ON THE NUMBER OF INTEGERS IN THE SUM OF TWO SETS OF POSITIVE INTEGERS

Henry B. Mann

1. Introduction. Let A, B, \cdots be sets of nonnegative integers. We define $A+B=\{a+b\}_{a \in A, b \in B}$. By A^{0}, B^{0}, \cdots we shall denote the union of A, B, \cdots and the number 0 , by $A(n)$ the number of positive a 's that do not exceed n. We further put

$$
\begin{equation*}
\text { g.l.b. } \frac{A(n)}{n}=\alpha \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\text { g.l.b. } \frac{A(n)}{n+1}=\alpha^{*}, \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\lim \inf \frac{A(n)}{n}=\bar{\alpha} \tag{3}
\end{equation*}
$$

If $1,2, \cdots, k-1 \in A, k \in A$, we further put

$$
\begin{equation*}
\underset{n \geq k}{\text { g.l.b. }} \frac{A(n)}{n+1}=\alpha_{1} . \tag{4}
\end{equation*}
$$

The real number α is called the density of A, α_{1} the modified density, and $\bar{\alpha}$ the asymptotic density of ${ }^{*} A$. Densities of A, B, C, \cdots will be denoted by the corresponding Greek letters $\alpha, \beta, \gamma, \cdots$.

Besicovitch [1] introduced α^{*}, and Erdös [2] α_{1}.
The author [3] proved: If $C=A^{0}+B$ for $B \ni 1$ and $A^{0}+B^{0}$ otherwise, then for all $n \notin C$ we have

$$
\begin{equation*}
C(n) \geq a^{*} n+B(n) \tag{5}
\end{equation*}
$$

It was also shown [3] that in (5), α^{*} cannot be replaced by α.

It is the purpose of the present note to improve (5) to the relation

$$
\begin{equation*}
C(n) \geq \alpha_{1} n+B(n) \tag{6}
\end{equation*}
$$

The proof of (6) requires only a modification of the proof of (5), but will be given in full to make the present note self-sufficient.

The inequality (6) immediately yields

$$
\begin{equation*}
\bar{\gamma} \geq a_{1}+\bar{\beta} \tag{7}
\end{equation*}
$$

if C has infinitely many gaps.
Now (7) is sometimes better and sometimes not as good as Erdös' [2] inequality

$$
\begin{equation*}
\bar{\gamma} \geq \bar{\alpha}+\bar{\beta} / 2 \tag{8}
\end{equation*}
$$

for the case $\alpha>\beta, B \ni 1, C=A^{0}+B^{0}$. (To establish (8) it is really sufficient to assume that there is at least one b^{0} such that $b^{0}+1 \in B$.) However (7) holds also for $C=A^{0}+B$ if $B \ni 1$, and for $C=A^{0}+B^{0}$ without any restriction on B.
2. Proof. We shall now give a proof of (6) for the case $C=A^{0}+B, B \ni 1$, and then shall indicate the changes which have to be made if nothing is assumed about B but if $C=A^{0}+B^{0}$. By a, b, c, \cdots we shall denote unspecified integers in A, B, C, \cdots.

Let $n_{1}<n_{2}<\cdots$ be all the gaps in C. Put $n_{r}=n, n-n_{i}=d_{i}$ for $i<r$. If there is one $e \in B$ such that

$$
\begin{equation*}
a+e+d_{i}=n_{j} \tag{9}
\end{equation*}
$$

form all numbers $e+d_{t}$ for which

$$
\begin{equation*}
a+e+d_{t}=n_{s}, \quad t<r, \quad s<r \tag{10}
\end{equation*}
$$

Let T be the set of indices occurring in (10). Put $B^{*}=\left\{e+d_{s}\right\}_{s \in T}$.
It is not difficult to prove the following propositions.
Proposition 1. The intersection $B \cap B^{*}$ is empty.
Proposition 2. The integer n is not of the form $a+e+d_{s}$ for any s.
Since (10) also implies

$$
a+e+d_{s}=n_{t}
$$

it follows that B^{*} contains as many numbers as there are gaps in C which precede n and which are not gaps in $A+B \cup B^{*}$. Hence we have the following result.

Proposition 3. If $B \cup B^{*}=B_{1}, A+B_{1}=C_{1}$, then

$$
\begin{equation*}
C_{1}(n)-C(n)=B_{1}(n)-B(n) \tag{11}
\end{equation*}
$$

Thus we have proved the following lemma.
Lemma. If there is at least one equation of the form $a+b+d_{i}=n_{j}$, then there exists a $B_{1} \supset B$ such that $C_{1}=A+B_{1}$ does not contain n, and such that

$$
\begin{equation*}
C_{1}(n)-C(n)=B_{1}(n)-B(n)>0 \tag{12}
\end{equation*}
$$

Now let $C=A^{0}+B, B \ni 1$. Clearly, $n_{1}>1$. The numbers smaller than n_{1} are either in B, or of the form $n_{1}-a$, or of neither of these two sorts. Also $n_{1} \notin B$, since $C \supset B$. Hence we have

$$
\begin{equation*}
C\left(n_{1}\right)=n_{1}-1 \geq A\left(n_{1}-1\right)+B\left(n_{1}\right) . \tag{13}
\end{equation*}
$$

Since $B \ni 1$, we must have $n_{1}-1 \oplus A,\left(n_{1}-1\right) \geq k$. Thus, we obtain

$$
\begin{equation*}
C\left(n_{1}\right) \geq a_{1} n_{1}+B\left(n_{1}\right) \tag{14}
\end{equation*}
$$

We proceed by induction and assume (6) proved, when n is the j th gap, $j<r$. We distinguish two cases.

Case 1: $d_{r-1}<n_{1}$. Then

$$
C \ni n_{1}-d_{r-1}=a+b
$$

We now apply the lemma. Let n be the j th gap in C_{1}. Then $j<r$, and we have, by induction,

$$
\begin{equation*}
C_{1}(n) \geq \alpha_{1} n+B_{1}(n) \tag{15}
\end{equation*}
$$

and, by the lemma,

$$
\begin{equation*}
C_{1}(n)-C(n)=B_{1}(n)-B(n) . \tag{16}
\end{equation*}
$$

Subtracting (16) from (15), we obtain (6).
Case 2: $d_{r-1} \geq n_{1}$. Now

$$
n-n_{r-1}-1 \geq n_{1}-1 \notin A
$$

Hence we have

$$
A\left(n-n_{r-1}-1\right) \geq \alpha_{1}\left(n-n_{r-1}\right)
$$

The numbers between n_{r-1} and n are either of the form $n-a$, or in B, or of neither of these two sorts. But $n \notin B$; hence,

$$
\begin{align*}
& n-n_{r-1}-1 \geq A\left(n-n_{r-1}-1\right)+B(n)-B\left(n_{r-1}\right) \tag{17}\\
& \geq \\
& \geq \alpha_{1}\left(n-n_{r-1}\right)+B(n)-B\left(n_{r-1}\right)
\end{align*}
$$

By induction we have

$$
\begin{equation*}
C\left(n_{r-1}\right)=n_{r-1}-(r-1) \geq \alpha_{1} n_{r-1}+B\left(n_{r-1}\right) \tag{18}
\end{equation*}
$$

Adding (17) and (18), we obtain (6).
From the proof it is evident that we may obtain the even stronger inequality

$$
C(n) \geq \alpha_{1} n+B(n)+\min _{n_{i} \leq n}\left[\frac{A\left(n_{i}-1\right)}{n_{i}}-\alpha_{1}\right] n_{i}
$$

To establish (6) for $C=A^{0}+B^{0}$ without the restriction $B \ni 1$, we first remark that in (13) the term $A\left(n_{1}-1\right)$ can be replaced by $A\left(n_{1}\right)$. The cases to be distinguished are $d_{r-1} \leq n_{1}$ and $d_{r-1}>n_{1}$. The proof of Case 1 is then word by word the same when we replace B by B^{0} and B_{1} by B_{1}^{0}. In Case 2 we have

$$
n-n_{r-1}-1 \geq n_{1} \geq k
$$

so that $A\left(n-n_{r-1}-1\right) \geq \alpha_{1}\left(n-n_{r-1}\right)$; the remainder of the argument remains unchanged. For $C=A^{0}+B^{0}$, we can obtain the even stronger inequality
(6") $\quad C(n) \geq \alpha_{1} n+B(n)+\min _{n_{i} \leq n}\left[\frac{A\left(n_{i}\right)}{n_{i}}-\alpha_{1}\right] n_{i}$,
which again implies the even stronger result

$$
\begin{aligned}
& C(n) \geq \max \left\{\alpha_{1} n+B(n)+\left[\frac{A\left(n_{1}\right)}{n_{1}}-\alpha_{1}\right] n_{1}\right. \\
& A(n)+\beta_{1} n+\min _{n_{i} \leq n}\left[\frac{B\left(n_{i}\right)}{n_{i}}-\beta_{1}\right] n_{i}
\end{aligned}
$$

To establish (7), it is sufficient to show that for any set S we have

$$
\frac{S(m)}{m}>\frac{S(n)}{n}
$$

if $m>n, n \notin S, S(m)-S(n)=m-n$. However, this can easily be verified. Thus if S has infinitely many gaps, then

$$
\bar{\sigma}=\lim \inf \frac{S(m)}{m}=\liminf _{n \notin S} \frac{S(n)}{n}
$$

It thus appears that in (7) we may replace $\bar{\beta}$ by

$$
\lim _{n \notin C} \inf \frac{B(n)}{n} \geq \bar{\beta}
$$

If $C=A^{0}+B^{0}$, we may of course write

$$
\bar{\gamma} \geq \max \left(\alpha_{1}+\bar{\beta}, \quad \bar{\alpha}+\beta_{1}\right)
$$

References

1. A. S. Besicoditch, On the density of the sum of two sequences of integers, J. London Math. Soc. 10 (1935), 246-248.
2. P. Erdös, On the asymptotic density of the sum of two sequences, Ann. of Math. 43 (1942), 65-68.
3. H. B. Mann, A proof of the fundamental theorem on the density of sums of sets of positive integers, Ann. of Math. 43 (1942), 523-527.

Ohio State University

