to
use only topologies, at least for pointwise differentiability. Indeed, the con-
vergence structure used in [2] can be split into a family of topologies (τα)α∈R,
the members of which are instrumental in characterizing pointwise differen-
tiability of f : R → R in terms of continuity of the canonically associated map
f̂ = Id× f :

(
R2, τ1

)
→

(
R2, τα

)
.

2 Differentiability as Continuity.

Let α be a real number. We define on R× R the vector space topology τα in
which a base of neighborhoods of (0, 0) is given by the sets Nα

ε = {(λ, λξ) :
sup(|λ|, |ξ − α|) < ε} for ε > 0.

Hence a typical neighborhood of (λ0, x0) in τα is of the form

(λ0, x0) + Nα
ε = {(λ0 + λ, x0 + λξ) : sup(|λ|, |ξ − α|) < ε}.
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Theorem 1. f : R → R is differentiable at x0 if and only if there exists α ∈ R
such that

f̂ = Id× f : (R× R, τ1) → (R× R, τα)

is continuous at (λ0, x0) for every λ0 ∈ R (equivalently, for λ0 = 0). Specifi-
cally α is unique and f ′(x0) = α.

Proof. Assume that f : R → R is differentiable at x0. Then f(x) = f(x0) +
f
′
(x0)(x−x0)+h(x−x0) where limx→x0

h(x−x0)
x−x0

= 0. Fix ε in (0, 1) and λ0 ∈ R.

We want to find δ > 0 such that f̂((λ0, x0)+N1
δ ) ⊂ f̂(λ0, x0)+N

f ′(x0)
ε . Suppose

that λ, ξ ∈ R; then (λ, λξ) ∈ N1
δ provided |λ| < δ and |ξ − 1| < δ with δ > 0

still to be chosen. We have

f̂((λ0, x0) + (λ, λξ)) = f̂(λ0 + λ, x0 + λξ)
= (λ0 + λ, f(x0 + λξ))
= (λ0, f(x0)) + (λ, f(x0 + λξ)− f(x0))

= f̂(λ0, x0) + (λ, λη)

where η = f(x0+λξ)−f(x0)
λ . Note that

f(x0 + λξ) = f(x0) + f ′(x0)λξ + h(λξ),

so

η − f ′(x0) = f ′(x0)(ξ − 1) +
h(λξ)

λ
,

and

|η − f ′(x0)| ≤ |f ′(x0)|.|ξ − 1|+
∣∣∣∣h(λξ)

λ

∣∣∣∣ .

As limx→x0
h(x−x0)

x−x0
= 0, it follows that there is γ > 0 such that

∣∣∣h(λξ)
λξ

∣∣∣ < ε
3

when 0 < |λξ| < γ. We assume that γ < 1. If sup(|λ|, |ξ − 1|) < γ
2 , then

|λξ| < γ so that ∣∣∣∣h(λξ)
λ

∣∣∣∣ <
ε|ξ|
3

<
2ε

3
.

If f ′(x0) = 0, then |η| ≤
∣∣∣h(λξ)

λ

∣∣∣ and f̂((λ0, x0) + (λ, λξ)) ∈ f̂(λ0, x0) + N0
ε

provided that (λ, λξ) ∈ N1
δ where δ = min{ε, γ

2 }. If f ′(x0) 6= 0 and |ξ − 1| <
ε

3|f ′(x0)| , then |f ′(x0)|.|ξ−1| < ε
3 . Now set δ = min{ε, γ

2 , ε
3|f ′(x0)|}. If (λ, λξ) ∈

N1
δ , then it follows that |λ| < ε and |η − f ′(x0)| < ε so f̂((λ0, x0) + (λ, λξ)) ∈

f̂(λ0, x0) + N
f ′(x0)
ε .
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Conversely, assume that f̂ = Id×f : (R×R, τ1) → (R×R, τα) is continuous
at (0, x0) for some α ∈ R. We want to show that α = f ′(x0). By continuity,
for every ε > 0, there exists δ such that ε > δ > 0 and f̂((0, x0) + N1

δ ) ⊂
f̂(0, x0) + Nα

ε . In other words,

{(λ, f(x0+λξ)) : sup(|λ|, |ξ−1|) < δ} ⊂ {(λ, f(x0)+λη) : sup(|λ|, |η−α|) < ε}.

In particular, f(x0 +λ) = f(x0)+λη for some η verifying |η−α| < ε, provided
that |λ| < δ. Therefore ∣∣∣∣f(x0 + λ)− f(x0)

λ
− α

∣∣∣∣ < ε

provided that |λ| < δ, so that α = limλ→0
f(x0+λ)−f(x0)

λ = f ′(x0).

A dissatisfying aspect of this result is that the topology τα depends on x0.
This can be remedied by using a convergence structure instead of a topology on
the range. Recall that a filter on X is a family F of subsets of X that is stable
by finite intersections (A,B ∈ F =⇒A∩B∈ F) and by supersets ( A ∈ F and
A ⊂ B =⇒ B ∈ F) and that does not contain the empty set. A family A
of subsets of X that does not contain the empty set and is stable by finite
intersections is called a filter base. It generates a filter A↑ = {B : ∃A ∈ A,
A ⊂ B}. For instance, the family N (x) of neighborhoods of a fixed point x of
a topological space X is a filter. The family of tails {{xn : n ≥ k} : k ∈ N} of a
sequence (xn)n∈N on X is a filter-base on X. Filters on a given set are ordered
by inclusion; that is, F is finer than G, in symbols F ≥ G, if F ⊃ G. It is an
easy exercise to verify that the sequence (xn)n∈N converges to x if and only
if the filter generated by the filter-base of its tails is finer than N (x). More
generally, a filter F on a topological space X converges to x if F ≥ N (x).
A convergence ξ on a set X defines what are the filters convergent to each
point. Formally, it is a relation between X and the set of filters on X, denoted
x ∈ limξ F or F→

ξ
x whenever (x,F) ∈ ξ and verifying:

1. {x}↑ → x for every x ∈ X;

2. F →x and G ≥ F =⇒ G →x.

A topology is a particular convergence in which F →x if and only if F is
finer than the filter N (x) of neighborhoods of x and N (x) has a base of open
sets, where O ⊂ X is open if

F → x ∈ O =⇒ O ∈ F .
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A map f : (X, ξ) → (Y, σ) between two convergence spaces is continuous
if f(F)→

σ
f(x) whenever F→

ξ
x. If Id : (X, ξ) → (X, σ) is continuous, we say

that ξ is finer than σ, in symbols ξ ≥ σ. If (ξi)i∈I is a family of convergences
on X, the supremum and infimum of the family with respect to this order are
defined by:

lim∨i∈Iξi F=
⋂

i∈I
limξi F ;

lim∧i∈Iξi
F=

⋃
i∈I

limξi
F .

We call the convergence Γc =
∧

α∈R
τα the convergence along cones. Notice that

even though each τα is a topology, Γc is not.
An immediate corollary of the definitions and of Theorem 1 is the following.

Corollary 2. f : R → R is differentiable if and only if

f̂ = Id× f : (R2, τ1) → (R2,Γc)

is continuous.

3 Calculus Topologically.

A cornerstone of calculus in one variable is Fermat’s theorem stating that if f
has a local extremum at a, then either f is not differentiable at a or f ′(a) = 0.
We show that Fermat’s theorem can be proved topologically via Theorem 1.

Proposition 3. Suppose that f : R → R has a local extremum at a ∈ R. Then
for each α and λ0 in R with α 6= 0, the function f̂ : (R2, τ1) → (R2, τα) is not
continuous at (λ0, a).

Proof. Assume that f has a local maximum at a. Given α > 0 and λ0, we
will show that f̂((λ0, a) + N1

δ ) * f̂(λ0, a) + Nα
α/2 for each δ > 0, by exhibiting

h ∈ (0, δ) such that f̂((λ0, a) + (h, h)) − f̂(λ0, a) /∈ Nα
α/2. As f has a local

maximum at a, we may choose h ∈ (0, δ) small enough that f(a + h) ≤ f(a).
Then

f̂((λ0, a) + (h, h))− f̂(λ0, a) = f̂(λ0 + h, a + h)− f̂(λ0, a)
= (λ0 + h, f(a + h))− (λ0, f(a))
= (h, f(a + h)− f(a))

= h

(
1,

f(a + h)− f(a)
h

)
.



430 David Gauld and Frédéric Mynard

Therefore, f̂((λ0, a)+(h, h))−f̂(λ0, a) /∈ Nα
α/2 because f(a+h)−f(a)

h ≤ 0 cannot
be between α− α

2 and α + α
2 .

A similar argument applies for α < 0 using h ∈ (−δ, 0), and the proof for
a local minimum is analogous.

In view of Theorem 1, we obtain the following.

Corollary 4. (Fermat): If f : R → R has a local extremum at a, then either
f is not differentiable at a or f ′(a) = 0.

Interestingly, many calculus results follow from that fact - now interpreted
topologically - combined with a topological argument. For instance, Rolle’s
Theorem (hence the mean value theorem) follows immediately from Corollary
4, given the existence of extrema of the function on [a, b], which follows by
continuity of the function and compactness of [a, b]. The same is true, among
others, for the fact that derivatives have the intermediate value property. In
turn, a myriad of results are based on the mean value theorem without further
use of the derivative.
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