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Abstract: In this paper we survey some results on the Dirichlet problem{
Lu = f in Ω

u = g in Rn\Ω
for nonlocal operators of the form

Lu(x) = PV

∫
Rn

{
u(x)− u(x + y)

}
K(y) dy.

We start from the very basics, proving existence of solutions, maximum principles,
and constructing some useful barriers. Then, we focus on the regularity properties of

solutions, both in the interior and on the boundary of the domain.

In order to include some natural operators L in the regularity theory, we do not
assume any regularity on the kernels. This leads to some interesting features that are

purely nonlocal, in the sense that they have no analogue for local equations.

We hope that this survey will be useful for both novel and more experienced
researchers in the field.
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1. Introduction

The aim of this paper is to survey some results on Dirichlet problems
of the form

(1.1)

{
Lu = f in Ω

u = g in Rn\Ω.

Here, Ω is any bounded domain in Rn, and L is an elliptic integro-dif-
ferential operator of the form

(1.2) Lu(x) = PV

∫
Rn

{
u(x)− u(x+ y)

}
K(y) dy.

The function K(y) ≥ 0 is the kernel of the operator1, and we assume

K(y) = K(−y) and

∫
Rn

min
{
|y|2, 1

}
K(y) dy <∞.

Integro-differential problems of the form (1.1) arise naturally in the
study of stochastic processes with jumps, and have been widely studied
both in Probability and in Analysis and PDEs. We refer to the reader
to the following works on:

• Existence of solutions: Felsinger–Kassmann–Voigt [25], Leonori–
Peral–Primo–Soria [39], Hoh–Jacob [31], and Barles–Imbert [5].
• Interior regularity of solutions: Bass–Levin [6], Kassmann [33],

Caffarelli–Silvestre [13, 14, 15], Barles–Chasseigne–Imbert [4],
Kassmann–Mimica [34, 35], Schwab–Silvestre [53], and Serra [54].
• Boundary regularity of solutions: Bogdan [8], the author and Se-

rra [46, 47, 48], Grubb [29, 30], Chen–Song [16], Barles–Cha-
sseigne–Imbert [3], Bogdan–Grzywny–Ryznar [9], and Bogdan–
Kumagai–Kwaśnicki [10].
• Other qualitative properties of solutions: Birkner–López-Mimbela–

Wakolbinger [7], Dipierro–Savin–Valdinoci [20], Abatangelo [1],
and Kulczycki [36].

In applications, this type of nonlocal problems appear in models in-
volving “anomalous diffusions” (in which the underlying stochastic pro-
cess is not given by Brownian motion), or in the presence of long-range
interactions or forces. In particular, they appear in Physics [21, 59,

1The typical example is K(y) = cn,s|y|−n−2s, which corresponds to L = (−∆)s, the

fractional Laplacian. As s ↑ 1, it converges to the Laplacian −∆.

For equations with x-dependence, the kernel is a function of two variables, K(x, y).
Here, we assume that the operator L is translation invariant, and thus that the

kernel K does not depend on x.
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43, 27, 23, 38], Finance [52, 40, 2], Fluid dynamics [18, 17], Ecology
[42, 32, 45], or Image processing [28].

The aim of this paper is to survey some results on existence, regu-
larity, and qualitative properties of solutions to (1.1). More precisely,
we will start from the very basics (showing existence and boundedness
of solutions), to then focus on the regularity of solutions, both in the
interior and on the boundary of the domain Ω.

In order to include some natural operators L in the regularity theory,
we do not assume any regularity on the kernel K(y). As we will see, there
is an interesting relation between the regularity properties of solutions
and the regularity of the kernels K(y). This is a purely nonlocal issue, in
the sense that has no analogue in second order equations, as explained
next.

For linear elliptic second order equations of the form

(1.3)

{
−
∑
ij aij∂iju = f in Ω

u = g on ∂Ω,

the interior regularity properties of u depend only on the regularity of f .
This is because, after an affine change of variables, this equation is just
−∆u = f .

The nonlocal analogue of (1.3) is (1.1). For this problem, the interior
regularity of solutions depends on the regularity of f – as in (1.3) –, but
it also depends on the regularity of K(y) in the y-variable. Furthermore,
if the kernel K is not regular, then the interior regularity of u will in
addition depend on the regularity of g, on the boundary regularity of u,
and even on the shape of Ω, as we will see later on.

Hence, for nonlocal equations, the class of linear and translation in-
variant operators is much richer, and already presents several interesting
features. The same type of issues appear when considering nonlinear
equations, or operators with x-dependence. However, for the clarity of
presentation, we will consider only linear and translation invariant equa-
tions.

In most of the regularity results we will focus on two classes of kernels:
we will assume s ∈ (0, 1) and either that

(1.4)
λ

|y|n+2s
≤ K(y) ≤ Λ

|y|n+2s
, 0 < λ ≤ Λ;

or that

(1.5) K(y) =
a (y/|y|)
|y|n+2s

, a ∈ L1(Sn−1), a ≥ 0.



6 X. Ros-Oton

In fact, in order to include operators like L = (−∂2
x1x1

)s+· · ·+(−∂2
xnxn)s,

we will allow a in (1.5) to be any nonnegative measure on Sn−1. The
only necessary condition on the measure a is that it is not supported in
a hyperplane – so that the operator L is not degenerate. A quantitative
way to state this nondegeneracy condition is that, for some positive
constants λ and Λ, one has

∫
Sn−1 da ≤ Λ and

∫
Sn−1 |ν · θ|2s da(θ) ≥ λ

for all ν ∈ Sn−1; see [48].

The paper is organized as follows. In Section 2 we briefly explain the
probabilistic interpretation of (1.1). In Section 3 we show existence of
weak solutions. In Section 4 we prove the maximum principle for such
solutions. In Section 5 we construct some useful barriers and give an
L∞ estimate. In Section 6 we discuss the interior regularity properties
for the classes of kernels (1.4) and (1.5). In Section 7 we see what is the
boundary regularity of solutions. Finally, in Section 8 we come back to
the interior regularity of solutions to (1.1).

2. Motivation and some preliminaries

2.1. Lévy processes. Integro-differential equations of the form (1.1)
arise naturally in the study of stochastic processes with jumps, and more
precisely in Lévy processes. A Lévy process is a stochastic process with
independent and stationary increments. Informally speaking, it repre-
sents the random motion of a particle whose successive displacements
are independent and statistically identical over different time intervals
of the same length.

These processes extend the concept of Brownian motion, and were
introduced a few years after Wiener gave the precise definition of the
Brownian motion [41]. Essentially, Lévy processes are obtained when
one relaxes the assumption of continuity of paths (which gives the Brow-
nian motion) by the weaker assumption of stochastic continuity.

By the Lévy–Khintchine Formula, the infinitesimal generator of any
Lévy processes is an operator of the form2

− Lu(x) =
∑
i,j

aij∂iju+
∑
j

bj∂ju

+

∫
Rn

{
u(x+ y)− u(x)− y · ∇u(x)χB1

(y)
}
dν(y),

where ν is the Lévy measure, and satisfies
∫
Rn min

{
1, |y|2

}
dν(y) <∞.

2We denote the infinitesimal generator −L in order to be consistent with our notation
in (1.2). We always take L to be positive definite, so it is the analogue of −∆.
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When the process has no diffusion or drift part, this operator takes the
form

−Lu(x) =

∫
Rn

{
u(x+ y)− u(x)− y · ∇u(x)χB1(y)

}
dν(y).

Furthermore, if one assumes the process to be symmetric, and the Lévy
measure to be absolutely continuous, then L can be written as (1.2) or,
equivalently,

Lu(x) =
1

2

∫
Rn

{
2u(x)− u(x+ y)− u(x− y)

}
K(y) dy,

with K(y) = K(−y). We will use this last expression for L throughout
the paper.

As an example, let Ω ⊂ Rn be any bounded domain, and let us
consider a Lévy process Xt, t ≥ 0, starting at x ∈ Ω. Let u(x) be the
expected first exit time, i.e., the expected time E[τ ], where τ = inf{t >
0 : Xt /∈ Ω} is the first time at which the particle exits the domain.
Then, u(x) solves {

Lu = 1 in Ω

u = 0 in Rn\Ω,

where −L is the infinitesimal generator of Xt.
Recall that, when Xt is a Brownian motion, then L is the Laplace

operator −∆. In the context of integro-differential equations, Lévy pro-
cesses plays the same role that Brownian motion plays in the theory of
second order equations.

Another simple example is given by the following. Let us also consider
a bounded domain Ω, a process Xt starting at x ∈ Ω, and the first time τ
at which the particle exits the domain. Assume now that we have a payoff
function g : Rn \ Ω −→ R, so that when the process Xt exits Ω we get
a payoff g(Xτ ). Then, the expected payoff u(x) := E[g(Xτ )] solves the
problem {

Lu = 0 in Ω

u = g in Rn\Ω.

The Dirichlet problem (1.1) arises when considering at the same time
a running cost f and a final payoff g.
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2.2. Kernels with compact support. It is important to remark that
when the kernel K(y) has compact support in a ball Bδ (for some δ > 0),
then the Dirichlet problem is{

Lu = f in Ω

u = g in (Ω +Bδ)\Ω.

This means that the exterior condition g has to be posed only in a
neighborhood of ∂Ω and not in the whole Rn\Ω. This turns out to be
convenient in some applications; see for example [21, 57, 59, 11].

However, from the analytical point of view, it is mainly the singular-
ity of the kernel K(y) at the origin that plays a role in the regularity
properties of solutions; see for example Section 14 in [13].

2.3. Stable processes. A special class of Lévy processes are the so-
called stable processes. These are the processes which satisfy self-simi-
larity properties, and they are also the ones appearing in the Generalized
Central Limit Theorem; see [51].

The infinitesimal generators of these processes are given by (1.2)–(1.5).
Note that the structural condition (1.5) on the kernel K is equivalent to
saying that the Lévy measure is homogeneous. This is also equivalent to
the fact that the operator L is scale invariant.

A very natural stable process is the radially symmetric one. This
means that K(y) = c|y|−n−2s and hence, up to a multiplicative constant,

(2.1) L = (−∆)s.

Another very natural stable process is the one obtained by taking
independent stable processes in each coordinate. That is, we consider

Xt = (X
(1)
t , . . . , X

(n)
t ), where X

(i)
t are 1-dimensional i.i.d. symmetric

stable processes. The generator of this process Xt will be

(2.2) L = (−∂2
x1x1

)s + · · ·+ (−∂2
xnxn)s,

and it corresponds to (1.5) with the measure a being 2n delta functions
on Sn−1. For example, when n = 2, one has a = δ(0,1) + δ(0,−1) + δ(1,0) +
δ(−1,0).

While the operators (2.1) and (2.2) may look similar (they are the
same when s = 1), they have quite different regularity properties, as we
will see in the next sections. For example, while solutions to (−∆)su = 0
in Ω are C∞ inside the domain, this may not be the case for (2.2).
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Note also that the Fourier symbols of (2.1) and (2.2) are |ξ|2s and
|ξ1|2s + · · ·+ |ξn|2s, respectively. Again, the first one is C∞ outside the
origin, while the second one is just C2s. In general, the Fourier symbol
of any stable process of the form (1.5) is

(2.3) A(ξ) = c

∫
Sn−1

|ξ · θ|2sa(θ) dθ.

The symbol A(ξ) is in general only C2s outside the origin, but it would
be C∞ outside the origin whenever the function a is C∞ on Sn−1.

3. Existence of solutions

In this section we explain briefly how to prove existence of weak so-
lutions to (1.1) in a simple case. We hope that this will be useful for
students and/or for readers which are not familiar with nonlocal oper-
ators. The more experienced reader should go to Felsinger–Kassmann–
Voigt [25], where this is done in a much more general setting.

As we will see, the existence (and uniqueness) of weak solutions
to (1.1)–(1.2) follows from the Riesz representation theorem once one
has the appropriate ingredients.

The energy functional associated to the problem (1.1) is

(3.1) E(u) =
1

4

∫∫
R2n\(Ωc×Ωc)

(
u(x)− u(z)

)2
K(z − x) dx dz −

∫
Ω

fu.

The minimizer of E among all functions with u = g in Rn \Ω will be the
unique weak solution of (1.1).

Notice that E(u) is defined for all regular enough functions u which
are bounded at infinity. When g ≡ 0, then making the change of vari-
ables y = x+ z the functional can be written as

(3.2) E(u) =
1

4

∫
Rn

∫
Rn

(
u(x)− u(x+ y)

)2
K(y) dx dy −

∫
Ω

fu.

When g is not zero, the term
∫∫

Ωc×Ωc
|g(x)− g(z)|2K(z−x) dx dz could

be infinite, and this is why in general one has to take (3.1).
For simplicity, we will show existence of solutions for the case g ≡ 0,

and hence we can think on the energy functional (3.2).
Let HK(Rn) be the space of functions u ∈ L2(Rn) satisfying

(3.3) [u]2HK :=
1

2

∫
Rn

∫
Rn

(
u(x)− u(x+ y)

)2
K(y) dx dy <∞,
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and let

X = {u ∈ HK(Rn) : u ≡ 0 in Rn \ Ω} .

Essentially, the only assumption which is needed in order to prove exis-
tence of solutions is the Poincaré inequality

(3.4)

∫
Ω

u2 ≤ C
∫
Rn

∫
Rn

∣∣u(x)− u(x+ y)
∣∣2K(y) dx dy

for functions u ≡ 0 in Rn \ Ω.
When the kernel K satisfies (1.4), then the seminorm in (3.3) is equiv-

alent to

(3.5) [u]2Hs :=
1

2

∫
Rn

∫
Rn

∣∣u(x)− u(x+ y)
∣∣2

|y|n+2s
dx dy.

In this case, the Poincaré inequality (3.4) follows easily from the frac-
tional Sobolev inequality3 in Rn and Hölder’s inequality in Ω.

Once one has the Poincaré inequality (3.4), then it follows that the
space X is a Hilbert space with the scalar product

(v, w)K :=
1

2

∫
Rn

∫
Rn

(
v(x)− v(x+ y)

)(
w(x)− w(x+ y)

)
K(y) dx dy.

Then, the weak formulation of (1.1) is just

(3.6) (u, ϕ)K =

∫
Ω

fϕ for all ϕ ∈ X,

and the existence and uniqueness of weak solution follows immediately
from the Riesz representation theorem.

For more general classes of kernels K(y), one has to show the Poincaré
inequality (3.4) (see Lemma 2.7 in [25]), and then the existence of solu-
tions follows by the same argument above.

3Different proofs of the fractional Sobolev inequality can be found in [58], [44], and
[19]. The proof given in [44], which is due to Brezis, is really nice and simple.
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Finally, notice that when u is regular enough then for all ϕ ∈ X we
have

(u, ϕ) =
1

2

∫
Rn

∫
Rn

(
u(x)− u(z)

)(
ϕ(x)− ϕ(z)

)
K(x− z) dx dz

=
1

2
PV

∫
Rn

∫
Rn

(
u(x)− u(z)

)
ϕ(x)K(x− z) dx dz

+
1

2
PV

∫
Rn

∫
Rn

(
u(z)− u(x)

)
ϕ(z)K(x− z) dx dz

=
1

2

∫
Rn
Lu(x)ϕ(x) dx+

1

2

∫
Rn
Lu(z)ϕ(z) dz

=

∫
Ω

Luϕ,

where we used that K(y) = K(−y) and that ϕ ≡ 0 in Rn \ Ω.
This means that, when u is regular enough, the weak formulation (3.6)

reads as ∫
Ω

Luϕ =

∫
Ω

f ϕ for all ϕ ∈ X,

and thus it is equivalent to Lu = f in Ω.

Remark 3.1. We showed in this section how to prove the existence of
weak solutions to (1.1) by variational methods. On the other hand, an
alternative approach is to use Perron’s method to establish the existence
of viscosity solutions; see [3, 13]. As we will see, when the right hand
side f is Hölder continuous then all solutions are classical solutions (in
the sense that the operator L can be evaluated pointwise), and thus the
notions of weak and viscosity solutions coincide; see [56] for more details.

4. Comparison principle

In this section we show the maximum principle and the comparison
principle for weak solutions to (1.1).

As in the classical case of the Laplacian −∆, the maximum principle
essentially relies on the fact that Lu(x0) ≥ 0 whenever u has a maximum
at x0. In case of local equations, this is true for any local maximum, while
in nonlocal equations this is only true when u has a global maximum
at x0. In this case, the inequality Lu(x0) ≥ 0 follows simply from the
expression

Lu(x0) =
1

2

∫
Rn

(
2u(x0)− u(x0 + y)− u(x0 − y)

)
K(y) dy
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and the fact that u(x0) ≥ u(x0±y) for any y ∈ Rn (which holds whenever
u has a global maximum at x0).

Notice also that when K(y) > 0 in Rn, this argument already yields
a strong maximum principle, since one has Lu(x0) > 0 unless u ≡ ctt.

The previous considerations work when u is regular enough, so that
Lu can be evaluated pointwise. In case of weak solutions u to (1.1), the
proof of the maximum principle goes as follows. For simplicity, we do
it in the case K(y) > 0, but the same could be done for more general
kernels K(y) ≥ 0.

Proposition 4.1. Let L be any operator of the form (1.2), with K(y) >
0 in Rn. Let u be any weak solution to (1.1), with f ≥ 0 in Ω and g ≥ 0
in Rn \ Ω. Then, u ≥ 0 in Ω.

Proof: Recall that u is a weak solution of (1.1) if u = g in Rn \ Ω and

(4.1)

∫∫
R2n\(Ωc×Ωc)

(
u(x)−u(z)

)(
ϕ(x)−ϕ(z)

)
K(z−x) dx dz =

∫
Ω

fϕ

for all ϕ ∈ HK(Rn) with ϕ ≡ 0 in Rn \ Ω.
Write u = u+ − u− in Ω, where u+ = max{u, 0}χΩ and u− =

max{−u, 0}χΩ. We will take ϕ = u−, assume that u− is not identi-
cally zero, and argue by contradiction.

Indeed, since f ≥ 0 and ϕ ≥ 0, then we clearly have that

(4.2)

∫
Ω

fϕ ≥ 0.

On the other hand, we have that∫∫
R2n\(Ωc×Ωc)

(
u(x)− u(z)

)(
ϕ(x)− ϕ(z)

)
K(z − x) dx dz

=

∫
Ω

∫
Ω

(
u(x)− u(z)

)(
u−(x)− u−(z)

)
K(z − x) dx dz

+ 2

∫
Ω

dx

∫
Ωc

(
u(x)− g(z)

)
u−(x)K(z − x) dz.

Moreover,
(
u+(x)− u+(z)

)(
u−(x)− u−(z)

)
≤ 0, and thus∫

Ω

∫
Ω

(
u(x)− u(z)

)(
u−(x)− u−(z)

)
K(z − x) dx dz

≤ −
∫

Ω

∫
Ω

(
u−(x)− u−(z)

)2
K(z − x) dx dz < 0.
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Note that the last strict inequality holds since we are assuming that u− is
not identically zero, and since u− can not be constant (this would mean
that u equals to a negative constant inside Ω, which cannot be if g ≥ 0
and f ≥ 0). Also, since g ≥ 0 then∫

Ω

dx

∫
Ωc

(
u(x)− g(z)

)
u−(x)K(z − x) dz ≤ 0.

Therefore, we have shown that∫∫
R2n\(Ωc×Ωc)

(
u(x)− u(z)

)(
ϕ(x)− ϕ(z)

)
K(z − x) dx dz < 0,

and this contradicts (4.1)–(4.2).

Of course, once we have the maximum principle, the comparison prin-
ciple follows immediately.

Corollary 4.2. Let L be any operator of the form (1.2), with K(y) > 0
in Rn. Let u1 and u2 be weak solutions to{

Lu1 = f1 in Ω

u1 = g1 in Rn\Ω
and

{
Lu2 = f2 in Ω

u2 = g2 in Rn\Ω.
Assume that f1 ≥ f2 and g1 ≥ g2. Then, u1 ≥ u2.

Proof: Just apply Proposition 4.1 to u = u1 − u2.

This allows us to use barriers, which in turn can be used to show that
solutions u to (1.1) belong to L∞(Ω) whenever f and g are bounded.
This is what we do in the next section.

5. Barriers and L∞ bounds

We provide in this section an L∞ estimate of the form

(5.1) ‖u‖L∞(Ω) ≤ ‖g‖L∞(Rn\Ω) + C‖f‖L∞(Ω)

for solutions to (1.1). The reader should go to [39] for the case of right
hand sides f ∈ Lp(Ω).

To do it, we assume first K(y) > 0 in Rn, as in the previous section.
In this case, the construction of a barrier is quite simple.

Lemma 5.1. Let L be an operator of the form (1.2), with K(y) > 0
in Rn. Then, there exists a function w ∈ C∞c (Rn) such that

Lw ≥ 1 in Ω

w ≥ 0 in Rn\Ω
w ≤ C in Ω.

The constant C depends only on the kernel K and diam(Ω).
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Once we have this barrier, the L∞ bound (5.1) follows from the com-
parison principle, as shown next.

Corollary 5.2. Let L be any operator of the form (1.2), with K(y) > 0
in Rn. Let u be any weak solution of (1.1). Then,

‖u‖L∞(Ω) ≤ ‖g‖L∞(Rn\Ω) + C‖f‖L∞(Ω),

where C is the constant in Lemma 5.1.

Proof: Let v(x) = ‖g‖L∞+‖f‖L∞w(x), where w is given by Lemma 5.1.
Then, we clearly have Lu ≤ Lv in Ω, and g ≤ v in Rn \ Ω.

Thus, by the comparison principle, we have u ≤ v in Ω. In particular,
u ≤ ‖g‖L∞ + C‖f‖L∞ in Ω.

Applying the same argument to (−u), we find that −u ≤ ‖g‖L∞ +
C‖f‖L∞ , and hence the result follows.

We now construct the barrier.

Proof of Lemma 5.1: Let BR be any large enough ball such that Ω b
BR, and let η ∈ C∞c (BR) be such that

(5.2) 0 ≤ η ≤ 1 in Rn, η ≡ 1 in Ω.

Then, for each x ∈ Ω we have η(x) = maxRn η, and thus

2η(x)− η(x+ y)− η(x− y) ≥ η(x)− η(x+ y) ≥ 0.

Hence, writing z = x+ y, we have

Lη(x) ≥
∫
Rn

{
η(x)− η(z)

}
K(x− z) dz ≥

∫
Rn\BR

K(x− z) dz,

where we have used that η(x) − η(z) = 1 for z in Rn \ BR. Now, we
notice that∫

Rn\BR
K(x− z) dz =

∫
Rn\(x+BR)

K(y) dy ≥
∫
Rn\B2R

K(y) dy = c > 0

for some positive constant c.
Hence, we have Lη ≥ c > 0 in Ω. Taking w = 1

cη, we will have that
Lw ≥ 1 in Ω

w ≥ 0 in Rn\Ω
w ≤ 1

c in Ω,

as desired.
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Note that the previous proof works not only for all kernels satisfying
K(y) > 0 in Rn, but also for all kernels K satisfying

(5.3)

∫
Rn\BR

K(y) dy > 0

for every ball BR. In particular, the above construction works for all
stable operators (1.5).

Hence, we see that the desired barrier is quite easy to construct, and
does not even depend much on the class of kernels we are considering.
Essentially, thanks to the nonlocal character of the operator, any func-
tion η as in (5.2) works.

Remark 5.3. For operators L that do not satisfy (5.3), one can still
manage to prove an analogous result. Indeed, if (5.3) does not hold, then
K = 0 a.e. outside a ball BR. This means that K have compact support.
In this case, one can take any function η ≥ 0 which is strictly concave
in a large ball BM and zero outside BM . Then, if M is large enough
(so that Ω + supp(K) ⊂ BM and hence 2η(x)− η(x+ y)− η(x− y) > 0
therein), one will have Lη ≥ c > 0 in Ω.

Finally, to end this section, we give an important explicit solution for
the class of stable operators (1.5).

Lemma 5.4. Let L be any stable operator of the form (1.2)–(1.5). Then,
the function4

u0(x) :=
(
1− |x|2

)s
+

solves {
Lu0 = c in B1

u0 = 0 in Rn\B1

for some positive constant c > 0.

This explicit solution will be used in Section 7 to construct a subso-
lution and establish a Hopf Lemma for this class of operators.

Lemma 5.4 was first established for (−∆)s in dimension n = 1 by
Getoor [26], and requires quite fine computations; see also the work of
Dyda [22].

Once this is established in dimension n = 1, the result in dimension n
and for general stable operators L follows by just writing

Lu0(x) =
1

4

∫
Sn−1

a(θ)

(∫
R

2u0(x)− u0(x+ τθ)− u0(x− τθ)
|τ |1+2s

dτ

)
dθ,

4Here z+ denotes the positive part of the number z, i.e., z+ = max{z, 0}.
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and using the result in dimension 1 for each direction θ. It is important
to notice that the 1D functions τ 7→ u0(x + τθ) are exactly a rescaled
version of (1 − |τ |2)s+, which solves the equation in dimension n = 1.
Using this, one gets that Lu0 = c in B1, with c = cs

∫
Sn−1 a(θ) dθ, and

cs depending only on s.

6. Interior regularity

For second order equations, the classical Schauder estimate for−∆u =
f in B1 establishes that

(6.1) ‖u‖C2+α(B1/2) ≤ C
(
‖f‖Cα(B1) + ‖u‖L∞(B1)

)
whenever α > 0 is not an integer. Thus, it immediately follows from this
estimate that solutions to the Dirichlet problem{

−∆u = f in Ω

u = g on ∂Ω

are C2+α inside Ω whenever f ∈ Cα and g is bounded.

For nonlocal equations of order 2s, one would expect a similar esti-
mate, in which the norm ‖u‖C2s+α(B1/2) is controlled by ‖f‖Cα(B1) for
solutions to Lu = f in B1. It turns out that, due to the nonlocality of
the equation, the norm ‖u‖L∞(B1) in (6.1) has to be replaced by a global
norm of u, i.e., a norm that controls u in the whole Rn.

6.1. Regular kernels. For the fractional Laplacian L = (−∆)s – which
corresponds to K(y) = c|y|−n−2s in (1.2) –, this estimate reads as

(6.2) ‖u‖C2s+α(B1/2) ≤ C
(
‖f‖Cα(B1) + ‖u‖L∞(Rn)

)
,

and holds whenever α+ 2s is not an integer; see for example [37, 46].
The same estimate (6.2) holds for more general operators of the

form (1.2)–(1.4) or (1.2)–(1.5) under the extra assumption that the ker-
nels K(y) are Cα outside the origin; see [54, Corollary 1.2] and [48,
Corollary 3.5] for more details.

This means that, in this case of regular kernels, solutions to (1.1) are
C2s+α inside Ω whenever f ∈ Cα and g is bounded.

However, for general operators (1.2)–(1.4) or (1.2)–(1.5) (with no fur-
ther regularity assumption on the kernel K), the estimate (6.2) is not
true anymore, and one needs a stronger norm of u in the right hand side,
as explained next.
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6.2. Non-regular kernels. When the kernels K(y) are not regular
outside the origin, one has the following estimate.

Theorem 6.1 ([54, 48]). Let L be any operator of the form (1.2) with
kernel K of the form either (1.4) or (1.5). Let α > 0 be such that α+2s
is not an integer, and let u ∈ L∞(Rn) be any weak solution to Lu = f
in B1. Then,

(6.3) ‖u‖C2s+α(B1/2) ≤ C
(
‖f‖Cα(B1) + ‖u‖Cα(Rn)

)
,

for some constant C that depends only on n, s, and λ, and Λ.

It is important to remark that the previous estimate is valid also in
case α = 0 (in which the Cα norm has to be replaced by the L∞ norm);
see Theorem 1.1 in [48] for more details.

The proof of this estimate uses a refined version of the blow-up and
compactness argument first introduced by Serra in [55]. The esti-
mate (6.3) was established in [54] for the class of kernels (1.4)5, and
in [48] for the class (1.5).

With no further regularity assumption on the kernels K, the esti-
mate (6.3) is sharp, in the sense that the norm ‖u‖Cα(Rn) can not be
replaced by a weaker one. More precisely, one has the following.

Proposition 6.2 ([54, 48]). Let s ∈ (0, 1), α ∈ (0, s]. Then, for any
small ε > 0 there exists an operator of the form (1.2)–(1.5), and a solu-
tion u to Lu = 0 in B1 such that u ∈ Cα−ε(Rn), but u /∈ C2s+α(B1/2).
Moreover, the same happens for the operators (1.2)–(1.4).

Thus, even when f ≡ 0, solutions u to{
Lu = 0 in B1

u = g in Rn \B1

are in general no better than C2s(B1/2) if g is not better than L∞(Rn).
This means that the interior regularity of solutions to (1.1) depends on
the regularity of g in Rn \ Ω when the kernels are not regular.

Finally notice that, even in case that g is C∞ in all of Rn \Ω, this is
not enough to deduce that u is regular inside Ω! Indeed, because of (6.3),
one has to control the term ‖u‖Cα(Rn) in order to have a C2s+α estimate
inside Ω. For this, it is not enough to have ‖g‖Cα(Rn\Ω) ≤ C, but one
also needs to control the regularity of u across ∂Ω. In other words,
the boundary regularity of u is needed. We will come back to this in
Section 8.

5The estimate in [54] is a much stronger result, which holds for fully nonlinear equa-
tions and also for x-dependent equations.
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7. Boundary regularity

In this section we study the boundary regularity of solutions to

(7.1)

{
Lu = f in Ω

u = 0 in Rn\Ω.

We will first look at the optimal Hölder regularity of solutions u near ∂Ω,
to then see more fine results for the class of kernels (1.5).

Remark 7.1. Once (7.1) is well understood, the boundary regularity of
solutions to (1.1) follows from the results for (7.1), at least when the
exterior data g in (1.1) is regular enough.

Indeed, assume that u is a solution to (1.1) and that g ∈ C2s+γ(Rn \
Ω). We may extend g to a function in Rn satisfying g ∈ C2s+γ(Rn), and

consider ũ = u−g. Then ũ satisfies ũ ≡ 0 in Rn\Ω, and Lũ = f−Lg =: f̃

in Ω. Hence, ũ solves (7.1) with u and f replaced by ũ and f̃ , respectively.

7.1. Hölder regularity for u. As we saw in Section 5, given any stable
operator (1.2)–(1.5), the function

u0(x) =
(
1− |x|2

)s
+

is an explicit solution to (7.1) in Ω = B1; see Lemma 5.4.
The function u0 belongs to Cs(B1), but

u0 /∈ Cs+ε(B1) for any ε > 0.

This means that, even in the simplest case K(y) = |y|−n−2s, one can not
expect solutions to be better than Cs(Ω).

For the class of kernels (1.5), using the explicit solution u0 and similar
barriers, it is possible to show that, when Ω is C1,1, solutions u satisfy

|u| ≤ Cds in Ω, d(x) = dist(x,Rn \ Ω).

Combining the previous bound with the interior estimate (6.3) (with α =
0), one gets the following.

Proposition 7.2 (Optimal Hölder regularity, [48]). Let L be any op-
erator of the form (1.2)–(1.5), and Ω any bounded C1,1 domain. Let
f ∈ L∞(Ω), and u be the weak solution of (7.1). Then,

‖u‖Cs(Ω) ≤ C‖f‖L∞(Ω)

for some constant C that depends only on n, s, Ω, Λ, and λ.

Furthermore, using similar barriers one can show:
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Lemma 7.3 (Hopf’s Lemma). Let L be any operator of the form (1.2)–
(1.5), and Ω any bounded C1,1 domain. Let u be any weak solution
to (7.1), with f ≥ 0. Then, either

u ≥ c ds in Ω for some c > 0

or u ≡ 0 in Ω.

Thus, the boundary regularity of solutions depends essentially on
the construction of suitable barriers, and the behavior of these barri-
ers near ∂Ω depends on the class of kernels under consideration.

When the kernels K(y) are of the form (1.5), we have seen that so-
lutions behave like ds near the boundary ∂Ω. However, for the class of
kernels (1.4), the only barriers that one can construct behave like dα0

near the boundary, for some 0 < α0 < s. This means that for this class
of operators one can only prove u ∈ Cα0(Ω).

7.2. Regularity of u/ds. We have seen that, when

(7.2) K(y) =
a(y/|y|)
|y|n+2s

,

then all solutions u behave like ds near the boundary. For this class of
kernels, much more can be said about the regularity of solutions near ∂Ω.

Indeed, the quotient u/ds is not only bounded, but it is also Hölder
continuous up to the boundary.

This regularity of u/ds yields in particular the existence of the limit

u

ds
(z) := lim

Ω3x→z

u(x)

ds(x)

for all z ∈ ∂Ω. This function u/ds on ∂Ω plays sometimes the role that
the normal derivative ∂u/∂ν plays in second order equations. For ex-
ample, it appears in overdetermined problems [24], integration by parts
formulas [49], and free boundary problems [12].

The first proof of this result was given in [46] for the case K(y) =
|y|−n−2s, and more recently the result has been improved by Grubb
in [29, 30] and by the author and Serra in [47, 48]. These results may
be summarized as follows.

Theorem 7.4 ([48, 47, 30, 29]). Let s ∈ (0, 1), L be any operator of
the form (1.2)–(1.5), Ω be any bounded domain, and u be any solution
to (7.1), with f ∈ L∞(Ω).

Then, depending on the regularity of the function a in (7.2), we have
the following.



20 X. Ros-Oton

(i) If a is any measure and Ω is C1,1, then

‖u/ds‖Cs−ε(Ω) ≤ C‖f‖L∞(Ω).

(ii) If a ∈ C1,γ(Sn−1) and Ω is C2,γ for some small γ > 0, then

‖u/ds‖Cs+γ(Ω) ≤ C‖f‖Cγ(Ω)

whenever s+ γ is not an integer and f ∈ Cγ(Ω).
(iii) If a ∈ C∞(Sn−1), Ω is C∞, and f ∈ Cγ(Ω), then

‖u/ds‖Cs+γ(Ω) ≤ C‖f‖Cγ(Ω)

for all γ ∈ (0,∞) such that s+ γ is not an integer.

Part (i) corresponds to Theorem 1.2 in [48], part (ii) was established
in [47] in the more general context of fully nonlinear equations, and
part (iii) was established in [29, 30] for all pseudodifferential operators
satisfying the µ-transmission property. (In the excepted cases of (iii),
more information is given in [29] in terms of Hölder–Zygmund spaces Ck∗ ,
when s+ γ is an integer.)

As in the interior regularity estimates, the regularity of the kernel K
affects the regularity of the solution u. In this direction, even if one
assumes that Ω is C∞ and f ∈ C∞(Ω), the result in part (i) can not be
improved if the kernels are singular; see [48].

On the other hand, notice that these results yield (u − g)/ds ∈
Cs+γ(Ω) for solutions u to (1.1); see Remark 7.1. This gives a descrip-
tion of u near ∂Ω up to order 2s + γ. For example, if s + γ < 1, this
means that there exists a function b ∈ Cγ(∂Ω) such that∣∣u(x)− g(x)− b(z)ds(x)

∣∣ ≤ C|x− z|2s+γ for z ∈ ∂Ω, x ∈ B1(z).

When s+γ ∈ (1, 2) one has a similar expansion with an additional term
of order ds+1, and more terms appear for higher values of γ.

8. Further interior regularity

As we saw in the previous section, solutions u to (7.1) are Cs or Cα0

up to the boundary when K(y) is of the form (1.4) or (1.5). Moreover,
the same happens for solutions to (1.1) whenever the exterior data g is
regular enough.

Hence, this means that solutions u will be globally Hölder continuous,
and therefore we may apply the estimate

(8.1) ‖u‖Cα+2s(B1/2) ≤ C
(
‖f‖Cα(Ω) + ‖u‖Cα(Rn)

)
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to get that solutions u are C2s+α inside Ω for some α > 0 – more
precisely, α = s in case (1.5), and α = α0 in case (1.4). This is enough
to ensure that, when f ∈ Cα, any weak solution is a classical solution,
in the sense that the operator L can be evaluated pointwise.

The natural question then is: are solutions more regular than this?

For the class of kernels (1.5) the interior estimate (8.1) does not give
more than u ∈ C3s

loc(Ω), and we know that (8.1) is sharp. Still, if one
considers the solution u to

(8.2)

{
Lu = 1 in Ω

u = 0 in Rn\Ω

in a C∞ domain Ω, one a priori does not know if solutions are more
regular than C3s. This question has been answered by the author and
Valdinoci in [50]:

Theorem 8.1 ([50]). Let L be any operator of the form (1.2)–(1.5), and
Ω be any bounded domain. Then,

(i) If a is any measure and Ω is convex, then u ∈ C1+3s−ε
loc (Ω) for all

ε > 0.
(ii) If a ∈ L∞(Sn−1) and Ω is C1,1, then u ∈ C1+3s−ε

loc (Ω) for all ε > 0.
(iii) There is a (nonconvex) C∞ domain Ω, and an operator L of the

form (1.2)–(1.5), for which the solution u to (8.2) does not belong
to C3s+ε

loc (Ω) for any ε > 0.

Thus, solutions have different regularity properties depending on the
shape of Ω. Indeed, for operators L with singular kernels, the convexity
of the domain gives one more order of differentiability on the solution.
Also, notice that when a ∈ L∞, then we gain interior regularity on the
solution by assuming that the domain Ω is C1,1.

For kernels K in the class (1.4), one would expect solutions u to be
C1+2s+α0−ε in the interior of C1,1 domains.
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ory Related Fields 162(1) (2015), 155–198. DOI: 10.1007/s00440-

014-0568-6.
[10] K. Bogdan, T. Kumagai, and M. Kwaśnicki, Boundary Har-
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Phys. Lett. A 268(4–6) (2000), 298–305. DOI: 10.1016/S0375-9601

(00)00201-2.
[39] T. Leonori, I. Peral, A. Primo, and F. Soria, Basic esti-

mates for solutions of a class of nonlocal elliptic and parabolic equa-
tions, Discrete Contin. Dyn. Syst. 35(12) (2015), 6031–6068. DOI:
10.3934/dcds.2015.35.6031.
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