David Gauld, Department of Mathematics, University of Auckland, PB 92019, Auckland, New Zealand. email: gauld@math.auckland.ac.nz Frédéric Mynard, Department of Mathematical Sciences, Georgia Southern University, Statesboro, GA 30460-8093, USA. email: fmynard@georgiasouthern.edu

DIFFERENTIABILITY AS CONTINUITY

Abstract

We characterize differentiability of a map $f: \mathbb{R} \to \mathbb{R}$ in terms of continuity of a canonically associated map \hat{f} . To characterize pointwise differentiability of f, both the domain and range of \hat{f} can be made topological. However, the global differentiability of f is characterized by the continuity of \hat{f} whose domain is topological but whose range is a convergence space.

1 Introduction.

A calculus student is well aware of the difference between continuity and differentiability of a map $f: \mathbb{R} \to \mathbb{R}$. For such a student, continuity is always understood as continuity for the usual topology of \mathbb{R} . After a first topology course, this same student may wonder if there is a way to find two topologies τ_d and τ_r such that the differentiability of a function $f: \mathbb{R} \to \mathbb{R}$ is characterized by the continuity of $f:(\mathbb{R},\tau_d)\to(\mathbb{R},\tau_r)$. This natural question was answered negatively by R. Geroch, E. Kronheimer and G. McCarty in [1]. This is in stark contrast with A. Machado's result [2, Propositions 2.2.1 and 2.2.2] that a map $f: \mathbb{C} \to \mathbb{C}$ is analytic if and only if $\widehat{f}: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ is continuous, where the map \hat{f} is canonically associated to f. However, the structure $\hat{\mathbb{C}}$ used by Machado is not carried by \mathbb{C} but by \mathbb{C}^2 and is not a topology but a more general structure called *convergence* (see end of Section 2). Moreover Machado's

Key Words: real valued functions, differentiability, continuity, convergence spaces Mathematical Reviews subject classification: Primary: 26A24, 54C30; Secondary: 26A06, 26A27, 54A10, 54A20

Received by the editors August 1, 2005

Communicated by: Udayan B. Darji

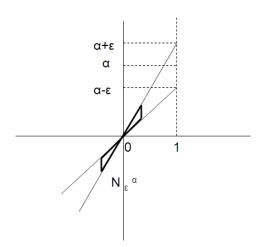
^{*}The second author gratefully acknowledges partial support of the research by the French Ministry of Foreign Affairs and Auckland University

result doesn't apply to the differentiability of a map $f: \mathbb{R} \to \mathbb{R}$. Hence, this could be seen both as yet another contrast between \mathbb{R} -differentiability and \mathbb{C} -differentiability and as a striking illustration that what fails in the realm of topologies can often be fixed within more general "topological-like" structures like convergence spaces.

A closer look at the proofs in [2] gives however a different picture: the arguments can be modified (and simplified) to apply to real functions and to use only topologies, at least for pointwise differentiability. Indeed, the convergence structure used in [2] can be split into a family of topologies $(\tau_{\alpha})_{\alpha \in \mathbb{R}}$, the members of which are instrumental in characterizing *pointwise* differentiability of $f: \mathbb{R} \to \mathbb{R}$ in terms of continuity of the canonically associated map $\hat{f} = Id \times f: (\mathbb{R}^2, \tau_1) \to (\mathbb{R}^2, \tau_{\alpha})$.

2 Differentiability as Continuity.

Let α be a real number. We define on $\mathbb{R} \times \mathbb{R}$ the vector space topology τ_{α} in which a base of neighborhoods of (0,0) is given by the sets $N_{\varepsilon}^{\alpha} = \{(\lambda, \lambda \xi) : \sup(|\lambda|, |\xi - \alpha|) < \varepsilon\}$ for $\varepsilon > 0$.



Hence a typical neighborhood of (λ_0, x_0) in τ_{α} is of the form

$$(\lambda_0, x_0) + N_{\varepsilon}^{\alpha} = \{(\lambda_0 + \lambda, x_0 + \lambda \xi) : \sup(|\lambda|, |\xi - \alpha|) < \varepsilon\}.$$

Theorem 1. $f: \mathbb{R} \to \mathbb{R}$ is differentiable at x_0 if and only if there exists $\alpha \in \mathbb{R}$ such that

$$\widehat{f} = Id \times f : (\mathbb{R} \times \mathbb{R}, \tau_1) \to (\mathbb{R} \times \mathbb{R}, \tau_\alpha)$$

is continuous at (λ_0, x_0) for every $\lambda_0 \in \mathbb{R}$ (equivalently, for $\lambda_0 = 0$). Specifically α is unique and $f'(x_0) = \alpha$.

PROOF. Assume that $f: \mathbb{R} \to \mathbb{R}$ is differentiable at x_0 . Then $f(x) = f(x_0) + f'(x_0)(x-x_0) + h(x-x_0)$ where $\lim_{x \to x_0} \frac{h(x-x_0)}{x-x_0} = 0$. Fix ε in (0,1) and $\lambda_0 \in \mathbb{R}$. We want to find $\delta > 0$ such that $\widehat{f}((\lambda_0, x_0) + N_\delta^1) \subset \widehat{f}(\lambda_0, x_0) + N_\varepsilon^{f'(x_0)}$. Suppose that $\lambda, \xi \in \mathbb{R}$; then $(\lambda, \lambda \xi) \in N_\delta^1$ provided $|\lambda| < \delta$ and $|\xi - 1| < \delta$ with $\delta > 0$ still to be chosen. We have

$$\widehat{f}((\lambda_0, x_0) + (\lambda, \lambda \xi)) = \widehat{f}(\lambda_0 + \lambda, x_0 + \lambda \xi)$$

$$= (\lambda_0 + \lambda, f(x_0 + \lambda \xi))$$

$$= (\lambda_0, f(x_0)) + (\lambda, f(x_0 + \lambda \xi) - f(x_0))$$

$$= \widehat{f}(\lambda_0, x_0) + (\lambda, \lambda \eta)$$

where $\eta = \frac{f(x_0 + \lambda \xi) - f(x_0)}{\lambda}$. Note that

$$f(x_0 + \lambda \xi) = f(x_0) + f'(x_0)\lambda \xi + h(\lambda \xi),$$

so

$$\eta - f'(x_0) = f'(x_0)(\xi - 1) + \frac{h(\lambda \xi)}{\lambda},$$

and

$$|\eta - f'(x_0)| \le |f'(x_0)| \cdot |\xi - 1| + \left| \frac{h(\lambda \xi)}{\lambda} \right|.$$

As $\lim_{x\to x_0} \frac{h(x-x_0)}{x-x_0} = 0$, it follows that there is $\gamma > 0$ such that $\left|\frac{h(\lambda\xi)}{\lambda\xi}\right| < \frac{\varepsilon}{3}$ when $0 < |\lambda\xi| < \gamma$. We assume that $\gamma < 1$. If $\sup(|\lambda|, |\xi-1|) < \frac{\gamma}{2}$, then $|\lambda\xi| < \gamma$ so that

$$\left|\frac{h(\lambda\xi)}{\lambda}\right| < \frac{\varepsilon|\xi|}{3} < \frac{2\varepsilon}{3}.$$

If $f'(x_0) = 0$, then $|\eta| \leq \left| \frac{h(\lambda \xi)}{\lambda} \right|$ and $\widehat{f}((\lambda_0, x_0) + (\lambda, \lambda \xi)) \in \widehat{f}(\lambda_0, x_0) + N_{\varepsilon}^0$ provided that $(\lambda, \lambda \xi) \in N_{\delta}^1$ where $\delta = \min\{\varepsilon, \frac{\gamma}{2}\}$. If $f'(x_0) \neq 0$ and $|\xi - 1| < \frac{\varepsilon}{3|f'(x_0)|}$, then $|f'(x_0)|.|\xi - 1| < \frac{\varepsilon}{3}$. Now set $\delta = \min\{\varepsilon, \frac{\gamma}{2}, \frac{\varepsilon}{3|f'(x_0)|}\}$. If $(\lambda, \lambda \xi) \in N_{\delta}^1$, then it follows that $|\lambda| < \varepsilon$ and $|\eta - f'(x_0)| < \varepsilon$ so $\widehat{f}((\lambda_0, x_0) + (\lambda, \lambda \xi)) \in \widehat{f}(\lambda_0, x_0) + N_{\varepsilon}^{f'(x_0)}$.

Conversely, assume that $\widehat{f} = Id \times f : (\mathbb{R} \times \mathbb{R}, \tau_1) \to (\mathbb{R} \times \mathbb{R}, \tau_{\alpha})$ is continuous at $(0, x_0)$ for some $\alpha \in \mathbb{R}$. We want to show that $\alpha = f'(x_0)$. By continuity, for every $\varepsilon > 0$, there exists δ such that $\varepsilon > \delta > 0$ and $\widehat{f}((0, x_0) + N_{\delta}^1) \subset \widehat{f}(0, x_0) + N_{\varepsilon}^{\alpha}$. In other words,

$$\{(\lambda, f(x_0 + \lambda \xi)) : \sup(|\lambda|, |\xi - 1|) < \delta\} \subset \{(\lambda, f(x_0) + \lambda \eta) : \sup(|\lambda|, |\eta - \alpha|) < \varepsilon\}.$$

In particular, $f(x_0 + \lambda) = f(x_0) + \lambda \eta$ for some η verifying $|\eta - \alpha| < \varepsilon$, provided that $|\lambda| < \delta$. Therefore

$$\left| \frac{f(x_0 + \lambda) - f(x_0)}{\lambda} - \alpha \right| < \varepsilon$$

provided that $|\lambda| < \delta$, so that $\alpha = \lim_{\lambda \to 0} \frac{f(x_0 + \lambda) - f(x_0)}{\lambda} = f'(x_0)$.

A dissatisfying aspect of this result is that the topology τ_{α} depends on x_0 . This can be remedied by using a *convergence structure* instead of a topology on the range. Recall that a filter on X is a family \mathcal{F} of subsets of X that is stable by finite intersections $(A, B \in \mathcal{F} \Longrightarrow A \cap B \in \mathcal{F})$ and by supersets $(A \in \mathcal{F})$ and $A \subset B \Longrightarrow B \in \mathcal{F}$) and that does not contain the empty set. A family \mathcal{A} of subsets of X that does not contain the empty set and is stable by finite intersections is called a filter base. It generates a filter $\mathcal{A}^{\uparrow} = \{B : \exists A \in \mathcal{A}, \}$ $A \subset B$. For instance, the family $\mathcal{N}(x)$ of neighborhoods of a fixed point x of a topological space X is a filter. The family of tails $\{\{x_n : n \geq k\} : k \in \mathbb{N}\}$ of a sequence $(x_n)_{n\in\mathbb{N}}$ on X is a filter-base on X. Filters on a given set are ordered by inclusion; that is, \mathcal{F} is finer than \mathcal{G} , in symbols $\mathcal{F} \geq \mathcal{G}$, if $\mathcal{F} \supset \mathcal{G}$. It is an easy exercise to verify that the sequence $(x_n)_{n\in\mathbb{N}}$ converges to x if and only if the filter generated by the filter-base of its tails is finer than $\mathcal{N}(x)$. More generally, a filter \mathcal{F} on a topological space X converges to x if $\mathcal{F} \geq \mathcal{N}(x)$. A convergence ξ on a set X defines what are the filters convergent to each point. Formally, it is a relation between X and the set of filters on X, denoted $x \in \lim_{\xi} \mathcal{F}$ or $\mathcal{F} \xrightarrow{\epsilon} x$ whenever $(x, \mathcal{F}) \in \xi$ and verifying:

- 1. $\{x\}^{\uparrow} \to x$ for every $x \in X$;
- 2. $\mathcal{F} \to x$ and $\mathcal{G} \geq \mathcal{F} \Longrightarrow \mathcal{G} \to x$.

A topology is a particular convergence in which $\mathcal{F} \to x$ if and only if \mathcal{F} is finer than the filter $\mathcal{N}(x)$ of neighborhoods of x and $\mathcal{N}(x)$ has a base of open sets, where $O \subset X$ is *open* if

$$\mathcal{F} \to x \in O \Longrightarrow O \in \mathcal{F}$$
.

A map $f:(X,\xi)\to (Y,\sigma)$ between two convergence spaces is *continuous* if $f(\mathcal{F})\underset{\sigma}{\to} f(x)$ whenever $\mathcal{F}\underset{\xi}{\to} x$. If $Id:(X,\xi)\to (X,\sigma)$ is continuous, we say that ξ is finer than σ , in symbols $\xi\geq\sigma$. If $(\xi_i)_{i\in I}$ is a family of convergences on X, the supremum and infimum of the family with respect to this order are defined by:

$$\begin{split} & \lim_{\forall_{i \in I} \xi_i} \mathcal{F} \!\!=\! \bigcap_{i \in I} \lim_{\xi_i} \mathcal{F}; \\ & \lim_{\land_{i \in I} \xi_i} \mathcal{F} \!\!=\! \bigcup_{i \in I} \lim_{\xi_i} \mathcal{F}. \end{split}$$

We call the convergence $\Gamma_c = \bigwedge_{\alpha \in \mathbb{R}} \tau_{\alpha}$ the convergence along cones. Notice that even though each τ_{α} is a topology, Γ_c is not.

An immediate corollary of the definitions and of Theorem 1 is the following.

Corollary 2. $f: \mathbb{R} \to \mathbb{R}$ is differentiable if and only if

$$\widehat{f} = Id \times f : (\mathbb{R}^2, \tau_1) \to (\mathbb{R}^2, \Gamma_c)$$

is continuous.

3 Calculus Topologically.

A cornerstone of calculus in one variable is Fermat's theorem stating that if f has a local extremum at a, then either f is not differentiable at a or f'(a) = 0. We show that Fermat's theorem can be proved topologically via Theorem 1.

Proposition 3. Suppose that $f: \mathbb{R} \to \mathbb{R}$ has a local extremum at $a \in \mathbb{R}$. Then for each α and λ_0 in \mathbb{R} with $\alpha \neq 0$, the function $\hat{f}: (\mathbb{R}^2, \tau_1) \to (\mathbb{R}^2, \tau_{\alpha})$ is not continuous at (λ_0, a) .

PROOF. Assume that f has a local maximum at a. Given $\alpha > 0$ and λ_0 , we will show that $\widehat{f}((\lambda_0, a) + N_\delta^1) \nsubseteq \widehat{f}(\lambda_0, a) + N_{\alpha/2}^\alpha$ for each $\delta > 0$, by exhibiting $h \in (0, \delta)$ such that $\widehat{f}((\lambda_0, a) + (h, h)) - \widehat{f}(\lambda_0, a) \notin N_{\alpha/2}^\alpha$. As f has a local maximum at a, we may choose $h \in (0, \delta)$ small enough that $f(a + h) \leq f(a)$. Then

$$\widehat{f}((\lambda_0, a) + (h, h)) - \widehat{f}(\lambda_0, a) = \widehat{f}(\lambda_0 + h, a + h) - \widehat{f}(\lambda_0, a)
= (\lambda_0 + h, f(a + h)) - (\lambda_0, f(a))
= (h, f(a + h) - f(a))
= h \left(1, \frac{f(a + h) - f(a)}{h}\right).$$

Therefore, $\widehat{f}((\lambda_0,a)+(h,h))-\widehat{f}(\lambda_0,a)\notin N_{\alpha/2}^{\alpha}$ because $\frac{f(a+h)-f(a)}{h}\leq 0$ cannot be between $\alpha-\frac{\alpha}{2}$ and $\alpha+\frac{\alpha}{2}$.

A similar argument applies for $\alpha < 0$ using $h \in (-\delta, 0)$, and the proof for a local minimum is analogous.

In view of Theorem 1, we obtain the following.

Corollary 4. (Fermat): If $f : \mathbb{R} \to \mathbb{R}$ has a local extremum at a, then either f is not differentiable at a or f'(a) = 0.

Interestingly, many calculus results follow from that fact - now interpreted topologically - combined with a topological argument. For instance, Rolle's Theorem (hence the mean value theorem) follows immediately from Corollary 4, given the existence of extrema of the function on [a,b], which follows by continuity of the function and compactness of [a,b]. The same is true, among others, for the fact that derivatives have the intermediate value property. In turn, a myriad of results are based on the mean value theorem without further use of the derivative.

References

- [1] E. Kronheimer, R. Geroch and G. McCarty, No topologies characterize differentiability as continuity, Proc. Amer. Math. Soc., 28 (1971), 273–274.
- [2] A. Machado, *Quasi-variétés complexes*, Cahiers Top. Géom. Diff., **11** (1969), 229–279.