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A CHARACTERIZATION OF RINGS OF
DENSITY CONTINUOUS FUNCTIONS

Abstract

A density continuous function is defined as a continuous function
from a Tychonoff space X into the real numbers with the density topol-
ogy. The collection of density continuous functions on X is denoted by
C(X, Rd). It is shown that C(X, Rd) is a ring precisely when each den-
sity continuous function is locally constant, and in this case X is defined
to be a density P -space. Examples of density P -spaces are given.

1 Introduction.

Historically, the study of the density topology on the real numbers can be
traced back to A. Denjoy in 1915. Denjoy defined a function from the real
numbers into the real numbers as being approximately continuous at a point
x if the inverse image M of an open subset of the real numbers is dense about
x in terms of Lebesgue measure; that is, if

lim
h→0+

1
2h
|M ∩ (x− h, x + h)| = 1 (1)

where |A| denotes the Lebesgue measure of a set A ⊂ R. In the 1950s, this
idea was used to construct the density topology on the real numbers, denoted
Rd, where a set O ⊆ R is open in the density topology if equation (1) holds
for all x ∈ O. An approximately continuous function, as defined by Denjoy,
turned out to be a continuous function f : Rd → R. Later, mathematicians
called a continuous function f : Rd → Rd a density continuous function.
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It is known that the density topology is finer than the usual topology on
R and that subsets of R of measure zero are closed in the density topology. In
particular, countable subsets of Rd are closed; that is, Rd is a weak P -space.
It follows that the only compact subsets of Rd are the finite ones. Sometimes
we will have cause to consider the real numbers with the discrete topology
which will be denoted by Rd.

Let X be an arbitrary topological space. We will assume that all spaces
are Tychonoff; that is, completely regular and Hausdorff. Given a subset A
of X, intA denotes the interior of A in X, and clA denotes the closure of
A in X. Given two spaces X and Y , the collection of continuous functions
f : X → Y is denoted by C(X, Y ). When Y = R with the usual topology,
we will write C(X) instead, and this set is a ring under pointwise addition
and multiplication. Given f ∈ C(X), the set Z(f) = {x ∈ X : f(x) = 0}
is called the zeroset of f , and the set coz(f) = {x ∈ X : f(x) 6= 0} is called
the cozeroset of f . In a Tychonoff space, the cozerosets form a base for the
topology on X. It is shown in [6] that Rd is a Tychonoff space which is not
normal.

Previous authors have used the term density continuous function to refer
specifically to elements of C(Rd, Rd). We will generalize this phrase to refer
to any member of C(X, Rd). The density topology is finer than the usual
topology, so we have that C(X, Rd) ⊆ C(X) for any topological space X. We
will also use the notation C(X, Rd)+ to denote the set {f ∈ C(X, Rd) : f ≥ 0}.

A function f : (a, b) → R is called (real) analytic if, at each xo ∈ (a, b), f
is represented by a power series

f(x) =
∞∑

n=0

an(x− xo)n

that converges in some open interval Iδ = (xo − δ, xo + δ), δ > 0. It is
known that the sum, product, reciprocal, composite, and inverse function
of real analytic functions is again real analytic. Polynomials are obviously
analytic functions on R. The exponential function g(x) = ex is analytic on
R, so its inverse function g−1(x) = lnx is analytic on (0,∞). The following
theorem concerning density continuity of real analytic functions was proved
independently by [1] and [2].

Theorem 1.1. Real analytic functions are density continuous.

2 The Sum of Density Continuous Functions.
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For any space X, it is known that C(X) is a ring and a lattice under pointwise
operations. It is natural to ask if C(X, Rd) has the same properties. In [7], it
is shown that C(X, Rd) is a sublattice of C(X). The focus of this paper is the
investigation of when C(X, Rd) is a group or a ring. In the case of X = Rd,
as we are about to see in Example 2.1, the set C(Rd, Rd) is not closed under
addition and hence not a group. This example comes from Theorem 2 of [1]
and is the motivation for our characterization of rings of density continuous
functions.

Example 2.1. Consider the function f : R → R which satisfies

f(x) =


x if x ≤ 0
1− x if x ≥ 1

2
1
n − x if 1

2n ≤ x ≤ 1
2(n−1) − 2−n−10 for some n ≥ 2

and f is linear and continuous on
[

1
2(n−1) − 2−n−10, 1

2(n−1)

]
for n ≥ 2. The

function f is a density continuous function. However, adding the identity
function i(x) = x to f yields a function g(x) = f(x) + x which is not an
element of C(Rd, Rd). The function g fails to be density continuous at zero.
In particular, the inverse image of the closed set F = { 1

n : n ∈ N} is not a
density closed set.

It follows from Example 2.1 that C(Rd, Rd) is not a group under addition.
Example 2.1 leads us to the following characterization of when C(X, Rd) is a
group (and a ring).

Theorem 2.2. For a space X, the following are equivalent:

(1) C(X, Rd) = C(X, Rd); that is, every density continuous function is lo-
cally constant.

(2) C(X, Rd) is a ring.

(3) C(X, Rd) is closed under multiplication.

(4) C(X, Rd) is a group.

(5) Z(f) is open for each f ∈ C(X, Rd).

The proof of Theorem 2.2 will involve a construction in Proposition 2.5 of
two density continuous functions whose sum is not density continuous. There
was nothing unique about i(x) = x in Example 2.1 or even the domain Rd.
Given any space X and any f ∈ C(X, Rd) whose zeroset is not open, we
can construct a function g ∈ C(X, Rd) such that f + g is not an element of
C(X, Rd). We will need the next lemmas for the proof of Theorem 2.2.
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Lemma 2.3. For any topological space X, C(X, Rd) is a von Neumann regular
ring; that is, for each f ∈ C(X, Rd) there exists f0 ∈ C(X, Rd) such that
f2f0 = f .

Lemma 2.4. If O is an open neighborhood of zero in Rd, then the set

O′ = ((−∞, 0] ∩O) ∪
∞⋃

n=1

(((
1

n + 1
+

1
10n

,
1
n

)
∩O

)
− 1

10n

)
is also an open neighborhood of zero in Rd.

Proof. The set V = (−∞, 0]∪
∞⋃

n=1
( 1

n+1 + 1
10n , 1

n ) is a density open neighbor-

hood of zero, and the density open set V ∩O can be written as

V ∩O = ((−∞, 0] ∩O) ∪
∞⋃

n=1

((
1

n + 1
+

1
10n

,
1
n

)
∩O

)
.

Take ε > 0, and choose a natural number N such that 1
N+1 ≤ ε ≤ 1

N . Let

A =
(

1
N + 1

+
1

10N
,

1
N

)
.

Then

|O′ ∩ (−ε, ε)| =
∣∣∣∣O′ ∩

(
−ε,

1
N + 1

)∣∣∣∣+ ∣∣∣∣((A ∩O)− 1
10N

)
∩ (0, ε)

∣∣∣∣ .
Lebesgue measure is translation invariant, so∣∣∣∣O′ ∩

(
−ε,

1
N + 1

)∣∣∣∣ = ∣∣∣∣O ∩ V ∩
(
−ε,

1
N + 1

)∣∣∣∣
implies that

|O′ ∩ (−ε, ε)| =
∣∣∣∣O ∩ V ∩

(
−ε,

1
N + 1

)∣∣∣∣+ ∣∣∣∣((A ∩O)− 1
10N

)
∩ (0, ε)

∣∣∣∣ .
Notice also that∣∣∣∣((A ∩O)− 1

10N

)
∩ (0, ε)

∣∣∣∣ ≥ |A ∩O ∩ (0, ε)| ,
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and thus

|O′ ∩ (−ε, ε)| ≥
∣∣∣∣O ∩ V ∩

(
−ε,

1
N + 1

)∣∣∣∣+ |A ∩O ∩ (0, ε)|

=|O ∩ V ∩ (−ε, ε)|

From the previous inequality it follows that

1 ≥ |O′ ∩ (−ε, ε)|
2ε

≥ |O ∩ V ∩ (−ε, ε)|
2ε

.

However, lim
ε→0+

|O∩V ∩(−ε,ε)|
2ε = 1 since O ∩ V is a density open set. Hence

lim
ε→0+

|O′∩(−ε,ε)|
2ε = 1; that is, O′ is an open subset of Rd.

Proposition 2.5. Let f ∈ C(X, Rd)+ with Z(f) not open. For each n ≥ 2
let gn : Rd → Rd be the linear mapping of [ 1

n −
1

10n , 1
n ] onto [ 1

n , 1
n + 1

10n−1 ].
Define a function g : X → Rd by

g(x) =


1
10 + f(x) if x ∈ f−1([ 12 ,∞))
1

10n + f(x) if x ∈ f−1([ 1
n+1 , 1

n −
1

10n ]) for some n ≥ 2
(gn ◦ f)(x) if x ∈ f−1([ 1

n −
1

10n , 1
n ]) for some n ≥ 2

0 if x ∈ Z(f).

Then g is a density continuous function. If h : X → Rd is defined by

h(x) =


1
10 if x ∈ f−1([ 12 ,∞))
1

10n if x ∈ f−1([ 1
n+1 , 1

n −
1

10n ]) for some n ≥ 2
hn(x) if x ∈ f−1([ 1

n −
1

10n , 1
n ]) for some n ≥ 2

0 if x ∈ Z(f).

where each hn is continuous and h is well-defined, then h is not density contin-
uous on Z(f)\intZ(f). In particular, g−f : X → R is not density continuous
on Z(f) \ intZ(f).

Proof. It is straightforward to verify that g is well-defined on X. Since
the pieces of g are either linear or the composition of a linear and a density
continuous function, g is density continuous on X \Z(f). Clearly g is constant
on intZ(f); we need only show that g is density continuous on Z(f)\ int Z(f).
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Let a ∈ Z(f)\ intZ(f) and let O be a density open neighborhood of zero. The
set O′ as defined in Lemma 2.4 is also a density open neighborhood of zero.
Thus by continuity of f there exists an open neighborhood V of a such that
f(V ) ⊆ O′. To see that g(V ) ⊆ O, take x ∈ V . If x ∈ Z(f), then g(x) = 0 ∈ O
as needed. If x /∈ Z(f), then f(x) being an element of O′ means also that
f(x) ∈ (( 1

N+1 + 1
10N , 1

N ) ∩O)− 1
10N for some N ≥ 1. It follows that

g(x) = f(x) +
1

10N
∈
(

1
N + 1

,
1
N
− 1

10N

)
∩O ⊆ O

and thus g(V ) ⊆ O. Consequently, g is an element of C(X, Rd).
The function h is not density continuous on Z(f) \ intZ(f). Let U be the

density open set U = (−∞, 0]∪
∞⋃

n=1
( 1

n+1 , 1
n−

1
10n ), let C = h−1({ 1

10n : n ∈ N}),

and let a ∈ Z(f) \ int Z(f). If X \ C is open, then the set

W = (X \C)∩ f−1(U) = (X \C)∩

(
Z(f) ∪

∞⋃
n=1

f−1

((
1

n + 1
,
1
n
− 1

10n

)))

is an open neighborhood of a. Moreover, we claim that W ⊆ Z(f). If x ∈ W ,

then x ∈ X \ C where C contains the set
∞⋃

n=1
f−1(( 1

n+1 , 1
n − 1

10n )) which

implies x /∈
∞⋃

n=1
f−1( 1

n+1 , 1
n −

1
10n ) and so x ∈ Z(f). But a /∈ intZ(f) means

W ∩ coz(f) is nonempty, which is a contradiction. Consequently, X \C is not
open in X; that is, h−1({ 1

10n : n ∈ N}) is not closed where { 1
10n : n ∈ N}

is a closed subspace of the weak P -space Rd. As a result, h is not density
continuous on Z(f) \ intZ(f).

Proof of Theorem 2.2. Clearly (1) and (5) are equivalent and (2) implies
(3). Suppose (1) holds. By Lemma 2.3, C(X, Rd) is a ring. It follows that
C(X, Rd) = C(X, Rd) is a ring, so (1) implies (2).

Assume C(X, Rd) is closed under multiplication. To show C(X, Rd) is
a group, it suffices to show it is closed under addition. Recall from Theo-
rem 1.1 that the exponential function h(x) = ex is density continuous. The
functions (h ◦ f)(x) = ef(x) and (h ◦ g)(x) = eg(x) are compositions of den-
sity continuous functions and hence are density continuous. The product
ef(x)eg(x) = ef(x)+g(x) is density continuous by assumption. The natural log-
arithm is a density continuous function on (0,∞) again by Theorem 1.1, so
the function ln(ef(x)+g(x)) = f(x) + g(x) is density continuous; i.e. C(X, Rd)
is closed under addition.
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Now suppose C(X, Rd) 6= C(X, Rd); that is, there is a function f in
C(X, Rd) with Z(f) not open. Since Z(f) = Z(|f |) and |x| is density con-
tinuous, without loss of generality we may assume f ≥ 0. Let g : X → Rd

be the density continuous function defined in Proposition 2.5. By the same
proposition, g− f is the sum of two density continuous functions which is not
density continuous on Z(f) \ intZ(f). We conclude that C(X, Rd) is not a
group, and so (4) implies (1).

Definition 2.6. We will call a space that satisfies the conditions of Theorem
2.2 a density P -space. Observe that a space X is a density P -space if and only
if every point of X has an open neighborhood which is a density P -space. Let
us compare the definition of a density P -space to that of a P -space. A point
p ∈ X is called a P -point if Z(f) contains an open neighborhood of p for all
f ∈ C(X). A space X is a P -space if each point of X is a P -point. In fact,
X is a P -space if and only if Z(f) is open for every f ∈ C(X) if and only if
C(X) is a von Neumann regular ring. It should be obvious that every P -space
is a density P -space, but the converse fails. The compact interval [0, 1] is a
density P -space, as we will soon see, but it is not a P -space. Examples of
spaces which are not density P -spaces include Rd and the following example.

Example 2.7. Let τ be any nondiscrete topology on R which is finer than
the density topology, and let Rτ denote the real numbers with the topology
τ . Since τ is not discrete, there is a non-isolated point r ∈ Rτ . The space
Rτ is not a density P -space because the function i − r : Rτ → Rd is density
continuous but its zeroset {z} is not open.

3 Examples of Density P -Spaces.

In this section we explore which topological spaces are density P -spaces. More
information on pseudocompact spaces, totally ordered spaces, and other spaces
mentioned below can be found in [4].

Definition 3.1. Recall that a space X is pseudocompact if for each f ∈ C(X)
there exists a real number M such that |f(x)| ≤ M for all x ∈ X. In other
words, every real-valued continuous function on X is bounded. An open cover
O of X is locally finite if for each x ∈ X there is an open set O containing
x which intersects only finitely many elements of O. Since we are assuming
X is Tychonoff, pseudocompactness is equivalent to the condition that every
locally finite open cover of X is finite.
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Theorem 3.2. If X is a pseudocompact space, then X is a density P -space.
Furthermore, if f ∈ C(X, Rd), then f(X) is a finite subset of Rd.

Proof. Suppose X is not a density P -space. We will construct a locally finite
open cover which is infinite. Select a nonnegative density continuous function
f whose zeroset is not open. Because Z(f) is not open, we can find a sequence
of distinct positive real numbers A = {rn}∞n=1 ⊆ f(X) which decrease to zero.

Next define sets O1 = Rd \ A and Oi = (ri −
ri − ri+1

10i
, ri +

ri−1 − ri

10i
) for

each natural number i ≥ 2. The set O1 is cocountable, and each Oi is open in
the usual topology for i ≥ 2, thus each Oi is open in the density topology. It
follows that the family F = {f−1(Oi)}∞i=1 is a family of nonempty open sets
which covers X.

Next we will show that this family is locally finite. To see this, take y ∈ X.
First consider the case when f(y) = 0. The set

U = (−∞, 0] ∪
∞⋃

i=2

(
ri +

ri−1 − ri

10i
, ri−1 −

ri−1 − ri

10i−1

)
is a density open neighborhood of zero, so the set f−1(U) is an open neigh-
borhood of y in X. Furthermore, f−1(U) ∩ Oi is empty except when i = 1,
so U is an open neighborhood of y such that U intersects exactly one member
of F . Next consider the case where f(y) 6= 0. If y ∈ f−1([r1,∞)), then y
can only be an element of O1. If y ∈ f−1((rN+2, rN )) for some N ∈ N, then
f−1((rN+1, rN )) only meets Oi for i ≤ N +3. Hence F is a locally finite open
cover of X. But F is not a finite family. Indeed, if a point x ∈ f−1({rn})
for some n, then x ∈ f−1(ON+1) but x /∈ f−1(Oi) for every i 6= n + 1. The
existence of a locally finite open cover of X which is not finite implies that X
is not pseudocompact.

Now suppose f ∈ C(X, Rd) = C(X, Rd) with f(X) infinite, say {rn}n∈N ⊆
f(X). Then for each n, we have f−1({rn}) is a clopen subset of X. Define
g : X → R by

g(x) =

{
n if x ∈ f−1({rn})
0 otherwise,

then g is an unbounded element of C(X), which is a contradiction. Therefore
f(X) is finite.

Definition 3.3. A space X is locally compact if for each x ∈ X there is a
compact subspace K of X containing x. A space X is called sequentially
compact if every sequence of points of X has a convergent subsequence, and
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it is said to be locally sequentially compact if, for every x ∈ X and any open
neighborhood O of x, there exists an open neighborhood U of x such that
cl U ⊆ O and clU is sequentially compact.

Corollary 3.4. Locally compact and locally sequentially compact spaces are
density P -spaces.

Proof. Compact and sequentially compact spaces are pseudocompact. So if
each point of the space has an open neighborhood which is pseudocompact
and hence a density P -space, then the entire space is a density P -space.

Definition 3.5. A set X is called totally ordered if there exists a partial order
≤ on X such that for any two elements x, y ∈ X, either x ≤ y or y ≤ x. A
totally ordered set can be equipped with the interval (or order) topology in
which open intervals of the form (a, b) = {x ∈ X : a < x < b} form a base for
the topology, where we allow for a = −∞ and b = ∞. Such a space is called
a totally ordered space.

Proposition 3.6. If X is a totally ordered space, then X is a density P -space.

Proof. Let f ∈ C(X, Rd) and fix a point z ∈ X. If z is not the limit of an
increasing or decreasing sequence, then by 5.O.1 in [5] we know that z is a
P -point; i.e., every element g of C(X) is constant on an open neighborhood
of z. Hence f is constant on an open neighborhood of z.

Now suppose z is the limit of an increasing or decreasing sequence; with-
out loss of generality, say z is the limit of the increasing sequence {xn}∞n=1.
Suppose, by means of contradiction, that f is not constant on any neighbor-
hood of z. Let y1 = x1, then inductively define a sequence {yn}∞n=1 such that
xn < yn < z and f(yn) 6= f(z) for all n ∈ N. Notice that the sequence {yn}
converges to z because {xn} converges to z and yn > xn for all n. The set
A = {f(yn) : n ∈ N} is a countable subset of the weak P -space Rd and thus
closed in Rd. But then f−1(Rd \A) is an open neighborhood of z disjoint from
the sequence {yn} which converges to z. This is a contradiction. As a result,
f is constant on a neighborhood of z, and we conclude that X is a density
P -space.

Proposition 3.7. Let X be a separable space; that is, a space which contains a
countable, dense subset. Then X is a density P -space. Moreover, |f(X)| = ℵ0

for all f ∈ C(X, Rd).
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Proof. Let f ∈ C(X, Rd), and let A be a countable dense subset of X. The
set f(A) is a countable subset of the weak P -space Rd and thus closed in Rd.
Continuity of f yields that f−1(f(A)) is a closed subset of X containing A,
and since A is dense we must have f−1(f(A)) = X; that is, f(X) = f(A).
Since f(A) is a countable subset of Rd, it is a discrete subspace. It follows that
f−1({r}) is a clopen subset of X for all r ∈ f(X); i.e., f is a locally constant
function.

Definition 3.8. A space X is said to be locally connected if for each x ∈ X
and each open set O containing x there is a connected set C ⊆ O containing
x.

Proposition 3.9. Any locally connected space is a density P -space.

Proof. First suppose X is a locally connected topological space, x ∈ X, and
f ∈ C(X, Rd). Note that O = (Rd \ Q) ∪ {f(x)} is an open neighborhood
of f(x) in Rd. By continuity of f there exists an open neighborhood U of x
so that f(U) ⊆ O. Moreover, using local connectedness of X we can choose
U to be connected, and thus f(U) is connected. However, we claim that
no subspace of O containing f(x) is connected except {f(x)}. This is true
because a connected subspace of Rd is necessarily connected in R, and no
subspace of O as a subspace of R is connected except for singleton sets. Hence
f(U) = {f(x)}; i.e., f is constant on U .

Remark 3.10. It is not possible to generalize the above argument to con-
nected spaces. The space Rd is connected but not a density P -space, so it is
not locally connected.

Definition 3.11. Given a point x ∈ X, we say X is countably tight at x if, for
any subset A of X, x ∈ cl A implies x ∈ cl C for some countable set C ⊆ A. If
X is countably tight at all points of X, then X is said to be a countably tight
space.

Proposition 3.12. Let x be a countably tight point in a topological space X
and let f ∈ C(X, Rd), then there is a neighborhood of x on which f is constant.
In particular, a countably tight space is a density P -space.
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Proof. Let A = f−1(Rd\{f(x)}) and note that A is open in X by continuity
of f . Assume, to get a contradiction, that x ∈ cl A. Then because x is
a countably tight point, there exists a countable subset C of A such that
x ∈ cl C. The set f(C) is a countable subspace of the weak P -space Rd and
hence closed. So f−1(Rd \f(C)) is an open neighborhood of x disjoint from C,
which is a contradiction. Hence x /∈ cl A, and X \cl A is an open neighborhood
of x on which the function f is constant.

Corollary 3.13. First countable spaces are density P -spaces.

Remark 3.14. We now have that each of the following types of spaces are
density P -spaces:

(1) pseudocompact

(2) totally ordered

(3) separable

(4) locally connected

(5) locally compact

(6) locally sequentially compact

(7) P -space

(8) countably tight

A topological sum is a density P -space if and only if each summand is a
density P -space. Examples of non-density P -spaces include the spaces men-
tioned in Example 2.7 as well as a topological sum of a non-density P -space
with any other space. The product of an arbitrary space with a non-density
P -space is a non-density P -space. We do not know if the product of density
P -spaces is again a density P -space.

Recall that every subspace of a P -space is again a P -space. This does not
hold for density P -spaces. One example is Rd as a subspace of its Stone-Čech
compactification βRd. We have already seen that Rd is not a density P -space,
but βRd is a density P -space because it is compact. However, open subspaces
of density P -spaces are density P -spaces in certain situations. To explore this,
we need the following definition.



176 Michelle L. Knox

Definition 3.15. A space X is called density Tychonoff if for each closed set
A ⊂ X and for each point x ∈ X not in A there exists f ∈ C(X, Rd) such
that f(x) = 0 and f(A) = 1. In this case, the cozerosets of density continuous
functions form a base for the topology on X.

Zero-dimensional spaces; that is, spaces in which clopen sets form a base
for the topology, are common examples of density Tychonoff spaces. When
X is a density P -space it is easy to see that density Tychonoff and zero-
dimensional are equivalent. We do not, at this time, have an example of a
density Tychonoff space which is not zero-dimensional.

Proposition 3.16. Suppose X is a density Tychonoff, density P -space. Then
every open subspace of X is a density P -space.

Proof. Let O be an open subset of X, f ∈ C(O, Rd), and x ∈ O. Since X is
density Tychonoff, there exists g ∈ C(X, Rd) such that coz(g) = C contains x
and C ⊆ O. This means C is a clopen subset of X and hence also a density
P -space. Now let f = f |C , then f ∈ C(C, Rd) means f is constant on some
open neighborhood of x in C. It follows that f is constant on some open
neighborhood of x in O.

Question 3.17. Can we drop the assumption that X be a density Tychonoff
space in Proposition 3.16?

Acknowledgement. I would like to thank the referee for helpful suggestions
and remarks.
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