ON THE NUMBER OF INTEGERS IN THE SUM OF TWO SETS OF POSITIVE INTEGERS

HENRY B. MANN

1. Introduction. Let A, B, \cdots be sets of nonnegative integers. We define $A + B = \{a + b\}_{a \in A}, b \in B$. By A^0, B^0, \cdots we shall denote the union of A, B, \cdots and the number 0, by A(n) the number of positive a's that do not exceed n. We further put

(1) g.l.b.
$$\frac{A(n)}{n} = \alpha$$

(2) g.l.b.
$$\frac{A(n)}{n+1} = \alpha^*$$

(3)
$$\lim \inf \frac{A(n)}{n} = \overline{\alpha} .$$

If $1, 2, \dots, k-1 \in A$, $k \notin A$, we further put

(4)
$$g.1.b._{n\geq k} \frac{A(n)}{n+1} = \alpha_1.$$

The real number α is called the *density* of A, α_1 the *modified density*, and $\overline{\alpha}$ the *asymptotic density* of A. Densities of A, B, C, \cdots will be denoted by the corresponding Greek letters α , β , γ , \cdots .

Besicovitch [1] introduced α^* , and Erdös [2] α_1 .

The author [3] proved: If $C = A^0 + B$ for $B \ni 1$ and $A^0 + B^0$ otherwise, then for all $n \notin C$ we have

(5)
$$C(n) \ge \alpha^* n + B(n) .$$

It was also shown [3] that in (5), α^* cannot be replaced by α .

Received November 13, 1950.

Pacific J. Math. 1 (1951), 249-253.

It is the purpose of the present note to improve (5) to the relation

(6)
$$C(n) \geq \alpha_1 n + B(n).$$

The proof of (6) requires only a modification of the proof of (5), but will be given in full to make the present note self-sufficient.

The inequality (6) immediately yields

(7)
$$\bar{\gamma} \ge \alpha_1 + \bar{\beta}$$

if C has infinitely many gaps.

Now (7) is sometimes better and sometimes not as good as Erdös' [2] inequality

(8)
$$\overline{\gamma} \ge \overline{\alpha} + \overline{\beta}/2$$

for the case $\alpha > \beta$, $B \ni 1$, $C = A^0 + B^0$. (To establish (8) it is really sufficient to assume that there is at least one b^0 such that $b^0 + 1 \in B$.) However (7) holds also for $C = A^0 + B$ if $B \ni 1$, and for $C = A^0 + B^0$ without any restriction on B.

2. Proof. We shall now give a proof of (6) for the case $C = A^0 + B$, $B \ni 1$, and then shall indicate the changes which have to be made if nothing is assumed about B but if $C = A^0 + B^0$. By a, b, c, \cdots we shall denote unspecified integers in A, B, C, \cdots .

Let $n_1 < n_2 < \cdots$ be all the gaps in C. Put $n_r = n$, $n - n_i = d_i$ for i < r. If there is one $e \in B$ such that

$$(9) a + e + d_i = n_i,$$

form all numbers $e + d_t$ for which

(10)
$$a + e + d_t = n_s$$
, $t < r$, $s < r$.

Let T be the set of indices occurring in (10). Put $B^* = \{e + d_s\}_{s \in T}$. It is not difficult to prove the following propositions.

PROPOSITION 1. The intersection $B \cap B^*$ is empty.

PROPOSITION 2. The integer n is not of the form $a + e + d_s$ for any s.

Since (10) also implies

$$(10') a + e + d_s = n_t,$$

250

it follows that B^* contains as many numbers as there are gaps in C which precede n and which are not gaps in $A + B \cup B^*$. Hence we have the following result.

PROPOSITION 3. If $B \cup B^* = B_1$, $A + B_1 = C_1$, then

(11)
$$C_1(n) - C(n) = B_1(n) - B(n)$$

Thus we have proved the following lemma.

LEMMA. If there is at least one equation of the form $a + b + d_i = n_j$, then there exists a $B_1 \supset B$ such that $C_1 = A + B_1$ does not contain n, and such that

(12)
$$C_1(n) - C(n) = B_1(n) - B(n) > 0$$
.

Now let $C = A^0 + B$, $B \supset 1$. Clearly, $n_1 > 1$. The numbers smaller than n_1 are either in B, or of the form $n_1 - a$, or of neither of these two sorts. Also $n_1 \notin B$, since $C \supset B$. Hence we have

(13)
$$C(n_1) = n_1 - 1 \ge A(n_1 - 1) + B(n_1).$$

Since $B \ni 1$, we must have $n_1 - 1 \notin A$, $(n_1 - 1) \ge k$. Thus, we obtain

(14)
$$C(n_1) \ge \alpha_1 n_1 + B(n_1)$$
.

We proceed by induction and assume (6) proved, when n is the *j*th gap, j < r. We distinguish two cases.

Case 1: $d_{r-1} < n_1$. Then

$$C \ni n_1 - d_{r-1} = a + b .$$

We now apply the lemma. Let n be the jth gap in C_1 . Then j < r, and we have, by induction,

$$(15) C_1(n) \ge \alpha_1 n + B_1(n),$$

and, by the lemma,

(16)
$$C_1(n) - C(n) = B_1(n) - B(n)$$
.

Subtracting (16) from (15), we obtain (6).

Case 2: $d_{r-1} \geq n_1$. Now

$$n - n_{r-1} - 1 \ge n_1 - 1 \in A$$
.

Hence we have

$$A(n - n_{r-1} - 1) \ge \alpha_1(n - n_{r-1}).$$

The numbers between n_{r-1} and n are either of the form n - a, or in B, or of neither of these two sorts. But $n \notin B$; hence,

(17)
$$n - n_{r-1} - 1 \ge A(n - n_{r-1} - 1) + B(n) - B(n_{r-1})$$
$$\ge \alpha_1(n - n_{r-1}) + B(n) - B(n_{r-1}).$$

By induction we have

(18)
$$C(n_{r-1}) = n_{r-1} - (r-1) \ge \alpha_1 n_{r-1} + B(n_{r-1}).$$

Adding (17) and (18), we obtain (6).

From the proof it is evident that we may obtain the even stronger inequality

(6')
$$C(n) \geq \alpha_1 n + B(n) + \min_{n_i \leq n} \left[\frac{A(n_i - 1)}{n_i} - \alpha_1 \right] n_i .$$

To establish (6) for $C = A^0 + B^0$ without the restriction $B \ni 1$, we first remark that in (13) the term $A(n_1 - 1)$ can be replaced by $A(n_1)$. The cases to be distinguished are $d_{r-1} \leq n_1$ and $d_{r-1} > n_1$. The proof of Case 1 is then word by word the same when we replace B by B^0 and B_1 by B_1^0 . In Case 2 we have

$$n-n_{r-1}-1\geq n_1\geq k$$

so that $A(n - n_{r-1} - 1) \ge \alpha_1(n - n_{r-1})$; the remainder of the argument remains unchanged. For $C = A^0 + B^0$, we can obtain the even stronger inequality

(6")
$$C(n) \geq \alpha_1 n + B(n) + \min_{\substack{n_i \leq n}} \left[\frac{A(n_i)}{n_i} - \alpha_1 \right] n_i$$

which again implies the even stronger result

$$C(n) \ge \max \left\{ \alpha_1 n + B(n) + \left[\frac{A(n_1)}{n_1} - \alpha_1 \right] n_1 , \right.$$
$$A(n) + \beta_1 n + \min_{n_i \le n} \left[\frac{B(n_i)}{n_i} - \beta_1 \right] n_i .$$

252

To establish (7), it is sufficient to show that for any set S we have

$$\frac{S(m)}{m} > \frac{S(n)}{n}$$

if m > n, $n \notin S$, S(m) - S(n) = m - n. However, this can easily be verified. Thus if S has infinitely many gaps, then

$$\overline{\sigma} = \lim \inf \frac{S(n)}{n} = \liminf_{n \notin S} \frac{S(n)}{n}$$
.

It thus appears that in (7) we may replace $\overline{\beta}$ by

$$\liminf_{\substack{n \notin C}} \frac{B(n)}{n} \geq \overline{\beta} .$$

If $C = A^0 + B^0$, we may of course write

$$\overline{\gamma} \geq \max (\alpha_1 + \overline{\beta}, \overline{\alpha} + \beta_1).$$

References

1. A. S. Besicovitch, On the density of the sum of two sequences of integers, J. London Math. Soc. 10 (1935), 246-248.

2. P. Erdös, On the asymptotic density of the sum of two sequences, Ann. of Math. 43 (1942), 65-68.

3. H. B. Mann, A proof of the fundamental theorem on the density of sums of sets of positive integers, Ann. of Math. 43 (1942), 523-527.

Ohio State University