A THEOREM ON THE REPRESENTATION THEORY
OF JORDAN ALGEBRAS

W. H. MiLLs

1. Introduction. Let J be a Jordan algebra over a field @ of characteristic
neither 2 nor 3. Let a — §; be a (general) representation of J. If « is an alge-
braic element of /, then Sy is an algebraic element. The object of this paper is to
determine the polynomial identity * satisfied by Sy. The polynomial obtained de-
pends only on the minimal polynomial of & and the characteristic of ®. It is the
minimal polynomial of Sy if the associative algebra U generated by the S, is the
universal associative algebra of J and if / is generated by a.

2. Preliminaries. A (nonassociative) commutative algebra J over a field @ is
called a Jordan algebra if

1 (a?b)a = a*(ba)

holds for all @, 5 € J. In this paper it will be assumed that the characteristic of
® is neither 2 nor 3.

It is well known that the Jordan algebra J is power associative;** that is,the
subalgebra generated by any single element a is associative. An immediate conse-
quence is that if f(x) is a polynomial with no constant term then f(a) is uniquely
defined.

Let R, be the multiplicative mapping in /, a — xa = ax, determined by the
element a. From (1) it can be shown that we have

[HaRbc-] + [RbRac] + [RcRab] =0

and
R,RgR. + R.RyR, + R(ac)dp = RgRpe + RpRgc + RcRgp

for all a, b, ¢ € J, where [AB] denotes AB — BA. Since the characteristic of
® is not 3, either of these relations and the commutative law imply (1). Let

Received November 20, 1950.
* This problem was proposed by N. Jacobson.

**See, for example, Albert [1].
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a — S, be a linear mapping of J into an associative algebra U such that for all
a, b, ¢ € ] we have

(2 [Sasbc] + [‘SbSac] + [’Scsab] =0

and

®3) SaSpSe + SeSpSa + S(ac)b = SaSbe + SbSac t ScSap

Such a mapping is called a representation.

It has been shown* that there exists a representation a — S, of J into an
associative algebra U such that (a) U is generated by the elements S, and (b) if
a — T, is an arbitrary representation of / then S, — T, defines a homo-

morphism of U. In this case the algebra U is called the universal associative alge-
bra of J.

We shall now suppose that @ — S, is an arbitrary representation of J, and o
a fixed element of /. Let s(r) = Syr, 4 = s(1), B = s(2). Hweputa=b=c =«
in (2), we get AB = BA. lf weputa=b=0, ¢ = «""2, r > 3, then (3) becomes

(4) s(r) =24s(r —1) + s(r — 2) B—A%s(r —2) —s(r —2) A%,

We now see that 4 and B generate a commutative subalgebra Uy containing s(r) for
all r. By the commutativity of Uy, (4) becomes

(5) s(r) =24s(r —1) + (B —24?) s(r —2).

We now adjoin to the commutative associative algebra Uy an element C commuting
with the elements of Uy such that C2 = B — A2, We have the following result.

¥ o, . .
LEMMA 1. For all positive integers r, we have
p g y

s(r) = (1/2) +C)y + (1/2)(a —cC) .
Proof. 1f r = 1, then

(1/2)A+Cy + (12)A—cC)y =4 =5(1).

*For a general discussion of the theory of representations of a Jordan algebra and a
proof of the existence of the universal associative algebra, see Jacobson [2].
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If r = 2, then

(12)A+C) + (1/2)A —c)y =42 +c?*=5(2).

Now suppose that r > 3 and that Lemma 1 holds for r — 1 and r — 2. By direct
substitution it follows that A + C and A — C are roots of

x? = 2Ax + B — 24%,
and therefore of
X" = 242"V 4+ (B — 242) 1772,

Hence,

(A4 +c) =244 +C) 1+ (B —24%)(4 +C) 72
and

(A—-cCc) =24—-c¢Cc)r"1+ (B —24%)4 —C) 2,
Adding and dividing by 2, we have the desired result:

(1/2)(A +C) + (1/2)(A —C)r =24s(r — 1) + (B —24%) s(r —2) = s(r).

An immediate consequence of Lemma 1 is that if g(x) is an arbitrary polynomial
with no constant term, then

©) Selo) = (1/2) g4 +C) + (1/2) g4 —0C).

Now suppose further that o is an algebraic element of / and that f(x) is a
polynomial with no constant term, such that f(a) = 0. Then by (6) we have

(7) 0=2S¢o) = f(A +C) +f(4 —C),

0 =2Sqfa)= (A+C) fA+C)+ (4—-C) fA—-C).

The next step is to eliminate C from the system (7). To do this we need some
additional tools.

3. Theory of elimination. Let () be the splitting field of f(x) over the field ®.
Let P = ®[x], Q = Ply], P'= Qlx], Q'= P'[y] be polynomial rings in
one and two variables over ® and (2, respectively. Then P and P’ are principal
ideal rings.If ¢, and g, are elements of Q, let (¢,, gq,) be the ideal of Q generated
by ¢, and g,, and let {g;, g,} be a:generator of the P-ideal (g,, g,) N P. Simi-
larly, if g, and g, are elements of Q', let ((g,, g,)) be the ideal of Q' generated
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by g, and gq,. Furthermore, let {{g,, g,}} denote a generator of the P'-ideal
((g1, g2)) N P'. We note that {ql, qu and {{g,, ¢,}} are determined up to unit
factors. The unit factors are nonzero elements of ® and () respectively.

We shall establish the following lemma.

LEMMA 2. If q; and q, are elements of Q, then {g, g} = {{ql, g8} up to

a unit factor.

Proof. Let w;, wy,***,wpy be a basis of  over . Then P' = Zw;P and
Q' = Zw;Q. Therefore

((g1,92)) =Q'q; +Q'q; = 2w;Qqy + 2w;Qq, = Zw; (g1,92)

and

((¢1,92)) N P' = Zw; ((94,92) NP) = ((q1,92) NP) P' = {q1,q2} P".
It follows that {‘Il, 92§ = {{‘In ‘12”-

Let r and s be distinct elements of P', and let m and n be positive integers.
We shall determine {{(y — )™, (y —s)%}.

LEMMA 3. Let S(m,n) be that positive integer satisfying

S(m,n)Sm +n-—1,

(S(m,n) - l) £0,

n—1
and

n—1

(N)=0 if S(my,n) < N<nm+n-—2,

where (Z) is the binomial coefficient considered as an integer in ®. Then we have

Hy =™, (y =)'} = (s-—,)S(n.n).

Proof. We note that S(m,n) depends only on m, n, and the characteristic p of
. fp=0,0rifp >m + n —1, thenStm,n) = m + n —1. In any case,

(8) m+n-—=12>S8(mn) >n,
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Replacing y by y + r, we may assume that r = 0, s # 0. Formally, modulo y™,
we have

mn-1
(s=y)"=s"Q=y/s)"=sT Y
n=0

—n) (—y/s)"
M

m-1 n-1
s (AR I St T
£=0 u=0
= Stam) -v(V - 1) v=n
> n—1
v=n
Therefore there exists aq € Q' such that
S(m, n) V-1
9) qyn + (y _s)n(_l)n Z sS(u,n)—v o yu—n — sS(u,n) .
v=n

It follows that

o™, (v = s)mgsS(mm)
Put
iiynr ()’ - S)n}} =G, SS(A'")/G=H.

Then G and H are elements of P’ . Furthermore, there exist g; and g, in Q' such
that the y-degree of g, is less than m and such that ¢, y™ + g,(y —s)" = G
Hence

(10) quym + qu(y — S)" —_ GH - Ss(u,n).

Subtracting (9) from (10) and comparing terms not divisible by y™, we obtain

S(m, n) s ) v—1
11 = (—1)n m,n)=v v-n
(1) qH=(—-1) ygn s n—117 .

Comparing coefficients of ys(m’ n)=n in (11), we get

H I(S(m,n) - l) ,

n—1
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which is a nonzero element of ®. Therefore H is a unit element, and this es-

tablishes LLemma 3.

In the following we shall use l.c.m. (a;, a,, ***, a,) for the least common
multiple of ay, ay, ***, ay.

Lemma 4. If (91, q2)) 2 P', then

{19192, 931} = Locom. ({{q1, as33 , {ig2,9313).

Proof. Putp, = {{q., q3}}, p2 = {ig2, ¢33}, and ps = licam. (py, ps) -
We note that ((q;, g3)) NP’ 2 (9192, g3)) N P', and therefore p;| {17192, g3} 3-
Similarly, p, | $ig192, q3}1, and hence ps | {{g192, gs3}. Now there exist D, E,
F, G, H, I in Q' such that

Dqy +Eq3 =py, Fq2 +Ggs =p2, Hq +1Ig2=1.
Therefore
Dgyq2 +Eq293 = p1q2 and Fg192 + G193 = p2q1 -
Hence there exist K, L, M, N in Q' such that

Kq19, + Lgs = p3q; and Mq,q, +Nqg3 = p3qy .

Hence
(HM + IK)q1q, + (HN + IL)gs = ps .
Therefore {{g,q,, g3} 3] ps,» and the proof of Lemma 4 is complete.
We shall now determine {D, E} , where
D=f(x+y) +flx—vy),
E=(x+y) fx=+y)+ (x=y) flx —v).
By Lemma 2, we have {D,E} = {{D,E}}. Since

E—(x—y)D=2yf(x +y),

we have

{HD,E}Y = {iD, yf(x + ¥)1}.
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Put

Hf(x +9), Fx =)} =4,
Let n be the degree of f(x). Choose F(y) and G(y) in Q', with y-degree less than

n, such that
F(y) f(x +y) +G(y) f(x —y) =4.
Then F(y) and G(y) are completely determined. Now

F(=y) f(x =y) +G(=y) f(x +y) =D.

Therefore we have F(—y) = G(y), from which it follows that F(0) = G(0), or
y | [F (y) = G(y)]. Now

(F(y) =G(y)) f(x +y) +G(y) D=0,
Therefore {{D,yf(x + y)}}|A. It is clear that A| {{D,yf(x + y)}}. Thus we

have

{D,E} = {{D,yf(x +y)i}t =4,

We must now determine

b= Hif(x+y), fla =y},

Let f (x) = II(x — a;)™i, where the o; are distinct elements of () . Then

fae+y)=IGE+y -, flx-y)=IlE-y—-a)i.

If ¢, and g, are two relatively prime factors of f(x + y), or of f(x —y), then
((g1» g2)) 2 P'. Therefore we can apply Lemmas 3 and 4 to obtain

(12) B} = {{f(x +y), flx—y)}}= Lc.m. (@x = o; — ay)5me ),

4. The equation for S;. We shall establish the following result.

THEOREM. Let o be an algebraic element of | satisfying the equation
f(®) = 0, where f(x) is a polynomial with no constant term. Let

&) =]l — a;)",
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where the &; are distinct elements of the splitting field (1 of f(x). Put

¢&)=15w4x—(umaf-ummgﬂmmﬂ,

Then Y(Sy) = 0. Furthermore, if the algebra U generated by the Sq, a € ], is
the universal associative algebra of J, if f(x) is the minimal polynomial of &, and
if ] is generated by o, then Y(x) is the minimal polynomial satisfied by Sy.

Proof. As before, we let P = ¢(x], Q = Ply] be polynomial rings over @ in
one and two variables respectively, and put

D=f(x+y) + f(x—y)
and
E=(x+y) f(x+y) +(x—y) flx—vy).
From (7) and (12) jt follows that Y(S,) = 0. We must now show that )(x) is the

minimal polynomial of Sy under the three given conditions. If we let (f(x)) be the
principal ideal of P generated by f(x), then J is isomorphic to the quotient ring
P/(f(x)) under the natural mapping g(a) —> g(x) + (f(x)).Let V be the quotient
ring Q/(D, E). We now consider the linear mapping

(13) g(x) > Tg)= (1/2)g(x +y) + (1/2)g(x — y) + O,E)

of P into V. By the commutativity of V we have, forall g, 4, j € P,

(14) [(TeTh;] + [ThTy; 1 + [TjTen] =0,

since each of the three terms vanishes. Furthermore, by direct substitution we have
(15) 2T, ThT; + Tonj = TgThy; + ThTg; + T;Tgn .

We now determine the kernel K of the mappiung (13). By definition, g(x) € K if
andonly if gx + y) + glx —y) € (D,E). Now

yf(x +y)=(1/2)E — (1/2)(x —y) D € (D,E)

and
yflx —y)=(1/2)(x +y)D — (1/2) E € (D,E).

Let g(x) be an arbitrary element of P. Then, for suitable A(x,y) € Q, we have
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q(x +y) flx +y) +q(x —y) f(x —y) = ¢(x)D+h(x,y) yf(x + )
—h(x, =y) yf(x —y) € (D,E) .

Therefore q(x)f(x) € K for all g(x), and thus K 2 (f(x)). Suppose g(x) € K,
glx) € (f(x)). We may suppose that the degree of g(x) is less than n, the degree
of f(x). Then g(x + y) + glx —y) = hD + h,E for suitable h, and &, in Q.
Since the degree of D is n and that of E is n + 1, it follows that A, = h, = 0.
Therefore g(x + y) + glx — y) is identically 0. This implies that g(x) is identi-
cally zero, a contradiction; hence we have K = (f(x)). It follows that

g(@) — Ty() = (1/2)lx +) + (1/2)g(x —y) + (,E)

defines a single-valued linear mapping of J into V. Furthermore, (14) and (15)
imply that this mapping is a representation, and from (12) it follows that T, the
image of o, has Y(x) = iD,E} as its minimal polynomial. Now since U is the
universal associative algebra of J, the mapping Sg() — Tg(x) defines a homo-
morphism * of U into V. It follows that y/(x) is the minimal polynomial of S . This
completes the proof.

We conclude by mentioning two simple consequences of the main theorem.
If f(x) = x", then Y(x) = x5n), Now (8) yields S(r,n) < 2n — 1,and we
have the following result.

CoROLLARY 1. If a® = 0, then S2""! = 0.

Similarly, we obtain the following result.

COROLLARY 2. Let f(at) = 0, where

) =TT (=5
p=1

Then M(Sy) = 0, where

Ax) =TI (== (1/2)B. = (1/2)B.) .

u2v

*In fact it can easily be shown that this mapping is an isomorphism of U onto V.
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Proof. Suppose
flx) =TI —ou ),
where the o; are distinct. Now by (8),
S(ni,nj) <ni +n; —1 <nynj,
and
Ax) =TT e=a)m ™2 T (2 = (1/2) s = (1/2) oj)mim
i j>t
Therefore Y/(x) | A(x), and the second corollary follows.
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