B. E. Rhoades, Department of Mathematics, Indiana University, Bloomington, IN 47405-7106, U.S.A. email: rhoades@indiana.edu Ekrem Savaş, Department of Mathematics, Yüzüncü Yil University, Van, Turkey. email: ekremsavas@yahoo.com

A SUMMABILITY FACTOR THEOREM FOR GENERALIZED ABSOLUTE SUMMABILITY

Abstract

In this paper, we establish a summability factor theorem for summability $|A, \delta|_{k}$ as defined in (1) where A is a lower triangular matrix with non-negative entries satisfying certain conditions. Our paper is an extension of the main result of [1] using definition (1) below.

Recently, Bor and Seyhan [1] proved a theorem on $|\bar{N}, p, \delta|_{k}$ summability factor under weaker conditions by using an almost increasing sequence. Unfortunately they used an incorrect definition, (for detail, see, [3]). In this paper, we generalize their result by using the correct definition and a lower triangular matrix with non-negative entries satisfying certain conditions.

Let A be a lower triangular matrix, $\left\{s_{n}\right\}$ a sequence. Then

$$
A_{n}:=\sum_{\nu=0}^{n} a_{n \nu} s_{\nu} .
$$

A series $\sum a_{n}$ is said to be summable $|A|_{k}, k \geq 1$ if

$$
\sum_{n=1}^{\infty} n^{k-1}\left|A_{n}-A_{n-1}\right|^{k}<\infty
$$

and it is said to be summable $|A, \delta|_{k}, k \geq 1$ and $\delta \geq 0$ if (see [2])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{\delta k+k-1}\left|A_{n}-A_{n-1}\right|^{k}<\infty \tag{1}
\end{equation*}
$$

[^0]We may associate with A two lower triangular matrices \bar{A} and \hat{A} defined by

$$
\bar{a}_{n \nu}=\sum_{r=\nu}^{n} a_{n r}, n, \nu=0,1,2, \ldots
$$

and

$$
\hat{a}_{n \nu}=\bar{a}_{n \nu}-\bar{a}_{n-1, \nu}, n=1,2,3, \ldots
$$

A positive sequence $\left\{b_{n}\right\}$ is said to be almost increasing if there exists an increasing sequence $\left\{c_{n}\right\}$ and two positive constants A and B such that $A c_{n} \leq$ $b_{n} \leq B c_{n}$. Obviously every increasing sequence is almost increasing. However, the converse need not be true as can be seen by taking the example, say $b_{n}=e^{(-1)^{n}} n$.

Given any sequence $\left\{x_{n}\right\}$, the notation $x_{n} \asymp O(1)$ means $x_{n}=O(1)$ and $1 / x_{n}=O(1)$. For any matrix entry $a_{n \nu}, \Delta_{\nu} a_{n \nu}:=a_{n \nu}-a_{n \nu+1}$.
Theorem 1. Let $\left\{X_{n}\right\}$ be an almost increasing sequence and let $\left\{\beta_{n}\right\}$ and $\left\{\lambda_{n}\right\}$ be sequences such that:
(i) $\left|\Delta \lambda_{n}\right| \leq \beta_{n}$,
(ii) $\lim \beta_{n}=0$,
(iii) $\sum_{n=1}^{\infty} n\left|\Delta \beta_{n}\right| X_{n}<\infty$, and
(iv) $\left|\lambda_{n}\right| X_{n}=O(1)$.

Let A be a lower triangular matrix with non-negative entries satisfying
(v) $n a_{n n} \asymp O(1)$,
(vi) $a_{n-1, \nu} \geq a_{n \nu}$ for $n \geq \nu+1$,
(vii) $\bar{a}_{n 0}=1$ for all n,
(viii) $\sum_{\nu=1}^{n-1} a_{\nu \nu} \hat{a}_{n \nu+1}=O\left(a_{n n}\right)$,
(ix) $\sum_{n=\nu+1}^{m+1} n^{\delta k}\left|\Delta_{\nu} \hat{a}_{n \nu}\right|=O\left(\nu^{\delta k} a_{\nu \nu}\right)$, and
(x) $\sum_{n=\nu+1}^{m+1} n^{\delta k} \hat{a}_{n \nu+1}=O\left(\nu^{\delta k}\right)$.

If
(xi) $\sum_{n=1}^{m} n^{\delta k-1}\left|t_{n}\right|^{k}=O\left(X_{m}\right)$,
where $t_{n}:=\frac{1}{n+1} \sum_{k=1}^{n} k a_{k}$, then the series $\sum a_{n} \lambda_{n}$ is summable $|A, \delta|_{k}, k \geq 1$, $0 \leq \delta<1 / k$.

The following lemma is essential for the proof of Theorem 1.
Lemma 1. ([1]) Under the conditions on $\left\{X_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\lambda_{n}\right\}$ as taken from the statement of the theorem if (iii) is satisfied, then
(1) $n \beta_{n} X_{n}=O(1)$
(2) $\sum_{n=1}^{\infty} \beta_{n} X_{n}<\infty$.

Proof. Let $\left(y_{n}\right)$ be the $n t h$ term of the A-transform of the partial sums of $\sum_{i=0}^{n} \lambda_{i} a_{i}$. Then

$$
y_{n}:=\sum_{i=0}^{n} a_{n i} s_{i}=\sum_{i=0}^{n} a_{n i} \sum_{\nu=0}^{i} \lambda_{\nu} a_{\nu}=\sum_{\nu=0}^{n} \lambda_{\nu} a_{\nu} \sum_{i=\nu}^{n} a_{n i}=\sum_{\nu=0}^{n} \bar{a}_{n \nu} \lambda_{\nu} a_{\nu}
$$

and

$$
Y_{n}:=y_{n}-y_{n-1}=\sum_{\nu=0}^{n}\left(\bar{a}_{n \nu}-\bar{a}_{n-1, \nu}\right) \lambda_{\nu} a_{\nu}=\sum_{\nu=0}^{n} \hat{a}_{n \nu} \lambda_{\nu} a_{\nu} .
$$

We may write (Note that (vii) implies that $\hat{a}_{n 0}=0$.)

$$
\begin{aligned}
Y_{n}= & \sum_{\nu=1}^{n}\left(\frac{\hat{a}_{n \nu} \lambda_{\nu}}{\nu}\right) \nu a_{\nu}=\sum_{\nu=1}^{n}\left(\frac{\hat{a}_{n \nu} \lambda_{\nu}}{\nu}\right)\left[\sum_{r=1}^{\nu} r a_{r}-\sum_{r=1}^{\nu-1} r a_{r}\right] \\
= & \sum_{\nu=1}^{n-1} \Delta_{\nu}\left(\frac{\hat{a}_{n \nu} \lambda_{\nu}}{\nu}\right) \sum_{r=1}^{\nu} r a_{r}+\frac{\hat{a}_{n n} \lambda_{n}}{n} \sum_{r=1}^{n} r a_{r} \\
= & \sum_{\nu=1}^{n-1}\left(\Delta_{\nu} \hat{a}_{n \nu}\right) \lambda_{\nu} \frac{\nu+1}{\nu} t_{\nu}+\sum_{\nu=1}^{n-1} \hat{a}_{n, \nu+1}\left(\Delta \lambda_{\nu}\right) \frac{\nu+1}{\nu} t_{\nu} \\
& +\sum_{\nu=1}^{n-1} \hat{a}_{n, \nu+1} \lambda_{\nu+1} \frac{1}{\nu} t_{\nu}+\frac{(n+1) a_{n n} \lambda_{n} t_{n}}{n} \\
= & T_{n 1}+T_{n 2}+T_{n 3}+T_{n 4}, \text { say. }
\end{aligned}
$$

To complete the proof, by Minkowski's inequality, it suffices to show that

$$
\sum_{n=1}^{\infty} n^{\delta k+k-1}\left|T_{n r}\right|^{k}<\infty, \text { for } r=1,2,3,4
$$

From the definition of \hat{A} and by (vi) and (vii)

$$
\begin{aligned}
\hat{a}_{n, \nu+1} & =\bar{a}_{n, \nu+1}-\bar{a}_{n-1, \nu+1}=\sum_{i=\nu+1}^{n} a_{n i}-\sum_{i=\nu+1}^{n-1} a_{n-1, i} \\
& =1-\sum_{i=0}^{\nu} a_{n i}-1+\sum_{i=0}^{\nu} a_{n-1, i}=\sum_{i=0}^{\nu}\left(a_{n-1, i}-a_{n, i}\right) \geq 0
\end{aligned}
$$

By Hölder's inequality

$$
\begin{aligned}
I_{1} & :=\sum_{n=1}^{m} n^{\delta k+k-1}\left|T_{n 1}\right|^{k}=\sum_{n=1}^{m} n^{\delta k+k-1}\left|\sum_{\nu=1}^{n-1} \Delta_{\nu} \hat{a}_{n \nu} \lambda_{\nu} \frac{\nu+1}{\nu} t_{\nu}\right|^{k} \\
& =O(1) \sum_{n=1}^{m+1} n^{\delta k+k-1}\left(\sum_{\nu=1}^{n-1}\left|\Delta_{\nu} \hat{a}_{n \nu}\right|\left|\lambda_{\nu}\right|\left|t_{\nu}\right|\right)^{k} \\
& =O(1) \sum_{n=1}^{m+1} n^{\delta k+k-1}\left(\sum_{\nu=1}^{n-1}\left|\Delta_{\nu} \hat{a}_{n \nu}\right|\left|\lambda_{\nu}\right|^{k}\left|t_{\nu}\right|^{k}\right) \times\left(\sum_{\nu=1}^{n-1}\left|\Delta_{\nu} \hat{a}_{n \nu}\right|\right)^{k-1}
\end{aligned}
$$

$$
\begin{aligned}
\Delta_{\nu} \hat{a}_{n \nu} & =\hat{a}_{n \nu}-\hat{a}_{n, \nu+1}=\bar{a}_{n \nu}-\bar{a}_{n-1, \nu}-\bar{a}_{n, \nu+1}+\bar{a}_{n-1, \nu+1} \\
& =a_{n \nu}-a_{n-1, \nu} \leq 0
\end{aligned}
$$

Thus, by (vii)

$$
\sum_{\nu=0}^{n-1}\left|\Delta_{\nu} \hat{a}_{n \nu}\right|=\sum_{\nu=0}^{n-1}\left(a_{n-1, \nu}-a_{n \nu}\right)=1-1+a_{n n}=a_{n n}
$$

Since $\left\{X_{n}\right\}$ is an almost increasing sequence, condition (iv) implies that $\left\{\lambda_{n}\right\}$
is bounded. Then, by $(v),(i x),(x i)$, and (i) and condition (2) of Lemma 1,

$$
\begin{aligned}
I_{1} & =O(1) \sum_{n=1}^{m+1} n^{\delta k}\left(n a_{n n}\right)^{k-1} \sum_{\nu=1}^{n-1}\left|\lambda_{\nu}\right|^{k}\left|t_{\nu}\right|^{k}\left|\Delta_{\nu} \hat{a}_{n \nu}\right| \\
& =O(1) \sum_{n=1}^{m+1} n^{\delta k}\left(\sum_{\nu=1}^{n-1}\left|\lambda_{\nu}\right|^{k-1}\left|\lambda_{\nu}\right|\left|\Delta_{\nu} \hat{a}_{n \nu}\right|\left|t_{\nu}\right|^{k}\right) \\
& =O(1) \sum_{\nu=1}^{m}\left|\lambda_{\nu}\right|\left|t_{\nu}\right|^{k} \sum_{n=\nu+1}^{m+1} n^{\delta k}\left|\Delta_{\nu} \hat{a}_{n \nu}\right|=O(1) \sum_{\nu=1}^{m} \nu^{\delta k}\left|\lambda_{\nu}\right| a_{\nu \nu}\left|t_{\nu}\right|^{k} \\
& =O(1) \sum_{\nu=1}^{m}\left|\lambda_{\nu}\right|\left[\sum_{r=1}^{\nu} a_{r r}\left|t_{r}\right|^{k} r^{\delta k}-\sum_{r=1}^{\nu-1} a_{r r}\left|t_{r}\right|^{k} r^{\delta k}\right] \\
& =O(1)\left[\sum_{\nu=1}^{m}\left|\lambda_{\nu}\right| \sum_{r=1}^{\nu} a_{r r}\left|t_{r}\right|^{k} r^{\delta k}-\sum_{\nu=0}^{m-1}\left|\lambda_{\nu+1}\right| \sum_{r=1}^{\nu} a_{r r}\left|t_{r}\right|^{k} r^{\delta k}\right] \\
& =O(1)\left[\sum_{\nu=1}^{m-1} \Delta\left(\left|\lambda_{\nu}\right|\right) \sum_{r=1}^{\nu} a_{r r}\left|t_{r}\right|^{k} r^{\delta k}+\left|\lambda_{m}\right| \sum_{r=1}^{m} a_{r r}\left|t_{r}\right|^{k} r^{\delta k}\right] \\
& =O(1)\left[\sum_{\nu=1}^{m-1} \Delta\left(\left|\lambda_{\nu}\right|\right) \sum_{r=1}^{\nu} r^{\delta k-1}\left|t_{r}\right|^{k}+\left|\lambda_{m}\right| \sum_{r=1}^{m} r^{\delta k-1}\left|t_{r}\right|^{k}\right] \\
& =O(1) \sum_{\nu=1}^{m-1}\left|\Delta \lambda_{\nu}\right| X_{\nu}+O(1)\left|\lambda_{m}\right| X_{m} \\
& =O(1) \sum_{\nu=1}^{m} \beta_{\nu} X_{\nu}+O(1)\left|\lambda_{m}\right| X_{m}=O(1)
\end{aligned}
$$

By (i) and Hölder's inequality,

$$
\begin{aligned}
I_{2} & :=\sum_{n=2}^{m+1} n^{\delta k+k-1}\left|T_{n 2}\right|^{k}=\sum_{n=2}^{m+1} n^{\delta k+k-1}\left|\sum_{\nu=1}^{n-1} \hat{a}_{n, \nu+1}\left(\Delta \lambda_{\nu}\right) \frac{\nu+1}{\nu} t_{\nu}\right|^{k} \\
& =O(1) \sum_{n=2}^{m+1} n^{\delta k+k-1}\left[\sum_{\nu=1}^{n-1} \hat{a}_{n, \nu+1} \beta_{\nu}\left|t_{\nu}\right|\right]^{k} \\
& \left.=O(1) \sum_{n=2}^{m+1} n^{\delta k+k-1} \sum_{\nu=1}^{n-1} \beta_{\nu}\left|t_{\nu}\right|^{k} \hat{a}_{n, \nu+1}\right] \times\left[\sum_{\nu=1}^{n-1} \hat{a}_{n, \nu+1} \beta_{\nu}\right]^{k-1}
\end{aligned}
$$

Using the definition of \hat{A} and \bar{A} and conditions (vi) and (vii)

$$
\begin{aligned}
J: & =\sum_{\nu=1}^{n-1} \hat{a}_{n, \nu+1} \beta_{\nu}=\sum_{\nu=1}^{n-1}\left(\bar{a}_{n, \nu+1}-\bar{a}_{n-1, \nu+1}\right) \beta_{\nu} \\
& =\sum_{\nu=1}^{n-1}\left(\sum_{i=\nu+1}^{n} a_{n i}-\sum_{i=\nu+1}^{n-1} a_{n-1, i}\right) \beta_{\nu} \\
& =\sum_{\nu=1}^{n-1}\left(1-\sum_{i=0}^{\nu} a_{n i}-1+\sum_{i=0}^{\nu} a_{n-1, i}\right) \beta_{\nu} \\
& =\sum_{\nu=1}^{n-1}\left(\sum_{i=0}^{\nu}\left(a_{n-1, i}-a_{n, i}\right)\right) \beta_{\nu} \\
& =\sum_{\nu=1}^{n-1}\left(a_{n-1,0}-a_{n, 0}\right) \beta_{\nu}+\sum_{\nu=1}^{n-1} \sum_{i=1}^{\nu}\left(a_{n-1, i}-a_{n, i}\right) \beta_{\nu} \\
& =\left(a_{n-1,0}-a_{n, 0}\right) \sum_{\nu=1}^{n-1} \beta_{\nu}+\sum_{i=1}^{n-1}\left(a_{n-1, i}-a_{n, i}\right) \sum_{\nu=i}^{n-1} \beta_{\nu} \\
& \leq \sum_{i=0}^{\nu}\left(a_{n-1, i}-a_{n, i}\right) \sum_{\nu=1}^{n-1} \beta_{\nu}
\end{aligned}
$$

Since $\left\{X_{n}\right\}$ is almost increasing, condition (2) of the Lemma implies that $\sum_{\nu=0}^{\infty} \beta_{\nu}$ converges. Therefore there exists a positive constant M such that $\sum_{\nu=0}^{\infty} \beta_{\nu} \leq M$ and we obtain $J \leq M a_{n n}$. Using (v) we have

$$
\begin{aligned}
I_{2} & =O(1) \sum_{n=2}^{m+1} n^{\delta k}\left(n a_{n n}\right)^{k-1} \sum_{\nu=1}^{n-1} \hat{a}_{n, \nu+1} \beta_{\nu}\left|t_{\nu}\right|^{k} \\
& =O(1) \sum_{\nu=1}^{m} \beta_{\nu}\left|t_{\nu}\right|^{k} \sum_{n=\nu+1}^{m+1} n^{\delta k} \hat{a}_{n, \nu+1}
\end{aligned}
$$

Therefore, from (x),

$$
I_{2}=O(1) \sum_{\nu=1}^{m} \nu^{\delta k} \beta_{\nu}\left|t_{\nu}\right|^{k}=O(1) \sum_{\nu=1}^{m} \nu \beta_{\nu} \frac{\left|t_{\nu}\right|^{k}}{\nu} \nu^{\delta k}
$$

Using summation by parts, (iii), (xi) and conditions (1) and (2) of Lemma 1,

$$
\begin{aligned}
I_{2}: & =O(1) \sum_{\nu=1}^{m} \nu \beta_{\nu}\left[\sum_{r=1}^{\nu} r^{\delta k-1}\left|t_{r}\right|^{k}-\sum_{r=1}^{\nu-1} r^{\delta k-1}\left|t_{r}\right|^{k}\right] \\
& =O(1)\left[\sum_{\nu=1}^{m} \nu \beta_{\nu} \sum_{r=1}^{\nu} r^{\delta k-1}\left|t_{r}\right|^{k}-\sum_{\nu=1}^{m-1}\left(\nu+1 \beta_{\nu+1}\right) \sum_{r=1}^{\nu} r^{\delta k-1}\left|t_{r}\right|^{k}\right] \\
& =O(1) \sum_{\nu=1}^{m-1} \Delta\left(\nu \beta_{\nu}\right) \sum_{r=1}^{\nu} r^{\delta k-1}\left|t_{r}\right|^{k}+O(1) m \beta_{m} \sum_{r=1}^{m} r^{\delta k-1}\left|t_{r}\right|^{k} \\
& =O(1) \sum_{\nu=1}^{m-1}\left|\Delta\left(\nu \beta_{\nu}\right)\right| X_{\nu}+O(1) m \beta_{m} X_{m} \\
& =O(1) \sum_{\nu=1}^{m-1} \nu\left|\Delta\left(\beta_{\nu}\right)\right| X_{\nu}+O(1) \sum_{\nu=1}^{m-1} \beta_{\nu+1} X_{\nu}+O(1)=O(1)
\end{aligned}
$$

By (viii) and Hölder's inequality,

$$
\begin{aligned}
\sum_{n=2}^{m+1} n^{k-1}\left|T_{n 3}\right|^{k}= & \sum_{n=2}^{m+1} n^{\delta k+k-1}\left|\sum_{\nu=1}^{n-1} \hat{a}_{n, \nu+1} \lambda_{\nu+1} \frac{1}{\nu} t_{\nu}\right|^{k} \\
\leq & \sum_{n=2}^{m+1} n^{\delta k+k-1}\left[\sum_{\nu=1}^{n-1}\left|\lambda_{\nu+1}\right| \frac{\hat{a}_{n, \nu+1}}{\nu}\left|t_{\nu}\right|\right]^{k} \\
= & O(1) \sum_{n=2}^{m+1} n^{\delta k+k-1}\left[\sum_{\nu=1}^{n-1}\left|\lambda_{\nu+1}\right| \hat{a}_{n, \nu+1}\left|t_{\nu}\right| a_{\nu \nu}\right]^{k} \\
= & O(1) \sum_{n=2}^{m+1} n^{\delta k+k-1}\left[\sum_{\nu=1}^{n-1}\left|\lambda_{\nu+1}\right|^{k} a_{\nu \nu}\left|t_{\nu}\right|^{k} \hat{a}_{n, \nu+1}\right] \\
& \times\left[\sum_{\nu=1}^{n-1} a_{\nu \nu}\left|\hat{a}_{n, \nu+1}\right|\right]^{k-1}
\end{aligned}
$$

By (iv), (v), (x) and the boundedness of ($a_{\nu \nu}$),

$$
\begin{aligned}
I_{3} & =O(1) \sum_{n=2}^{m+1} n^{\delta k}\left(n a_{n n}\right)^{k-1} \sum_{\nu=1}^{n-1}\left|\lambda_{\nu+1}\right|^{k} a_{\nu \nu}\left|t_{\nu}\right|^{k} \hat{a}_{n, \nu+1} \\
& =\left.\left.O(1) \sum_{n=2}^{m+1} \nu^{\delta k} \sum_{\nu=1}^{n-1}\left|\lambda_{\nu+1}\right|^{k-1}\left|\lambda_{\nu+1}\right| a_{\nu \nu}\right|_{\nu}\right|^{k} \hat{a}_{n, \nu+1} \\
& =O(1) \sum_{\nu=1}^{m}\left|\lambda_{\nu+1}\right| a_{\nu \nu}\left|t_{\nu}\right|^{k} \sum_{n=\nu+1}^{m+1} n^{\delta k} \hat{a}_{n, \nu+1} \\
& =O(1) \sum_{\nu=1}^{m}\left|\lambda_{\nu+1}\right| \nu^{\delta k} a_{\nu \nu}\left|t_{\nu}\right|^{k}=O(1)
\end{aligned}
$$

as in the proof of I_{1}.
Finally, by (iv) and (v) we have

$$
\begin{aligned}
\sum_{n=1}^{m} n^{\delta k+k-1}\left|T_{n 4}\right|^{k} & =\sum_{n=1}^{m} n^{\delta k+k-1}\left|\frac{(n+1) a_{n n} \lambda_{n} t_{n}}{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m} n^{\delta k+k-1}\left|a_{n n}\right|^{k}\left|\lambda_{n}\right|^{k}\left|t_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m} n^{\delta k}\left(n a_{n n}\right)^{k-1} a_{n n}\left|\lambda_{n}\right|^{k-1}\left|\lambda_{n}\right|\left|t_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m} n^{\delta k} a_{n n}\left|\lambda_{n}\right|\left|t_{n}\right|^{k}=O(1)
\end{aligned}
$$

as in the proof of I_{1}.
Setting $\delta=0$ in the theorem yields the following corollary.
Corollary 1. Let $\left\{X_{n}\right\}$ be an almost increasing sequence and let $\left\{\beta_{n}\right\}$ and $\left\{\lambda_{n}\right\}$ be sequences satisfying conditions (i)-(iv) of Theorem 1. Let A be a triangle satisfying conditions (v)-(viii) of Theorem 1. If
(vii) $\sum_{n=1}^{m} \frac{1}{n}\left|t_{n}\right|^{k}=O\left(X_{m}\right)$,
where $t_{n}:=\frac{1}{n+1} \sum_{k=1}^{n} k a_{k}$, then the series $\sum a_{n} \lambda_{n}$ is summable $|A|_{k}, k \geq 1$.
Corollary 2. Let $\left\{p_{n}\right\}$ be a positive sequence such that $P_{n}:=\sum_{k=0}^{n} p_{k} \rightarrow \infty$, and satisfying:
(v) $n p_{n}=O\left(P_{n}\right)$ and
(vi) $\sum_{n=\nu+1}^{m+1} n^{\delta k}\left|\frac{p_{n}}{P_{n} P_{n-1}}\right|=O\left({\frac{\nu^{\delta k}}{P_{\nu}}}_{\nu}\right)$.

Let $\left\{X_{n}\right\}$ be an almost increasing sequence, let $\left\{\beta_{n}\right\}$ and $\left\{\lambda_{n}\right\}$ be sequences satisfying conditions (i)-(iv) of Theorem 1. If
(vii) $\sum_{n=1}^{m} n^{\delta k-1}\left|t_{n}\right|^{k}=O\left(X_{m}\right)$,
where $t_{n}:=\frac{1}{n+1} \sum_{k=1}^{n} k a_{k}$, then the series $\sum a_{n} \lambda_{n}$ is summable $|\bar{N}, p, \delta|_{k}, k \geq$ 1 for $0 \leq \delta<1 / k$.

Proof. Conditions (i)-(iv) and (vii) of Corollary 2 are, respectively, conditions (i)-(iv) and (xi) of Theorem 1. Conditions (vi), (vii) and (viii) of Theorem 1 are automatically satisfied for any weighted mean method. Condition (v) of Theorem 1 becomes condition (v) of Corollary 2, and conditions (ix) and (x) of Theorem 1 become condition (vi) of Corollary 2.

References

[1] H. Bor, H. Seyhan, On Almost Increasing Sequence and its Applications, Indian J. Pure appl. Math., 30 (1999), 1041-1046.
[2] T. M. Fleet, On an Extension of Absolute Summability and Some Theorems of Littlewood and Paley, Proc. London Math. Soc., 3, 7 (1957), 113-141.
[3] B. E. Rhoades, Inclusion Theorems for Absolute Matrix Summability Methods, J. Math. Anal. Appl., 238 (1999), 82-90.
[4] E. Savaş, On generalized absolute summability factor theorem, Nonlinear Analy., preprint.

[^0]: Key Words: absolute summability, almost increasing summability factors
 Mathematical Reviews subject classification: 40F05, 40D25
 Received by the editors December 13, 2004
 Communicated by: Udayan B. Darji

