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NILPOTENT GROUPS OF CLASS THREE

AND BRACES

Ferran Cedó, Eric Jespers, and Jan Okniński

Abstract: New constructions of braces on finite nilpotent groups are given and hence
this leads to new solutions of the Yang–Baxter equation. In particular, it follows

that if a group G of odd order is nilpotent of class three, then it is a homomorphic

image of the multiplicative group of a finite left brace (i.e. an involutive Yang–Baxter
group) which also is a nilpotent group of class three. We give necessary and sufficient

conditions for an arbitrary group H to be the multiplicative group of a left brace

such that [H,H] ⊆ Soc(H) and H/[H,H] is a standard abelian brace, where Soc(H)
denotes the socle of the brace H.
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1. Introduction

The quantum Yang–Baxter equation, that first appeared in work on
mathematical physics, lies at the foundations of several areas of mathe-
matics, in particular the theory of quantum groups. The paper of Drin-
feld [5] on set-theoretical solutions stimulated a lot of interest and activ-
ity, especially in developing some algebraic tools in this context. Already
in [11], Manin proposed the study of quadratic algebras related to so-
lutions of the Yang–Baxter equation. The approach of Gateva-Ivanova
and Van den Bergh [8] and Etingof, Schedler, and Soloviev [6], based on
certain classes of groups associated to solutions, turned out to be very
fruitful. For algebraic and combinatorial methods developed in this con-
text, as well as for recent results and other references we refer the reader
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to [7, 10]. It remains a challenging and difficult problem to create new
classes of solutions.

In order to investigate non-degenerate involutive set-theoretic solu-
tions of the Yang–Baxter equation, Rump [13] introduced another alge-
braic structure, called a brace. In recent years this structure and certain
related structures were used to answer some problems in this area, see for
example [3, 4, 12, 13, 14]. Recall that a left brace is a set G equipped
with two operations, an addition + and a multiplication ·, such that
(G,+) is an abelian group, (G, ·) is a group, and

a(b+ c) + a = ab+ ac,

for all a, b, c ∈ G. A right brace is defined similarly and a two-sided
brace is a left and right brace (for the same operations). For every a in
a left brace G one defines the additive group automorphism λa : G→ G
by λa(b) = ab − a for all b ∈ G and this yields an action λ : (G, ·) →
Aut((G,+)). This on its turn leads to a map r : G×G→ G×G, defined
by r(a, b) = (λa(b), λ−1λa(b)(a)), that is a set-theoretic solution of the

Yang–Baxter equation [13] (see also [3]), i.e. r1,2r2,3r1,2 = r2,3r1,2r2,3.
Here we denote by ri,j : G3 → G3 the map obtained by applying r to the
(i, j)-component and the identity to the remaining factor. Obviously,
λ-invariant subsets of G also lead to set-theoretic solutions.

It is known [13] that every multiplicative group of a finite left brace
is the permutation group associated to an involutive non-degenerate
set-theoretic solution of the Yang–Baxter equation (the so called IYB
group [4]) and, thus by a result of Etingof, Schedler, and Soloviev [6]
such a group is solvable. Rump announced [15] that there exists a group
of order 119 that is not the multiplicative group of any left brace, but
a complete proof of this claim is not yet available. So, a problem is to
characterise the finite nilpotent (or solvable) groups that are the multi-
plicative group of a left brace (for contributions on this topic we refer
to [3, 4, 14]).

The socle of a left brace G is the set

Soc(G) = {a ∈ G | ab = a+ b for all b ∈ G}.
It is an easy exercise to verify that Soc(G) is a normal subgroup of
the multiplicative group of G and also it is a subgroup of the additive
structure of G (i.e. Soc(G) is an ideal of the left brace G). Furthermore,
every normal subgroup N of G with N ⊆ Soc(G) is an ideal of G and
thus G/N also is a left brace for the induced natural operations. The
simplest left brace is the standard abelian brace (G,+, ·) where

ab = a+ b,
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for all a, b ∈ G and (G,+) is an abelian group. Note that in this case, G is
a two-sided brace. It is known (see [2, 3]) that every finitely generated
(multiplicative) nilpotent group G of class 2 is a two-sided brace for the
following addition:

z1a
r1
1 · · · arnn + z2a

s1
1 · · · asnn = z1z2a

r1+s1
1 · · · arn+snn ,

where z1, z2 ∈ [G,G] and G/[G,G] is the inner direct product of the
cyclic subgroups 〈a1[G,G]〉, . . . , 〈an[G,G]〉. We simply call this the stan-
dard nilpotent of class 2 brace.

In this paper we give new constructions of left braces G such that
their multiplicative groups are nilpotent of class 3 and of odd order. It
turns out that for these braces [G, [G,G]] ⊆ Soc(G) and G/[G, [G,G]] is
a standard nilpotent of class 2 brace. In particular, it follows that every
nilpotent group of class 3 and of odd order is a homomorphic image of
the multiplicative group of one of the constructed left braces. This com-
plements the result in [4] that every finite nilpotent group is a subgroup
of the multiplicative group of a left brace which is also a finite nilpotent
group. Further, we also give necessary and sufficient conditions for a (not
necessarily finite) group H to be the multiplicative group of a left brace
such that [H,H] ⊆ Soc(H) and H/[H,H] is a standard abelian brace. In
this case, it turns out that the multiplicative group of H is metabelian.
We include examples of metabelian groups that satisfy these properties.
Obviously, nilpotent groups of class 3 are metabelian. However, an ex-
ample in [4] shows that not all finite nilpotent groups of class 3 do satisfy
these properties. Finally, within the class of finitely generated nilpotent
groups of class 2, we give another characterisation of braces of such type.

2. Nilpotent groups of class three and of odd order

Throughout this section G is a nilpotent group with centre Z(G) and
with a presentation of the following form:

G=〈x1, . . . , xr | [xk, [xj , xi]]∈Z(G), [xk, [xj , xi]]
nk,j,i =[xj , xi]

nj,i =1,

xnii = 1, 1 ≤ i, j, k ≤ r〉,

for some r > 1 and non-negative odd integers nk,j,i, nj,i, ni. Without
loss of generality, throughout this section, we will assume that ni is the
order of xi, the order of [xj , xi] is nj,i, and the order of [xk, [xj , xi]]
is nk,j,i. We adopt the convention that [a, b] = a−1b−1ab, for a, b ∈ G.
Clearly, the defining relations of G yield that G is nilpotent of class at
most 3.
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Essential for our approach is the fact that such a group is metabelian,
has odd order and each element has a unique square root. From these
properties we will deduce that the elements of G have a particular normal
form. Since G has odd order, it is clear that for every g ∈ G there exists
a unique h ∈ G such that h2 = g. In fact, h = gk for some positive
integer k and we simply write h = g

1
2 .

Because G is nilpotent of class at most three, we have that

(1) [a, [b, c]][d, [b, c]]=[ad, [b, c]] and [a, [b, c]][a, [d, e]]=[a, [b, c][d, e]],

for all a, b, c, d, e ∈ G. By (1),

xjxi = xixj [xj , xi] = [xj , xi]xixj [xixj , [xj , xi]]

= [xixj , [xj , xi]][xj , xi]xixj = [xi, [xj , xi]][xj , [xj , xi]][xj , xi]xixj

= [xj , [xj , xi]][xi, [xj , xi]][xj , xi]xixj .

An induction argument then easily yields that

xjx
n
i = [xj , [xj , xi]]

n[xi, [xj , xi]]
n(n+1)

2 [xj , xi]
nxni xj ,

for any non-negative integer n. Another induction argument on m > 1
then also gives that

(2) xmj x
n
i = [xj , [xj , xi]]

nm(m+1)
2 [xi, [xj , xi]]

mn(n+1)
2 [xj , xi]

mnxni x
m
j .

One can also show that

(3) xmk [xj , xi]
n = [xk, [xj , xi]]

mn[xj , xi]
nxmk .

Suppose n is a positive integer such that xni = 1. From (2) it follows
that

[xj , [xj , xi]]
n[xi, [xj , xi]]

n(n+1)
2 [xj , xi]

n = 1.

By (1), [xi, [xj , xi]]
n(n+1)

2 = [xni , [xj , xi]]
n+1
2 = 1, and thus we get

[xj , [xj , xi]]
n[xj , xi]

n = 1.

Since xj = [xj , [xj , xi]]
n[xj , xi]

nxj = xj [xj , xi]
n, we have that [xj , xi]

n =
1 and therefore [xj , [xj , xi]]

n = 1. Let m be a positive integer such that
[xj , xi]

m = 1 or xmk = 1. Then, by (1), [xk, [xj , xi]]
m = [xk, [xj , xi]

m] = 1
or [xk, [xj , xi]]

m = [xmk , [xj , xi]] = 1. Therefore, the order of [xj , xi] in G
is a divisor of n and thus a divisor of the order of xi and the order of xj .
Moreover, the order of [xk, [xj , xi]] is a divisor of the order of xk and the
order of [xj , xi].

By the Basis Theorem [9, Theorem 11.2.4], every element of the free
nilpotent group of class three on r generators y1, . . . , yr can be written
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uniquely in the form (because such a group is metabelian, the order of
the commutators in the following products is irrelevant)∏

1≤i<j≤r, i≤k≤r

[yk, [yj , yi]]
βk,j,i

∏
1≤i<j≤r

[yj , yi]
βj,i yβ1

1 yβ2

2 · · · yβrr ,

where all βk,j,i, βj,i, βi are integers. Note that formulas (2) and (3) also
hold for any two elements of a nilpotent group of class three. Because of
the assumed conditions on the numbers nk,j,i, nj,i, and ni (they are odd,
nk,j,i| gcd(nj,i, nk) and nj,i| gcd(nj , ni)) and because of (2), (3), one can
prove that the subset of this group consisting of elements of the form∏
1≤i<j≤r, i≤k≤r

[yk, [yj , yi]]
nk,j,iβk,j,i

∏
1≤i<j≤r

[yj , yi]
nj,iβj,i yn1β1

1 yn2β2

2 · · · ynrβrr

is a normal subgroup. Hence, it follows that every element g ∈ G can be
written uniquely in the form

(4) g=
∏

1≤i<j≤r, i≤k≤r

[xk, [xj , xi]]
αk,j,i

∏
1≤i<j≤r

[xj , xi]
αj,i xα1

1 xα2
2 · · ·xαrr ,

where 0 ≤ αk,j,i < nk,j,i, 0 ≤ αj,i < nj,i, and 0 ≤ αi < ni. We call this
the normal form of g.

We now define an addition + on G using the normal forms of the
elements. So, let

g1 =
∏

1≤i<j≤r, i≤k≤r

[xk, [xj , xi]]
αk,j,i

∏
1≤i<j≤r

[xj , xi]
αj,i xα1

1 xα2
2 · · ·xαrr

and

g2 =
∏

1≤i<j≤r, i≤k≤r

[xk, [xj , xi]]
βk,j,i

∏
1≤i<j≤r

[xj , xi]
βj,i xβ1

1 x
β2

2 · · ·xβrr

be elements in G written in normal form. Define

g1 + g2 =
∏

1≤i<j≤r, i≤k≤r

[xk, [xj , xi]]
γk,j,i

∏
1≤i<j≤r

[xj , xi]
γj,i xγ11 x

γ2
2 · · ·xγrr ,

where γi = αi + βi, γi,j = αi,j + βi,j , and

γk,j,i =

αk,j,i + βk,j,i if k 6= i,

αi,j,i + βi,j,i +
αj,iβi+αiβj,i

2 if k = i.

Using the restrictions on the numbers ni, nj,i, and nk,j,i, it is easily
seen that in this definition one may replace αi by αi + vini, αj,i by
αj,i + vj,inj,i, and αk,j,i by αj,k,i + vk,j,ink,j,i, for integers vi, vj,i, and
vk,j,i, and similarly for the exponents in g2. In other words, to define
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the addition, one does not have to assume the bounds imposed on the
exponents in the normal form of the elements.

Theorem 2.1. (G,+, ·) is a left brace such that [G, [G,G]] is an ideal
contained in Soc(G) and G/[G, [G,G]] is a standard nilpotent of class 2
brace. Furthermore, if ni,j,i > 1 for some 1 ≤ i < j ≤ r, then (G,+, ·)
is not a right brace.

Proof: Let g1, g2, g3 ∈ G. Write

g1 =
∏

1≤i<j≤r, i≤k≤r

[xk, [xj , xi]]
αk,j,i

∏
1≤i<j≤r

[xj , xi]
αj,i xα1

1 xα2
2 · · ·xαrr ,

g2 =
∏

1≤i<j≤r, i≤k≤r

[xk, [xj , xi]]
βk,j,i

∏
1≤i<j≤r

[xj , xi]
βj,i xβ1

1 x
β2

2 · · ·xβrr ,

and

g3 =
∏

1≤i<j≤r, i≤k≤r

[xk, [xj , xi]]
δk,j,i

∏
1≤i<j≤r

[xj , xi]
δj,i xδ11 x

δ2
2 · · ·xδrr ,

where all exponents are integers. It is easy to see that g1 + g2 = g2 + g1,
g1 + 1 = g1, and∏

1≤i<j≤r, i≤k≤r

[xk, [xj , xi]]
−αk,j,i

∏
1≤i<j≤r

[xj , xi]
−αj,i x−α1

1 x−α2
2 · · ·x−αrr

∏
1≤i<j≤r

[xi, [xj , xi]]
αiαj,i + g1 = 1.

Furthermore, for i < j, the exponent of [xi, [xj , xi]] in the normal
form of g1 + (g2 + g3) (modulo ni,j,i) is

αi,j,i + βi,j,i + δi,j,i +
βiδj,i + βj,iδi

2
+
αi(βj,i + δj,i) + αj,i(βi + δi)

2

and the exponent of [xi, [xj , xi]] in the normal form of (g1 + g2) + g3
(modulo ni,j,i) is

αi,j,i + βi,j,i +
αiβj,i + αj,iβi

2
+ δi,j,i +

(αi + βi)δj,i + (αj,i + βj,i)δi
2

.

Therefore g1 + (g2 + g3) = (g1 + g2) + g3. Hence (G,+) is an abelian
group.

Next we show that g1(g2 + g3) + g1 = g1g2 + g1g3 and thus it follows
that (G,+, ·) is a left brace. It is clear that the exponent of xi in the
normal form of g1(g2 + g3) + g1 (modulo ni) is

αi + βi + δi + αi
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and the exponent of xi in the normal form of g1g2 + g1g3 (modulo ni) is

αi + βi + αi + δi.

So both exponents are equal (modulo ni). Let 1 ≤ i < j ≤ r. By (2)
and (3), the exponent of [xj , xi] in the normal form of g1(g2 + g3) + g1
(modulo nj,i) is

αj,i + βj,i + δj,i + αj(βi + δi) + αj,i

and the exponent of [xj , xi] in the normal form of g1g2 + g1g3 (mod-
ulo nj,i) is

αj,i + βj,i + αjβi + αj,i + δj,i + αjδi.

So, also these exponents are equal (modulo nj,i). Let i ≤ k ≤ r. Suppose
that k /∈ {i, j}. Then, by (2) and (3), the exponent of [xk, [xj , xi]] in the
normal form of g1(g2 + g3) + g1 (modulo nk,j,i) is

αk,j,i + βk,j,i + δk,j,i + αk(βj,i + δj,i) + αk,j,i

and the exponent of [xk, [xj , xi]] in the normal form of g1g2 +g1g3 (mod-
ulo nk,j,i) is

αk,j,i + βk,j,i + αkβj,i + αk,j,i + δk,j,i + αkδj,i.

By (2) and (3), the exponent of [xj , [xj , xi]] in the normal form of g1(g2+
g3) + g1 (modulo nj,j,i) is

αj,j,i + βj,j,i + δj,j,i +
αj(αj + 1)(βi + δi)

2
+ αj,j,i

and the exponent of [xj , [xj , xi]] in the normal form of g1g2 +g1g3 (mod-
ulo nj,j,i) is

αj,j,i + βj,j,i +
αj(αj + 1)βi

2
+ αj,j,i + δj,j,i +

αj(αj + 1)δi
2

.

Finally the exponent of [xi, [xj , xi]] in the normal form of g1(g2+g3)+g1
(modulo ni,j,i) is

αi,j,i + βi,j,i + δi,j,i +
βiδj,i + βj,iδi

2
+
αj(βi + δi)(βi + δi + 1)

2
+ αi,j,i

+
(αj,i + βj,i + δj,i + αj(βi + δi))αi + (αi + βi + δi)αj,i

2
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and the exponent of [xi, [xj , xi]] in the normal form of g1g2 +g1g3 (mod-
ulo ni,j,i) is

αi,j,i + βi,j,i +
αjβi(βi + 1)

2
+ αi,j,i + δi,j,i +

αjδi(δi + 1)

2

+
(αj,i + βj,i + αjβi)(αi + δi) + (αj,i + δj,i + αjδi)(αi + βi)

2
,

and it is easy to check that these exponents coincide. Hence g1(g2 +
g3) + g1 = g1g2 + g1g3. Therefore, (G,+, ·) indeed is a left brace.

The definition of the addition + easily implies that [G, [G,G]] ⊆
Soc(G), thus [G, [G,G]] is an ideal of G, and G/[G, [G,G]] is a stan-
dard nilpotent of class two brace. If ni,j,i > 1 for some 1 ≤ i < j ≤ r,
then it is easy to check that (xi + xj)xi + xi 6= x2i + xjxi, and thus
(G,+, ·) is not a right brace in this case.

An obvious consequence of Theorem 2.1 is the following result.

Corollary 2.2. A finite nilpotent group of class at most 3 and of odd
order is a homomorphic image of a nilpotent group of class 3 and of odd
order that is the multiplicative group of a finite left brace G.

The corollary can be seen as complementary to Corollary 3.8 in [4]
that says that any finite nilpotent group is a subgroup of a nilpotent
group that is the multiplicative group of a finite left brace G.

We finish this section with a remark. Let G be a nilpotent group of
class 3. From the previous results one might expect that (G,+, ·) is a
left brace for an addition on G defined as follows:

(5) a+ b = [a, [b, a]]x[b, [b, a]]y[b, a]zab,

for a, b ∈ G and integers x, y, and z (depending on a and b). We
show this is impossible. Indeed, note that if a ∈ G then −a = a−1

because a + a−1 = aa−1 = 1. Hence, if (G,+, ·) is a left brace then
aa − a = a2 + a−1 = a2a−1 = a. As this holds for all a ∈ G, we
obtain a contradiction with Theorem 5 in [3], where it is shown that
every left brace A with the property that a2 − a = a for all a ∈ A has
a multiplicative group that is nilpotent and of class at most two. Hence
there are no left (right) braces (G,+, ·) with a nilpotent multiplicative
group of class 3 and an addition defined by (5).
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3. More constructions of braces on nilpotent groups
of class three

In the previous section we considered a class of nilpotent finite
groups G of odd order and of nilpotence class three. We showed that
they are multiplicative groups of left braces. This was done via a partic-
ular construction of an additive structure such that the ideal [G, [G,G]]
is contained in Soc(G) and modulo this ideal G is a standard nilpotent of
class 2 brace. In this section we assume additionally that the group G is
2-generated and we describe more general constructions of left braces G
such that G/Soc(G) is a left brace that is standard nilpotent of class at
most 2. The idea is to check which symmetric bilinear forms (expressed
in terms of the exponents used in the canonical form of elements of G)
can be used to define the additive structure of a left brace.

So, let G be a group with a presentation of the following form:

G = 〈x1, x2 | [x1, [x2, x1]], [x2, [x2, x1]] ∈ Z(G),

xn1
1 = xn2

2 = [x2, x1]n3 = [x1, [x2, x1]]n4 = [x2, [x2, x1]]n5 = 1〉,

where every ni is odd. As in Section 2, we assume that the order of xi
is ni, for i = 1, 2, the order of [x2, x1] is n3, the order of [x1, [x2, x1]] is n4,
and the order of [x2, [x2, x1]] is n5. Let a = [x1, [x2, x1]], b = [x2, [x2, x1]],
c = [x2, x1], d = x1, and e = x2. Then every element h ∈ G can be
written uniquely in the form (its normal form)

h = aαbβcγdδeε,

for some integers α, β, γ, δ, ε such that 0 ≤ α < n4, 0 ≤ β < n5,
0 ≤ γ < n3, 0 ≤ δ < n1, and 0 ≤ ε < n2.

Consider the subring Z2 = {z2r | r, z ∈ Z} of Q. For q, q′ ∈ Z2 and
an integer m, we say that q is congruent to q′ modulo m if q− q′ ∈ mZ2.
In this case we write q ≡ q′ (modm). As mentioned earlier, because G
has odd order the notation gz has a unique meaning for any z ∈ Z2 and
g ∈ G.

Let F, F ′ ∈ M3(Z2) and let f , g denote the induced bilinear forms
on Q3. Thus, for vi = (γi, δi, εi),

f(v1, v2) = (γ1, δ1, ε1)F

γ2δ2
ε2

 and g(v1, v2) = (γ1, δ1, ε1)F ′

γ2δ2
ε2

 .
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We define an addition + on G as follows:

aα1bβ1cγ1dδ1eε1 + aα2bβ2cγ2dδ2eε2

= aα1+α2+f(v1,v2)bβ1+β2+g(v1,v2)cγ1+γ2dδ1+δ2eε1+ε2 ,

where 0 ≤ αi < n4, 0 < βi < n5, 0 ≤ γi < n3, 0 ≤ δi < n1, and
0 ≤ εi < n2. Because f and g are bilinear forms and because n4, n5 | n3
and n3 | gcd(n1, n2), it is easily seen that in the definition of the addition
one does not have to assume the bounds imposed on the exponents.

Lemma 3.1. If F, F ′ ∈M3(Z2) are symmetric matrices, then (G,+) is
an abelian group.

Proof: Since a, b are central elements in G and f and g are symmetric
bilinear forms it is clear that the addition is commutative. The associa-
tivity of the addition is equivalent to the following equality

af((γ1,δ1,ε1),(γ2,δ2,ε2))+f((γ1+γ2,δ1+δ2,ε1+ε2),(γ3,δ3,ε3))

bg((γ1,δ1,ε1),(γ2,δ2,ε2))+g((γ1+γ2,δ1+δ2,ε1+ε2),(γ3,δ3,ε3))

= af((γ1,δ1,ε1),(γ2+γ3,δ2+δ3,ε2+ε3))+f((γ2,δ2,ε2),(γ3,δ3,ε3))

bg((γ1,δ1,ε1),(γ2+γ3,δ2+δ3,ε2+ε3))+g((γ2,δ2,ε2),(γ3,δ3,ε3)).

Since f and g are symmetric bilinear forms the associativity of the ad-
dition follows. Note that 1 + h = h for all h ∈ G and

−aαbβcγdδeε = a−α+f((γ,δ,ε),(γ,δ,ε))b−β+g((γ,δ,ε),(γ,δ,ε))c−γd−δe−ε.

Hence (G,+) is an abelian group.

Proposition 3.2. With the above notation, if F, F ′ ∈M3(Z2) are sym-
metric matrices, then (G,+, ·) is a left brace if and only if

F =

 n4q1
1
2 + n4q2 n4q3

1
2 + n4q2 x y
n4q3 y t

 and F ′ =

n5q′1 n5q
′
2 n5q

′
3

n5q
′
2 x′ y′

n5q
′
3 y′ t′

 ,

for some qi, q
′
i, x, y, t, x

′, y′, t′ ∈ Z2. Moreover, in this case, the ideal
〈a, b〉 = [G, [G,G]] is contained in Soc(G) and G/〈a, b〉 is a standard
nilpotent of class two left brace.
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Proof: By Lemma 3.1, (G,+) is an abelian group. Let hi = cγidδieεi ,
for i = 1, 2, 3. Let F = (fij) and F ′ = (gij). By the definition of + and
because of (2) and (3), we have

h1(h2 + h3) + h1 = h1a
f((γ2,δ2,ε2),(γ3,δ3,ε3))bg((γ2,δ2,ε2),(γ3,δ3,ε3))

cγ2+γ3dδ2+δ3eε2+ε3 + h1

= af((γ2,δ2,ε2),(γ3,δ3,ε3))bg((γ2,δ2,ε2),(γ3,δ3,ε3))

cγ1dδ1eε1cγ2+γ3dδ2+δ3eε2+ε3 + h1

= af((γ2,δ2,ε2),(γ3,δ3,ε3))+δ1(γ2+γ3)

bg((γ2,δ2,ε2),(γ3,δ3,ε3))+ε1(γ2+γ3)

cγ1+γ2+γ3dδ1eε1dδ2+δ3eε2+ε3 + h1

= aα1bβ1cγ1+γ2+γ3dδ1cε1(δ2+δ3)dδ2+δ3eε1+ε2+ε3 + h1

= aα1+δ1ε1(δ2+δ3)bβ1cγ1+γ2+γ3+ε1(δ2+δ3)

dδ1+δ2+δ3eε1+ε2+ε3 + h1,

where

α1 = f((γ2, δ2, ε2), (γ3, δ3, ε3)) + δ1(γ2 + γ3) +
ε1(δ2 + δ3)(δ2 + δ3 + 1)

2
,

β1 = g((γ2, δ2, ε2), (γ3, δ3, ε3)) + ε1(γ2 + γ3) +
(δ2 + δ3)ε1(ε1 + 1)

2
,

and

h1h2+h1h3 =cγ1dδ1eε1cγ2dδ2eε2 + cγ1dδ1eε1cγ3dδ3eε3

=aδ1γ2bε1γ2cγ1+γ2dδ1eε1dδ2eε2 + aδ1γ3bε1γ3cγ1+γ3dδ1eε1dδ3eε3

=aδ1γ2+
ε1δ2(δ2+1)

2 bε1γ2+
δ2ε1(ε1+1)

2 cγ1+γ2dδ1cε1δ2dδ2eε1+ε2

+aδ1γ3+
ε1δ3(δ3+1)

2 bε1γ3+
δ3ε1(ε1+1)

2 cγ1+γ3dδ1cε1δ3dδ3eε1+ε3

=aδ1γ2+
ε1δ2(δ2+1)

2 +δ1ε1δ2bε1γ2+
δ2ε1(ε1+1)

2 cγ1+γ2+ε1δ2dδ1+δ2eε1+ε2

+aδ1γ3+
ε1δ3(δ3+1)

2 +δ1ε1δ3bε1γ3+
δ3ε1(ε1+1)

2

cγ1+γ3+ε1δ3dδ1+δ3eε1+ε3 .

Suppose that (G,+, ·) is a left brace. We have that h1(h2 + h3) + h1 =
h1h2+h1h3. Therefore, comparing the exponents of the elements a and b
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in h1(h2 + h3) + h1 and h1h2 + h1h3, we have (modn4)

α1 + δ1ε1(δ2 + δ3)

+ f((γ1+γ2+γ3+ε1(δ2+δ3), δ1+δ2+δ3, ε1+ε2+ε3), (γ1, δ1, ε1))

≡ δ1γ2 +
ε1δ2(δ2 + 1)

2
+ δ1ε1δ2 + δ1γ3 +

ε1δ3(δ3 + 1)

2
+ δ1ε1δ3

+ f((γ1+γ2+ε1δ2, δ1+δ2, ε1+ε2), (γ1+γ3+ε1δ3, δ1+δ3, ε1+ε3))

and (modn5)

β1+g((γ1+γ2+γ3+ε1(δ2+δ3), δ1+δ2+δ3, ε1+ε2+ε3), (γ1, δ1, ε1))

≡ ε1γ2 +
δ2ε1(ε1 + 1)

2
+ ε1γ3 +

δ3ε1(ε1 + 1)

2

+g((γ1+γ2+ε1δ2, δ1+δ2, ε1+ε2), (γ1+γ3+ε1δ3, δ1+δ3, ε1+ε3)).

Hence

f((γ1 + γ2 + ε1δ2, δ1 + δ2, ε1 + ε2), (γ1 + γ3 + ε1δ3, δ1 + δ3, ε1 + ε3))

≡ f((γ1 + γ2 + γ3+ε1(δ2+δ3), δ1 + δ2 + δ3, ε1 + ε2 + ε3), (γ1, δ1, ε1))

+ f((γ2, δ2, ε2), (γ3, δ3, ε3)) + ε1δ2δ3 (modn4)

(6)

and

g((γ1 + γ2 + ε1δ2, δ1 + δ2, ε1 + ε2), (γ1 + γ3 + ε1δ3, δ1 + δ3, ε1 + ε3))

≡ g((γ1 + γ2 + γ3+ε1(δ2+δ3), δ1 + δ2 + δ3, ε1 + ε2 + ε3), (γ1, δ1, ε1))

+ g((γ2, δ2, ε2), (γ3, δ3, ε3)) (modn5).

(7)

Then, by an easy calculation we obtain

f1,1(γ2δ3ε1 + γ3δ2ε1 + δ2δ3ε
2
1) + 2f1,2δ2δ3ε1

+ f1,3(δ2ε1ε3 + δ3ε1ε2) ≡ ε1δ2δ3 (modn4)

and

g1,1(γ2δ3ε1 + γ3δ2ε1 + δ2δ3ε
2
1) + 2g1,2δ2δ3ε1

+ g1,3(δ2ε1ε3 + δ3ε1ε2) ≡ 0 (modn5).

Now, taking γ2 = δ3 = ε1 = 1 and δ2 = ε2 = 0, we have f1,1 ≡
0 (modn4) and g1,1 ≡ 0 (modn5). Taking δ3 = ε1 = ε2 = 1 and γ2 =
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γ3 = δ2 = 0, we have f1,3 ≡ 0 (modn4) and g1,3 ≡ 0 (modn5). Taking
δ2 = δ3 = ε1 = 1, we have 2f1,2 ≡ 1 (modn4) and g1,2 ≡ 0 (modn5).

Conversely, suppose that f1,1 ≡ f1,3 ≡ 0 (modn4), f1,2 ≡ 1
2 (modn4),

and g1,1 ≡ g1,2 ≡ g1,3 ≡ 0 (modn5). It is straightforward to prove that
the congruences (6) and (7) hold. Hence h1(h2 +h3) +h1 = h1h2 +h1h3
and the first part of the result follows.

That the ideal 〈a, b〉 is contained in Soc(G) and that the left brace
G/〈a, b〉 is standard nilpotent of class two follows at once from the defi-
nition of the addition.

4. Metabelian groups

In this section we give necessary and sufficient conditions for a groupG
to be the multiplicative group of a left brace such that [G,G] ⊆ Soc(G)
and G/[G,G] is a standard abelian brace. Clearly, in this case, the mul-
tiplicative group G is metabelian. Next we present a class of examples
of metabelian groups that satisfy the required conditions. In the con-
text of the previous sections notice that nilpotent groups of class 3 are
metabelian.

If G is a left brace then the function γ : G × G → G defined by
γ(a, b) = (a + b)b−1a−1 is a measure for G to be a standard abelian
brace. It is this function that plays a crucial role in this section (it
always satisfies property (a) and property (b), for s ∈ Soc(G), of the
following theorem).

The following result generalises Theorem 1 in [2] on nilpotent groups
of class two that are multiplicative groups of two-sided braces (or, equiv-
alently, that are circle groups of radical rings).

Theorem 4.1. The following conditions are equivalent for a group G.

(1) G is the multiplicative group of a left brace (G,+, ·) such that
[G,G] ⊆ Soc(G) and G/[G,G] is a standard abelian brace.

(2) G is metabelian and there exists a map γ : G × G → [G,G] that
satisfies the following properties:

(a) γ(a, b) = γ(b, a)[b−1, a−1], for all a, b ∈ G,

(b) γ(s, a) = 1, for all a ∈ G and all s ∈ [G,G],

(c) γ(ab, c) = γ(a, c)aγ(b, c)a−1, for all a, b, c ∈ G.

Proof: (1) implies (2). Assume that (1) is satisfied. Let γ : G × G →
[G,G] denote the map defined by γ(a, b) = (a+b)b−1a−1, for all a, b ∈ G.
Since G/[G,G] is a standard abelian brace, (a + b)b−1a−1 ∈ [G,G] and
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thus γ is well-defined. Then, for all a, b ∈ G,

γ(a, b) = (a+ b)b−1a−1 = (b+ a)a−1b−1[b−1, a−1] = γ(b, a)[b−1, a−1].

This proves (a). Let s ∈ [G,G] and a ∈ G. Since [G,G] ⊆ Soc(G), we
have that s + a = sa. Hence γ(s, a) = (s + a)a−1s−1 = saa−1s−1 = 1,
and (b) follows.

Recall that in the left brace G the map λ : G → Aut(G,+), defined
by λ(a) = λa, for all a ∈ G, is a homomorphism from the multiplicative
group of the left brace G to the group of automorphisms of the additive
group of G, where λa(b) = ab− a, for all a, b ∈ G. In particular,

a(b−c) = λa(b−c)+a = λa(b)−λa(c)+a = ab−a−(ac−a)+a = ab−ac+a.

We shall use this formula without any mention.
Let a, b, c ∈ G. Note that γ(a, b) = (a + b)b−1a−1 = aλ−1a (b)b−1a−1.

Hence λ−1a (b)b−1 ∈ [G,G]. We get that

γ(ab, c) = abλ−1ab (c)c−1b−1a−1,

γ(a, c)aγ(b, c)a−1 = aλ−1a (c)c−1a−1abλ−1b (c)c−1b−1a−1

= aλ−1a (c)c−1bλ−1b (c)c−1b−1a−1,

and

bλ−1ab (c) = b(b−1a−1c− b−1a−1)=a−1c− a−1 + b=λ−1a (c) + b,

λ−1a (c)c−1bλ−1b (c) = λ−1a (c)c−1b(b−1c− b−1) = λ−1a (c)(c−1b− c−1)

= λ−1a (c)λ−1c (b) = λλ−1
a (c)(λ

−1
c (b)) + λ−1a (c)

= λλ−1
a (c)c−1(b) + λ−1a (c) = b+ λ−1a (c),

the last equality holds because λ−1a (c)c−1 ∈ [G,G] ⊆ Soc(G). Therefore
(c) follows.

(2) implies (1). Assume that γ : G × G → [G,G] satisfies (a), (b),
and (c). The fact that [G,G] is abelian and γ(G × G) ⊆ [G,G] will be
used without any comment in this proof. We define an addition on G
by a+ b = γ(a, b)ab, for all a, b ∈ G. We have, for a, b, c ∈ G,

b+ a = γ(b, a)ba = γ(a, b)[a−1, b−1]ba (by (a))

= γ(a, b)ab = a+ b
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and

(a+ b) + c=γ(a, b)ab+ c

=γ(γ(a, b)ab, c)γ(a, b)abc

=γ(γ(a, b), c)γ(a, b)γ(ab, c)γ(a, b)−1γ(a, b)abc (by (c))

=γ(a, b)γ(ab, c)abc (by (b)).

(8)

Therefore

a+ (b+ c) = (b+ c) + a

= γ(b, c)γ(bc, a)bca (by (8))

= γ(b, c)γ(b, a)bγ(c, a)b−1bca (by (c))

= γ(b, c)γ(a, b)aba−1γ(a, c)ac (by (a))

= γ(b, c)γ(a, b)aba−1b−1bγ(a, c)b−1bac

= γ(b, c)γ(a, b)bγ(a, c)b−1abc

= γ(a, b)γ(ba, c)abc (by (c))

= γ(a, b)γ(ab[b, a], c)abc

= γ(a, b)γ(ab, c)abγ([b, a], c)b−1a−1abc (by (c))

= γ(a, b)γ(ab, c)abc (by (b))

= (a+ b) + c (by (8)).

Hence, (a+b)+c = γ(a, b)γ(ab, c)abc and thus, also using (a), a+(b+c) =
(b+ c) + a = γ(b, c)γ(bc, a)bca = γ(b, c)γ(a, bc)abc. Therefore,

(9) γ(a, b)γ(ab, c) = γ(b, c)γ(a, bc),

for all a, b, c ∈ G. Note that 1 + a = γ(1, a)a = a and

γ(a−1, a)−1a−1 + a = γ(γ(a−1, a)−1a−1, a)γ(a−1, a)−1a−1a

= γ(γ(a−1, a)−1, a)γ(a−1, a)−1γ(a−1, a)

γ(a−1, a)γ(a−1, a)−1 (by (c))

= 1 (by (b)).

Hence 1 is the neutral element for the addition and−a = γ(a−1, a)−1a−1,
for all a ∈ G.
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Furthermore

a(b+ c) + a = aγ(b, c)bc+ a

= γ(aγ(b, c)bc, a)aγ(b, c)bca

= γ(abc, a)aγ(b, c)bca (by (c) and (b))

= γ(ab, ca)γ(c, a)γ(ab, c)−1aγ(b, c)bca (by (9))

= γ(ab, [c−1, a−1]ac)γ(c, a)γ(ab, c)−1aγ(b, c)bca

= γ([c−1, a−1]ac, ab)[c−1a−1[a−1, c−1], b−1a−1]

γ(c, a)γ(ab, c)−1aγ(b, c)bca (by (a))

= γ(ac, ab)[c−1a−1[a−1, c−1], b−1a−1]

γ(c, a)γ(ab, c)−1aγ(b, c)bca (by (c) and (b))

= γ(ab, ac)[b−1a−1, c−1a−1][c−1a−1[a−1, c−1], b−1a−1]

γ(c, a)γ(ab, c)−1aγ(b, c)bca (by (a))

= γ(ab, ac)[b−1a−1, c−1a−1][c−1, a−1]

acabc−1a−1[a−1, c−1]b−1a−1γ(c, a)γ(ab, c)−1aγ(b, c)bca

= γ(ab, ac)[b−1a−1, c−1a−1][c−1a−1, b−1a−1][c−1, a−1]

ab[a−1, c−1]b−1a−1γ(c, a)γ(ab, c)−1aγ(b, c)bca

= γ(ab, ac)[[a−1, c−1], b−1a−1]γ(c, a)γ(ab, c)−1aγ(b, c)bca

= γ(ab, ac)[[a−1, c−1], b−1a−1]γ(a, c)[a−1, c−1]

γ(ab, c)−1aγ(b, c)bca (by (a))

= γ(ab, ac)[[a−1, c−1], b−1a−1][a−1, c−1]abca (by (c))

= γ(ab, ac)[a−1, c−1][[a−1, c−1], b−1a−1]abca

= γ(ab, ac)[a−1, c−1][c−1, a−1]ab[a−1, c−1]b−1a−1abca

= γ(ab, ac)abac

= ab+ ac,

for all a, b, c ∈ G. Hence (G,+, ·) is a left brace. Note that (b) implies
that λs(a) = sa−s = γ(s, a)sa−s = s+a−s = a, for all s ∈ [G,G] and
all a ∈ G. Thus [G,G] ⊆ Soc(G). Therefore [G,G] is an ideal of the left
brace G and it is easy to see that G/[G,G] is a standard abelian brace.
This finishes the proof.
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Since any finite metabelian group G with trivial centre is a semidi-
rect product of [G,G] and an abelian subgroup (Theorem C in [1]), the
following example applies to any such group.

Example 4.2. Let G = AoB be the semidirect product of two abelian
(multiplicative) groups A and B. Define an addition + on G by

a1b1 + a2b2 = a1a2b1b2,

where a1, a2 ∈ A and b1, b2 ∈ B. By [3, Section 6], (G,+, ·) is a left
brace, called the semidirect product of the two standard abelian braces A
and B. This left brace satisfies condition (1) of Theorem 4.1. The
corresponding γ of condition (2) is given by the formula

γ(a1b1, a2b2) = [a−12 , b−11 ].

Note that the example also was obtained in [4, Corollary 3.10] for
finite braces.

In [4] an example is given (Example 4.4) of a nilpotent group G of
class 3 such that G cannot be the multiplicative group of a left brace
(G,+, ·) with [G,G] ⊆ Soc(G) and G/[G,G] a standard abelian brace.
However, this group is the multiplicative group of a left brace (Exam-
ple 4.3 in [4]) and this is proved by making use of IYB morphisms. This
group is also the multiplicative group of a left brace constructed as in
Section 2.

5. Finitely generated nilpotent groups of class 2

In this section we characterise finitely generated nilpotent groups G
of class 2 that are the multiplicative group of a left brace and such that
[G,G] ⊆ Soc(G) and G/[G,G] is a standard abelian brace.

Lemma 5.1. Let G be a left brace such that the multiplicative group
of G is a nilpotent group of class 2, [G,G] ⊆ Soc(G) and G/[G,G] is a
standard abelian brace. Then G is a two-sided brace.

Proof: Let a, b, c ∈ G. Then, as [G,G] ⊆ Soc(G),

(b+ c)a = a(b+ c)[b+ c, a] = [b+ c, a]a(b+ c) = [b+ c, a] + a(b+ c).
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Because G/[G,G] is standard abelian, there exists u ∈ [G,G] ⊆ Z(G)
such that

(b+ c)a = [bcu, a] + a(b+ c)

= [bc, a] + ab+ ac− a
= [bc, a] + ba[a, b] + ca[a, c]− a
= [bc, a] + ba+ [a, b] + ca+ [a, c]− a (as [G,G] ⊆ Soc(G))

= [bc, a][a, b][a, c] + ba+ ca− a (as [G,G] ⊆ Soc(G))

= 1 + ba+ ca− a
= ba+ ca− a.

This proves that G is a right brace, and thus a two-sided brace.

Theorem 5.2. Let G be a finitely generated nilpotent group of class 2.
Let a1, a2,. . ., an∈G and c1, c2,. . ., cr∈ [G,G] be elements such that [G,G]
is the inner direct product of the subgroups 〈c1〉, . . . , 〈cr〉 and G/[G,G] is
the inner direct product of the subgroups 〈a1[G,G]〉, . . . , 〈an[G,G]〉. Then
the following properties are equivalent.

(1) For each 1 ≤ i ≤ r, there exists a map si : Zn × Zn → Z such that
(i) si is a symmetric bilinear map modulo ni, that is

si((α1, . . . , αn), (β1, . . . , βn))

≡ si((β1, . . . , βn), (α1, . . . , αn)) (modni)

and

si((α1 + β1, . . . , αn + βn), (γ1, . . . , γn))

≡ si((α1, . . . , αn), (γ1, . . . , γn))

+ si((β1, . . . , βn), (γ1, . . . , γn)) (modni),

where ni is either the order of ci, if ci has finite order, or
ni = 0 otherwise.

(ii) c
si((α1,...,αn),(β1,...,βn))
i = 1, whenever a

αj
j ∈ [G,G], for all j.

(2) G is the multiplicative group of a two-sided brace such that [G,G] ⊆
Soc(G) and G/[G,G] is a standard abelian brace.

Proof: (1) implies (2). For α1, . . . , αn, β1, . . . , βn ∈ Z and c, c′ ∈ [G,G],
we define

caα1
1 · · · aαnn + c′aβ1

1 · · · aβnn
=cc′c

s1((α1,...,αn),(β1,...,βn))
1 · · · csr((α1,...,αn),(β1,...,βn))

r aα1+β1

1 · · · aαn+βnn .

(10)
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First we show that this is a well-defined operation. Let c, d, c′, d′ ∈ [G,G]
and αi, α

′
i, βi, β

′
i ∈ Z be such that

caα1
1 · · · aαnn = da

α′1
1 · · · a

α′n
n

and

c′aβ1

1 · · · aβnn = d′a
β′1
1 · · · a

β′n
n .

We shall prove that

cc′c
s1((α1,...,αn),(β1,...,βn))
1 · · · csr((α1,...,αn),(β1,...,βn))

r aα1+β1

1 · · · aαn+βnn

= dd′c
s1((α

′
1,...,α

′
n),(β

′
1,...,β

′
n))

1 · · · csr((α
′
1,...,α

′
n),(β

′
1,...,β

′
n))

r a
α′1+β

′
1

1 · · · aα
′
n+β

′
n

n .

SinceG/[G,G] is the inner direct product of the subgroups 〈a1[G,G]〉,. . . ,
〈an[G,G]〉, we get a

α′j−αj
j , a

β′j−βj
j ∈ [G,G], for all j = 1, . . . , n. Hence

cc′aα1+β1

1 · · · aαn+βnn =dd′a
α′1−α1+β

′
1−β1

1 · · · aα
′
n−αn+β

′
n−βn

n aα1+β1

1 · · · aαn+βnn

=dd′a
α′1+β

′
1

1 · · · aα
′
n+β

′
n

n .

Furthermore, since a
α′j−αj
j , a

β′j−βj
j ∈ [G,G], for all j = 1, . . . , n, we have

that c
si((α

′
1−α1,...,α

′
n−αn),(β1,...,βn))

i =1 and c
si((β

′
1−β1,...,β

′
n−βn),(α

′
1,...,α

′
n))

i =
1, and thus

c
si((α1,...,αn),(β1,...,βn))
i = c

si((α
′
1,...,α

′
n),(β1,...,βn))

i = c
si((β1,...,βn),(α

′
1,...,α

′
n))

i

= c
si((β

′
1,...,β

′
n),(α

′
1,...,α

′
n))

i = c
si((α

′
1,...,α

′
n),(β

′
1,...,β

′
n))

i .

Therefore

cc′c
s1((α1,...,αn),(β1,...,βn))
1 · · · csr((α1,...,αn),(β1,...,βn))

r aα1+β1

1 · · · aαn+βnn

= dd′c
s1((α

′
1,...,α

′
n),(β

′
1,...,β

′
n))

1 · · · csr((α
′
1,...,α

′
n),(β

′
1,...,β

′
n))

r a
α′1+β

′
1

1 · · · aα
′
n+β

′
n

n

and the addition is well-defined.
Next we prove that (G,+) is an abelian group. Since every map si is

symmetric modulo ni, we have that g + g′ = g′ + g, for all g, g′ ∈ G. It
is clear that g + 1 = g, for all g ∈ G and that the opposite element of
caα1

1 · · · aαnn is

c−1c
−s1((α1,...,αn),(−α1,...,−αn))
1 · · · c−sr((α1,...,αn),(−α1,...,−αn))

r a−α1
1 · · · a−αnn ,

for all c ∈ [G,G] and α1, . . . , αn ∈ Z.
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Let c, d, e ∈ [G,G] and αi, βi, γi ∈ Z, for i = 1, . . . , n. We have

caα1
1 · · · aαnn + (daβ1

1 · · · aβnn + eaγ11 . . . aγnn )

= caα1
1 · · · aαnn + dec

s1((β1,...,βn),(γ1,...,γn))
1 · · · csr((β1,...,βn),(γ1,...,γn))

r

aβ1+γ1
1 · · · aβn+γnn

= cdec
s1((β1,...,βn),(γ1,...,γn))
1 · · · csr((β1,...,βn),(γ1,...,γn))

r

c
s1((α1,...,αn),(β1+γ1,...,βn+γn))
1 · · · csr((α1,...,αn),(β1+γ1,...,βn+γn))

r

aα1+β1+γ1
1 · · · aαn+βn+γnn

= cdec
s1((β1,...,βn),(γ1,...,γn))
1 · · · csr((β1,...,βn),(γ1,...,γn))

r

c
s1((α1,...,αn),(β1,...,βn))
1 · · · csr((α1,...,αn),(β1,...,βn))

r

c
s1((α1,...,αn),(γ1,...,γn))
1 · · · csr((α1,...,αn),(γ1,...,γn))

r

aα1+β1+γ1
1 · · · aαn+βn+γnn

and

(caα1
1 · · · aαnn + daβ1

1 · · · aβnn ) + eaγ11 · · · aγnn

= cdc
s1((α1,...,αn),(β1,...,βn))
1 · · · csr((α1,...,αn),(β1,...,βn))

r

aα1+β1

1 · · · aαn+βnn + eaγ11 · · · aγnn

= cdec
s1((α1,...,αn),(β1,...,βn))
1 · · · csr((α1,...,αn),(β1,...,βn))

r

c
s1((α1+β1,...,αn+βn),(γ1,...,γn))
1 · · · csr((α1+β1,...,αn+βn),(γ1,...,γn))

r

aα1+β1+γ1
1 · · · aαn+βn+γnn

= cdec
s1((α1,...,αn),(β1,...,βn))
1 · · · csr((α1,...,αn),(β1,...,βn))

r

c
s1((α1,...,αn),(γ1,...,γn))
1 · · · csr((α1,...,αn),(γ1,...,γn))

r

c
s1((β1,...,βn),(γ1,...,γn))
1 · · · csr((β1,...,βn),(γ1,...,γn))

r

aα1+β1+γ1
1 · · · aαn+βn+γnn .

Therefore (G,+) is an abelian group.
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Third we prove that the brace condition is satisfied. We also have

caα1
1 · · · aαnn (daβ1

1 · · · aβnn + eaγ11 · · · aγnn ) + caα1
1 · · · aαnn

= caα1
1 · · · aαnn dec

s1((β1,...,βn),(γ1,...,γn))
1 · · · csr((β1,...,βn),(γ1,...,γn))

r

aβ1+γ1
1 · · · aβn+γnn + caα1

1 · · · aαnn
= cdec

s1((β1,...,βn),(γ1,...,γn))
1 · · · csr((β1,...,βn),(γ1,...,γn))

r ∏
1≤i<j≤n

[aj , ai]
αj(βi+γi)

 aα1+β1+γ1
1 · · · aαn+βn+γnn + caα1

1 · · · aαnn

= c2dec
s1((β1,...,βn),(γ1,...,γn))
1 · · · csr((β1,...,βn),(γ1,...,γn))

r ∏
1≤i<j≤n

[aj , ai]
αj(βi+γi)


c
s1((α1+β1+γ1,...,αn+βn+γn),(α1,...,αn))
1 · · ·

· · · csr((α1+β1+γ1,...,αn+βn+γn),(α1,...,αn))
r

a2α1+β1+γ1
1 · · · a2αn+βn+γnn

and

caα1
1 · · · aαnn daβ1

1 · · · aβnn + caα1
1 · · · aαnn eaγ11 · · · aγnn

= cd

 ∏
1≤i<j≤n

[aj , ai]
αjβi

 aα1+β1

1 · · · aαn+βnn

+ ce

 ∏
1≤i<j≤n

[aj , ai]
αjγi

 aα1+γ1
1 · · · aαn+γnn

= c2de

 ∏
1≤i<j≤n

[aj , ai]
αj(βi+γi)


c
s1((α1+β1,...,αn+βn),(α1+γ1,...,αn+γn))
1 · · ·

· · · csr((α1+β1,...,αn+βn),(α1+γ1,...,αn+γn))
r

a2α1+β1+γ1
1 · · · a2αn+βn+γnn .
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Since every si is a symmetric bilinear map modulo ni, we obtain that

caα1
1 · · · aαnn (daβ1

1 · · · aβnn + eaγ11 · · · aγnn ) + caα1
1 · · · aαnn

= caα1
1 · · · aαnn daβ1

1 · · · aβnn + caα1
1 · · · aαnn eaγ11 · · · aγnn .

Hence (G,+, ·) is a left brace.
It is clear that [G,G] ⊆ Soc(G) and G/[G,G] is a standard abelian

brace. By Lemma 5.1, (G,+, ·) is a two-sided brace. This finishes the
proof of (1) implies (2).

(2) implies (1). Suppose that G is the multiplicative group of a left
brace such that [G,G] ⊆ Soc(G) and G/[G,G] is the standard abelian
brace. For every i = 1, . . . , r, there exists a map si : Zn × Zn → Z such
that, for given c, c′ ∈ [G,G] and for α1, . . . , αn, β1, . . . , βn ∈ Z,

caα1
1 · · · aαnn + c′aβ1

1 · · · aβnn
= cc′c

s1((α1,...,αn),(β1,...,βn))
1 · · · csr((α1,...,αn),(β1,...,βn))

r aα1+β1

1 · · · aαn+βnn .

The commutativity of the addition implies that

si((α1, . . . , αn), (β1, . . . , βn)) ≡ si((β1, . . . , βn), (α1, . . . , αn)) (modni).

So, si is symmetric modulo ni. To prove it is bilinear modulo ni as well,
we first notice that the associativity of the addition implies that

si((α1, . . . , αn), (β1, . . . , βn))

+ si((α1 + β1, . . . , αn + βn), (γ1, . . . , γn))

≡ si((β1, . . . , βn), (γ1, . . . , γn))

+ si((α1, . . . , αn), (β1 + γ1, . . . , βn + γn)) (modni).

(11)

Since, for c, d, e ∈ [G,G],

caα1
1 · · · aαnn (daβ1

1 · · · aβnn + eaγ11 · · · aγnn ) + caα1
1 · · · aαnn

= caα1
1 · · · aαnn daβ1

1 · · · aβnn + caα1
1 · · · aαnn eaγ11 · · · aγnn ,

one can check that

si((α1 + β1, . . . , αn + βn), (α1 + γ1, . . . , αn + γn))

≡ si((β1, . . . , βn), (γ1, . . . , γn))

+si((α1+β1+γ1, . . . , αn+βn+γn), (α1, . . . , αn)) (modni).

(12)
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By (11), we have that

si(((α1 + β1) + γ1, . . . , (αn + βn) + γn), (α1, . . . , αn))

≡ −si((α1 + β1, . . . , αn + βn), (γ1, . . . , γn))

+ si((γ1, . . . , γn), (α1, . . . , αn))

+ si((α1 + β1, . . . , αn + βn), (γ1 + α1, . . . , γn + αn)) (modni).

Hence, from (12), we have that

si((α1 + β1, . . . , αn + βn), (α1 + γ1, . . . , αn + γn))

≡ si((β1, . . . , βn), (γ1, . . . , γn))

− si((α1 + β1, . . . , αn + βn), (γ1, . . . , γn))

+ si((γ1, . . . , γn), (α1, . . . , αn))

+ si((α1 + β1, . . . , αn + βn), (γ1 + α1, . . . , γn + αn)) (modni).

Therefore

si((α1 + β1, . . . , αn + βn), (γ1, . . . , γn))

≡si((γ1, . . . , γn), (α1, . . . , αn))+si((β1, . . . , βn), (γ1, . . . , γn))

≡si((α1, . . . , αn),(γ1, . . . , γn))+si((β1, . . . , βn),(γ1, . . . , γn)) (modni).

So si is a symmetric bilinear map modulo ni.
Let α1, . . . , αn be integers such that a

αj
j ∈ [G,G], for j = 1, . . . , n.

Then, since [G,G] ⊆ Soc(G), we have that

aα1
1 · · · aαnn + aβ1

1 · · · aβnn = aα1
1 · · · aαnn aβ1

1 · · · aβnn = aα1+β1

1 · · · aαn+βnn .

On the other hand we have that

aα1
1 · · · aαnn + aβ1

1 · · · aβnn
= c

s1((α1,...,αn),(β1,...,βn))
1 · · · csr((α1,...,αn),(β1,...,βn))

r aα1+β1

1 · · · aαn+βnn .

Hence c
s1((α1,...,αn),(β1,...,βn))
1 · · · csr((α1,...,αn),(β1,...,βn))

r = 1. Since [G,G]
is the inner direct product of the subgroups 〈c1〉, . . . , 〈cr〉, we get that

c
si((α1,...,αn),(β1,...,βn))
i = 1,

for i = 1, . . . , r, and this finishes the proof.

Of course, if G is a finitely generated nilpotent group of class two and
G/[G,G] is torsion-free then condition (1) of Theorem 5.2 is satisfied for
arbitrary chosen symmetric bilinear maps.
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Added in proof: Recently Bachiller (in his paper “Counterexample to a
conjecture about braces”, arXiv: 1507.02137v1[math.GR]) has shown
that there exists a group of order 2310 that is not the multiplicative
group of any left brace.
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