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MEASURES OF MAXIMAL DIMENSION
FOR LINEAR HORSESHOES

Abstract

We consider a linear Smale-William’s’ horseshoe with different con-
traction/dilatation coefficients and find equilibrium states of maximal
Hausdorff dimension. We compute this dimension and show an example
when the state of maximal dimension is non-unique.

1 Introduction.

In the one-dimensional dynamical systems one of most important properties of
the hyperbolic (expanding) systems is the existence of an unique equilibrium
state. It is an ergodic measure, invariant under the dynamics and equivalent
to the geometric (Hausdorff) measure on the hyperbolic set. The Hausdorff
dimension of this measure is equal to the dimension of the hyperbolic set.

Such a property is satisfied also for some of the higher-dimensional sys-
tems, in particular for linear horseshoes with all the contraction coefficients
equal and all the dilatation coefficients equal [MM]. However, in more general
situation, the supremum of Hausdorff dimensions of the invariant measures
may be strictly smaller than the dimension of the invariant set.

The natural question then appears about the existence of measure for which
this supremum is achieved. It was answered positively for topologically mixing
surface diffeomorphisms by Barreira and Wolf in [BW].

In this paper we consider a very simple special case—the linear Smale-
William’s’ horseshoe. We give an efficient way of computing this measure of
maximal dimension and show that it need not to be unique.

The main results of the paper are:
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Theorem 1.1. Every local maximum of Hausdorff dimension over ergodic in-
variant probabilistic measures is achieved inside certain one-dimensional fam-
ily ~p(s) of Bernoulli measures. The values of the parameter s for which the
local maximum is achieved are attracting fixed points for certain monotone real
map W .

(proved in third section, the formulas for ~p(s) and W are given there) and

Example 1.2. The ergodic measure of maximal dimension need not to be
unique.

(construction of an example given in fourth section).

2 Preliminaries.

For the definitions and results in one-dimensional fractal geometry we refer
the reader to [F].

Let us define the dynamical system we will be working with. Let {Ii} and
{Ji} be two k-element families (k > 1) of pairwise disjoint (inside the family)
closed subintervals of [0, 1]. Let fi be an affine map, mapping Ii × [0, 1] onto
[0, 1]×Ji, preserving horizontal and vertical directions. Of course, such a map
can be chosen in four ways; for each i we choose one of them.

Any point (x, y) ∈ [0, 1]2 can belong to the domain of only one map fi (iff
x ∈ Ii) and to the predomain of only one map fj (iff y ∈ Jj). Hence, we can
define f and f−1 on some subset of [0, 1]2.

We denote by Λ the hyperbolic set; i.e., the set of points for which both
fn and f−n exist for all n. It is a product of two Cantor sets (attractors of
two iterated function systems, one acting in the horizontal and one in vertical
directions). We let λi = |Ii| and µi = |Ji|.

For any point (x, y) ∈ Λ we define its symbolic expansion as an element
of Σ = {1, . . . , k}Z. We will denote it by ω(x, y) = . . . ω−1ω0ω1 . . ., ωi such
that f i(x, y) ∈ Iωi

× [0, 1]. Such a symbolic expansion is uniquely defined for
all points in Λ. For an infinite sequence ω we will denote by ωn the finite
sequence ω0, . . . , ωn.

Let ν be an f -invariant ergodic probability measure on Λ. By [BPS], its
dimension is given by

dimH(ν) =
S

L
+

S

M
, (2.1)

where S is a metric entropy of ν and L,M are absolute values of Lyapunov
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exponents:

S = lim
n→∞

1
n + 1

∑
ωn

−ν(Cωn) log ν(Cωn),

L =
k∑

i=1

−ν(Ci) log λi,

M =
k∑

i=1

−ν(Ci) log µi.

Here Ci denotes the i-th cylinder; i.e., the set of points (x, y) such that
ω0(x, y) = i. Similarly, Cωn is the n-th level cylinder; i.e., the set of points
(x, y) such that ωj(x, y) = ωj for all j ∈ [0, n]. The Lyapunov exponents can
be written in such a simple form because the measure is invariant and the
system is piecewise linear.

We can further restrict our attention thanks to the following easy lemma.

Lemma 2.1. The metric entropy of ν is not greater than the metric entropy
of the Bernoulli measure defined by probabilistic vector {ν(Ci)}, with equality
if and only if ν is Bernoulli.

Proof. Let

Sn =
1

n + 1

∑
ωn

−ν(Cωn) log ν(Cωn).

We can write

Sn+1 =
1

n + 2

∑
ωn+1

−ν(Cωn+1) log ν(Cωn+1)

=
1

n + 2

∑
ωn+1

−ν(Cωn+1) log ν(Cωn) +
∑
ωn+1

−ν(Cωn+1) log
ν(Cωn+1)
ν(Cωn)

=
n + 1
n + 2

Sn +
1

n + 2
S̃n+1,

where

S̃n =
∑
ωn−1

−ν(Cωn−1)
k∑

i=1

ν(Cωn−1i)
ν(Cωn−1)

log
ν(Cωn−1i)
ν(Cωn−1)

.
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Of course, S̃n ≤ S0, with equality if and only if ν(Cωn−1i)

ν(Cωn−1 ) = const = ν(Ci).
As the function

∑
−pi log pi is concave on the simplex of probabilistic vectors,

ν(Cωn−1i)
ν(Cωn−1)

=
k∑

j=1

ν(Cjωn−1)
ν(Cωn−1)

ν(Cjωn−1i)
ν(Cjωn−1)

implies
k∑

i=1

−ν(Cωn−1i)
ν(Cωn−1)

log
ν(Cωn−1i)
ν(Cωn−1)

≥
k∑

j=1

−
ν(Cjωn−1)
ν(Cωn−1)

k∑
i=1

ν(Cjωn−1i)
ν(Cjωn−1)

log
ν(Cjωn−1i)
ν(Cjωn−1)

.

Hence,

S̃n ≥
k∑

j=1

∑
ωn−1

−
ν(Cjωn−1)
ν(Cωn−1)

ν(Cωn−1)
k∑

i=1

ν(Cjωn−1i)
ν(Cjωn−1)

log
ν(Cjωn−1i)
ν(Cjωn−1)

=
∑
ωn

−ν(Cωn)
k∑

i=1

ν(Cωni)
ν(Cωn)

log
ν(Cωni)
ν(Cωn)

= S̃n+1,

S = lim Sn = lim inf S̃n ≤ S0 = S(ν̃),

where ν̃ is the Bernoulli measure defined by the probability vector {ν(Ci)}
and the equality is true if and only if ν = ν̃.

We can thus consider Bernoulli measures only (defined by a probabilistic
vector ~p = {pi}) and write S, L, M in even simpler form

S =
∑

−pi log pi, L =
∑

−pi log λi, and M =
∑

−pi log µi.

3 Proof of Theorem 1.1.

We are now to look for the maximum of F (~p) = dimH(µ~p) over the simplex Z
of nonnegative probabilistic vectors. The function we are maximizing is con-
tinuous. Hence the maximum is achieved. If log λi and log µi are proportional,
specifically

log λi = c log µi, (3.1)

then the situation is trivial. The Moran measures pi = s log λi and p̃i = s̃ log µi

(s, s̃ - normalizing constants) coincide. Hence the maximum is achieved for
this measure. The dimension of this measure is equal to the dimension of Λ.
This measure is proportional to the Hausdorff measure on Λ.

In what follows we assume that (3.1) does not hold.
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Lemma 3.1. There exists no local maximum of F on the boundary of Z.

Proof. Consider ~p on the boundary of Z. At least one of pi’s is equal to 0,
without loss of generalization let p1 = p2 = ... = pn = 0. Consider

~p(t) = (t, t, . . . , t, 0, . . . , 0) + (1 − nt)~p,

where the first summand has n first coordinates equal to t. The image of (0, ε]
is an interval placed strictly inside Z while ~p(0) = ~p. We have d

dtF (~p(t)) > 0
for all t small enough (except t = 0, where the derivative does not exists). F
is a strictly increasing function along the chosen interval; hence ~p is not a local
maximum of F .

All the maxima of F are thus strictly inside Z. Let ~p be such an maximum.
We have

∂F

∂pi
= − (1 + log pi)L− S log λi

L2
− (1 + log pi)M − S log µi

M2
.

Using pi as Lagrange multipliers, we get (for all i)

∂F

∂pi
(~p) =

k∑
j=1

pj
∂F

∂pj
(~p) = − 1

L(~p)
− 1

M(~p)
.

Hence,

log pi(
1

L(~p)
+

1
M(~p)

) = S(~p)(
log λi

L2(~p)
+

log µi

M2(~p)
)

log pi

log pj
=

M2(~p) log λi + L2(~p) log µi

M2(~p) log λj + L2(~p) log µj
,

and finally
log pi = r(~p)(log λi + s2(~p) log µi) (3.2)

where

s(~p) =
L(~p)
M(~p)

(3.3)

and r is a normalizing constant.∑
λ

r(~p)
i µ

s2(~p)r(~p)
i = 1 (3.4)
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Note that the same formulas apply for all points where the derivative of F
vanishes, not only for the local maxima of F . Note also the similarity between
(3.2) and νp,q in [BW].

The formula (3.2) does not immediately give us ~p, as both s and r them-
selves depend on ~p. Let us consider the family of probability vectors ~p(s) given
by (3.2), where s is any nonnegative parameter. It is an one-parameter family,
uniquely defined by a parameter s. Let

W (s) =
L(~p(s))
M(~p(s))

(3.5)

The derivative of F vanishes if and only if the equation (3.3) is satisfied (where
L and M are both computed at ~p(s)). Hence, all such points and only such
points are fixed points of W .

We can now state our main result, which will be proved in the rest of this
section.

Theorem 3.2. If ~p(s) is a local maximum of F then s is an attracting fixed
point of W .

We start from two computations.

Proposition 3.3. W is strictly increasing.

Proof. We can compute dr/ds from (3.4) and dpi/ds from (3.2). Together,
we get

dW

ds
= − 2sr

SL2M2
(MSELM −M2ELS − LSEMM + LMESM ), (3.6)

where

ELjM lSm =
k∑

i=1

pi(log λi)j(log µi)l(log pi)m.

Substituting (3.2) into (3.6) we get

dW

ds
=

2sr

M2(Ms2 + L)
(L2EMM + M2ELL − 2LMELM )

=
2srL2

Ms2 + L

k∑
i=1

pi(
log λi

L
− log µi

M
)2 ≥ 0,

with equality possible only if (3.1) holds.
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Proposition 3.4. dF (~p(s))/ds is positive if and only if W (s) < s. It is
negative if and only if W (s) > s.

Proof. We compute

dF (~p(s))
ds

=
k∑

i=1

∂F

∂pi

dpi

ds

as in the proof of previous proposition (using (3.4) and (3.2)). We get

dF

ds
=

2rs

SL2M2
(M2S2ELM + L2S2EMM −M3SELS

+ LM2(L + M)ESS − LMS(2L + M)EMS)

and after substituting (3.2)

dF

ds
=

2r2s

L2M2(Ms2 + L)
(L2 −M2s2)(L2EMM + M2ELL − 2LMELM )

=
2r2sM2

Ms2 + L
((W (s))2 − s2)

k∑
i=1

pi(
log λi

L
− log µi

M
)2

and the sum on the right is strictly positive when (3.1) does not hold.

Now the proof is easy. First, by Proposition 3.4 all the zeroes of dF/ds
correspond to the fixed points of W . (We did know that the fixed points of W
correspond to the zeroes of the derivative of F as the function on the (k− 1)-
dimensional simplex Z, but the restriction of F to the curve ~p(s) might have
introduced new extremal points.)

As the map W is strictly increasing, W (s0) > s0 means that the closest
fixed point of W on the right of s0 is left-side attracting and the closest fixed
point on the left is right-side repulsing. Similarly, if W (s0) < s0, then the
closest fixed point on the right is left-side repulsing and the closest fixed point
on the left is right-side attracting.

By Proposition 3.4, W (s0) > s0 implies dF/ds is positive (F is locally
increasing) while if W (s0) < s0, then F is locally decreasing. Hence, the fixed
point of W is attracting if and only if the corresponding point ~p(s) is a local
maximum for F (restricted to the curve ~p(·)). The assertion follows.

4 Construction of Example 1.2.
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Let us consider G = S/L for k = 2 (as p2 = 1− p1, it is a function of one real
variable). One computes

d2

dp2
1

G = −
( 1
1−p1

log λ1 + 1
p1

log λ2)(p1 log λ1 + (1 − p1) log λ2)

(p1 log λ1 + (1 − p1) log λ2)3

− 2(log λ1 − log λ2)(log(1 − p1) log λ1 − log p1 log λ2)
(p1 log λ1 + (1 − p1) log λ2)3

.

It is not easy to check for which pairs (λ1, λ2) this formula is positive for some
p (so S/L is not concave). It leads to a polynomial-logarithmic equation.
However, the necessary and sufficient condition for this formula to be positive
at p1 = 1/2 is easy to write. It is( log λ1

log λ2
+ 1

)2

< 2 log 2 ·
( log λ1

log λ2
− 1

)2

. (4.1)

Now we can construct our example. It will be a horseshoe with k = 2.
(One can easily construct similar examples for arbitrary k.) Let λ1, λ2 satisfy
(4.1). Let µ1 = λ2 and µ2 = λ1. We look for the maximum of F = S/L+S/M .
Because of the symmetry, it is either a point p1 = p2 = 1/2 or it is non-unique.
However, at this point both S/L and S/M are locally convex. Hence this point
is not a local maximum of F .
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