ON THE APPROXIMATION OF A FUNCTION OF SEVERAL
VARIABLES BY THE SUM OF FUNCTIONS
OF FEWER VARIABLES

S.P.DiLiBERTO aAND E. G.STRAUS

1. The problems. Let R denote the unit square 0 < x < 1,0 < y <1, and
Cr the space of all continuous real-valued functions z defined on R, with norm
[|z|| defined by || z]|| = max(x,y)eR |z|. Let I, and Iy denote respectively
the unit intervals 0 < x < 1 and 0 < y < 1; and let Cy and C), denote respective-
ly the classes of all continuous functions on Iy and /5. By an obvious identifi-
cation Cy and Cy may be considered as subsets of Cg - Let Cs denote the subset
of Cp composed of all functions z € Cp such that z = f + g where f € C, and
g € Cy; Cs is closed (under the above norm).

For z € Cp, define the functional u [z]by

wlz] = dist [z,Cs] = inf ||z —w .
weCg
The following problem was posed by The RAND Corporation.

Problem (A): Given z € Cp and € > 0, give a method for evaluating wlz]to
within € . *

Problem (B): Given z € Cp and € > 0, give a method for constructing
functions f € Cy and g € C, such that

llz—f—gll < wlz] +e.

It is our purpose in the present note to solve these problems and to establish

certain generalizations.

Received November 7, 1950.

* Actually, this differs somewhat from the problem as formulated by RAND, which was :
Given z and 8, give a method for determining whether u[z] < 5. This is in all probability
unsolvable when u[z] = &, since any computation of ,u.[z]] which can be carried out in a
finite number of steps will, in general, yield only an approximation.
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2. The role of the minimizing sequence. We shall now define a few terms by
means of which our procedure can be outlined conveniently.

We shall say that two functions z and Z in Cp are equivalent if z —2 € Cs,
and shall denote the equivalénce of z and z by z ~ z. Clearly, z ~ Z implies
plz] = plz].

According to the definition of w[z ], there exists a sequence of functions

fwi}, w; € Cg, such that
lz =will = wl] .

Let us define z; = z — w;; then z; ~ z and Hzl“ —> pulz]. We shall call a
sequence {z;},z; € Cp, a minimizing sequence for z if z; ~ z for all i and
lzil — wlz].

Clearly, both of the proposed problems will be solved once one has constructed
a minimizing sequence.*

We shall introduce a “leveling process,” which when applied to z and then
iterated will produce a sequence of functions {z;} with the properties (1) z; ~ z

and (2) ||z;| > |lz;+1] for all i. Properties (1) and (2) imply
Lim [| 2|l =M > plz] .
10

That M = wp[z], that is, that our “leveling sequence” is in fact a minimizing
sequence, is the principal result of this paper.

This will be established by a “pincers” argument to obtain convergence—
w[z] is simultaneously approximated from above and below : For each path in the
class of admissible paths L (defined below) we shall define a functional us [z],

over Cp , with the important property 77, [z] <ulz]. Let

aup (m[2]] =7lz].
Then

mle] < uld <M.

*Given a sequence of real numbers a;—~>a, let us call the integer-valued function N (€)
. of the real variable €, defined for € >0, a modulus of convergence for the sequence a g, if
i > N(e) implies |a,;— al|< €.

While a method for constructing a minimizing sequence answers the questions, the
finiteness of the procedure is satisfactory only when one has an estimate for the modulus
of convergence. This will be discussed at the end of this paper.
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Our proof is accomplished by showing that 77[z ] = M, thus implying also that

mlz] = plz] = M.
3. The main theorem. We shall say that a closed polygonal line is permissible
if it lies entirely within the square 0 < x < 1, 0 < y < 1, and if each of its

sides is parallel either to the x- or to the y-axis.
We enumerate the vertices of a permissible line by (xj,y]-),j = 1,2, -,

where
Xk+an = Xk, Yk+on =Yk; kR=1,2,°* .

Xok=1 = X2k 4 Y2k+t1 = Y2k,

To each permissible polygonal line [ we can associate a functional Wl[z] with

1 2n .
m 2] = 2 (1) z(xj,5) -
no i3
LemMA 1. If z ~ Z, then 7, [z | = 7, [2].

Proof. Let #(x,y) = z(x,y) + glx) + Aly); then

3 (<12l j) = 3 (~Dalejny) + 3 (D)) + 3 (~1)hly,).
j=1 j=1 j=1 j=1
But
Z( 1)/ x])—“Zg(xgk 1)+ng2k)——0
J=
§(~ 1)7 h(yj) = 2’:: h(yak+1) + %h(yzk
Hence

2n

2n
Z —1)7 2(xj,y,) Z =1)7 z(xj,y5) ;

that is, 771[2'] =m [z].
We remark that these invariants (under equivalence) Wl[z] form a complete set
un [z] for all permissible lines, then

of invariants. That is to say: If 7; [z] =
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z ~ %. In fact the ' based on rectangles alone form a complete set of invariants.

In order to relate 4 with the 77, we prove the following result.

LemmA 2. The functional wl z] satisfies /J,[z] > ]Wl[z“ for all permissi-
ble lines.

Proof. If we had u[z] < ]Wl[z]l then there would exist a function Z ~ z
such that ||z]| < I7Tl [z]| and hence:

=L
Iml= = Izl = -

Zn (—1)7 z(xj,y;)
j=1

<L 3l <zl < Imlal,
n o=y

which is a contradiction.

Problem A will be solved once we establish the following theorem.

THEOREM 1. The functional [ z ] satisfies [ z] = sup lﬂl[z]} =mn[z],

where the sup is taken over all permissible lines.

As a preliminary to the proof of this theorem we introduce the following level-
ing process:

Given z € Cp, we define the sequences of functions z,(x,y), gn(x), hyly)
(n = 1,2, + «) by the relations:

21 =2, Zop =21 "8n, Zon+t1=2Zom " hn,

1
gn(x) =—[max Zop-1(x,y) + min Zzn-l(x,y)] )
2 logy<1 0gy<1

1 .
hn(y) =—[max 22n(x,y) + min zzn(x,y)] :
2 logxgt 0<x<1

It is obvious that z, ~ z(n = 1,2, * +).The passage from z,,-, to z,, reduces
lzzn-1|l by the maximal amount by which it can be reduced through the sub-
traction of a function of x, while the passage from z,, to z,,+ reduces lzonl
by the maximal amount by which it can be reduced through the subtraction of a
function of y. Thus, if we let

Mp[z] = ” Zn” ,
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then the M, form a nonincreasing sequence of nonnegative numbers, so that

limn_,mMn[ z] = M[z] exists. We have the following obvious result.
LEMMA 3. The functional [ z | satisfies u[z] < M|z IR
Our solution of problem B will be a consequence of the following theorem.
THEOREM 2. The functional pu|[ z ] satisfies u[z] = M[ z].

This, incidentally, will establish the fact that the functional M [ z ] is invariant
under equivalence. The direct proof of this fact might prove somewhat cumbersome.
Keeping in mind the results of Lemmas 2 and 3 we see that both Theorems 1

and 2 are consequences of the following result.
THEOREM 3. The functional 7[ z ] satisfies m[z] = M[z].
Proof. We shall call a function z horizontally level if

max z(x,y) =—min 2z(x,y)
0<xg1 0<x<1

for 0 < y < 1, and we shall call it vertically level if

max z(x,y) =—min z(x,y)
0gyg1 0<y<1

for 0 < x < 1.For the sake of brevity we shall use the symbol Minstead of M [ z ].
There exists a number N such that M,y < M + €, where € is a small positive
number which is to be further determined later. We now perform the next 2n steps
of the leveling process on the function z,y.
There exists a point (x1,y;) such that

22N+2n(x1,y1) =M2N+2n':M +o, 62>0;

and since z,y+,, is vertically level there exists a point (x,,y,) with x; = x,
such that

ZoN+2n (xz'yz) =—M=5.

Hence we have
z2N+2n—1("1:3’1) - gN+n(x1) =M+,

Zonean-1(%20Y3) = Byinlxy) =—M—8;
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and since Moy 4+,5-1 < M + € and x; = x, this implies
M+€—gN+n(x1)>M+8 or gN+n(x1) <e—9¢,
~M—c€ "'gN+n(x1) <=M—-3% or gN*n(xl) >86—€,
We therefore have certainly
—€ <gylx,) <e.
Thus
22N+2n_1(x1,y1) =M+38+ gN+n(xl) >M+8&—c¢€,

22N+2n-—1(x2'y2) =—M—=23+ gN+n(x1) <=M =25+ ¢€;

and since z,y+4,,-; is horizontally level there exists a point (x3,y3) with

y3 = vy, such that

22N+2n_1(x3,y3) >M+8—€.

By the same process as we applied to gy +,(x;) we can now show that
=26 <hyyney () <2¢,

—2¢€ <hN+n_l(y2) < %€ ;
hence

22N+2n_2(x1,y1) > M+ 86— 3€,
7’2N+2n—2(x2’y2) <—=M-38+ 3¢,

ZZN+2n—2(x3ry3) > M+ 08— 3€ H

further, because z,y+,,-, is vertically level, there exists a point (x,,y,) with

x4 = x3 such that
22N+2n—3(x4)x4) < =M-=38 4+ 3e .

Repeating this process 2n times we finally obtain a sequence of points (x,yy),

“ o, (Xynt1s yan+1)s such that x5 = Xppey, Yop+1 = Y2k (B = 1,00 +,n)
and
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2n=-1 __ —_ s
2o (Zgpeys Y gpey) M+ 8 — (2277 —1)e (k=1,"+*,n+1),

zzﬂ(x2k'y2k) <=M—8+ (2271 = 1)e (k=1,"+,n).

We complete the above sequence of points to form a permissible line by adding
the point (x,,4,5, Yan+2) With X3,40 = Xap415 Yan+2 = y1. If we construct the
functional 77, associated with this permissible line then we obtain

1 2n+2 )
I7Tl (]| = ,Wl[zzlv]l = on + 2 21 (—1)) zzN(xj:yj)
]=
2n +1 -
> on + 2 [M + & — (22" 1 1)6] - on + 9 l ZzN(x2n+2ry2n+2)‘

>M+ 86— (221 —1)e — M+e€).

2n + 2

Since the choice of € was independent of n, we can choose € so that (22"71)e
= €,/2 where €, is an arbitrary small positive number. At the same time we can
choose n so large that

M+ e €,
< —.
n+1 2

Thus we have: For every €; > 0 there exists a permissible line such that

m L]l > Mlz] — €,
or, in other words,
2] > mM[=].
In conjunction with Lemmas 2 and 3, this proves Theorem 3.

4, The discontinuous case, Examining our method of proof we can make the
following observations:

(1) No essential use was made of the continuity of any of the functions
z(x,y), glx), hly) involved in the definition of w[z]. Specifically we may define

,U«*[Z] = infg,h SUpog x<1,0<y<1 | z(x,y) "8(") - h()’)l ,
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where z is an arbitrary (bounded) function defined for 0 < x <1, 0 <y < 1 and
g(x), h(y) are arbitrary functions defined over 0 < x < 1 and 0 <y < 1, re-
spectively. The definition of 77[z ] remains valid for discontinuous z, while [z ]
can be extended to a functional M * [z | which is defined for discontinuous (bound-
ed) z, simply by replacing all the max and min symbols in the leveling process by
sup and inf symbols respectively. With very minor modifications of the proof of
Theorem 3 we then obtain the following result.

THEOREM 3*. The functional 7l z] satisfies alz] = /.L*[z] = u*[z],
where (unless we wish to allow infinite values for these functionals) z is an

arbitrary bounded function.
Theorems 3 and 3* yield the following corollary.
COROLLARY. If z is continuous, then

ulz] = p*(z].

In other words, the approximation of a continuous z(x,y) cannot be improved by
permitting discontinuous g(x) + h(y).

(2) The functions Wl[z] are continuous functionals in our metric; more spe-

cifically, we have the following result.

LEMMA 4. If |z —z| < €, then I’rrl[z] —WI[E]} < € for any permissible
line.

Proof. We have

i) == 3 (sl ;).
j=1

i) = 3 (<12, -
j=1
Hence
i =)l = | B (-Dilaey) = 2ay,9)]
J=1

2n l
”2"7 |<— + 2ne=ce.
j=1 + 2n
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As a consequence, 7] z ] is itself a continuous functional, as expressed in the

following corollary.

CoroLLARY. If |z — z| < €, where z and Z are arbitrary bounded functions,
then

| w*[z] = wr[z]] <€

It is also easy to show that the functionals My [ z] and M, [ z] which arise in

the leveling process are continuous in a similar sense.

5. The n-dimensional case. There was nothing in our treatment which de-
manded that z be a function of two variables only, or even that the variables be
numbers. Most generally we can say:

Let Sy, S,,**+, S; be arbitrary point sets, and let z(s) be a bounded function
defined over the Cartesian product S = §; X S; X .+« X S;. Let Ty, Ty, -,
T, be direct subproducts of the S; such that T; ¢ Tj unless i = j. Let Ey, E,,
* ++, E; be the projections of S on Ty, T,,* ++, T, respectively. We now define

ple] = infyy e, 5y supses|z(s) = F1(Ers) = ==+ = fi(Eas)|,

where f; ranges over all functions defined on T;.
Our permissible lines are now replaced by a rather complicated permissible

array of points ¢;,,;, ..., ;, defined as follows:

(a) ¢, is an arbitrary point of S;

(b) to every point tityrrim there exist / points Eiy,oreyimts big,eenim2s * 0%
1 such that Ej‘il,---,i = Ejtil,m,im 5

zil"“'imr mrj
(c) Cigyying g j = tigeins tigyeenj,im,j — tig,eenj s
(d) the number of points in the set is finite;
() if i 00y, = tj,,++jn then m =n (mod 2).

(This last condition is not really necessary but it serves to avoid confusion.)

In order to visualize these sets it might be well to consider the case where S
is three-dimensional Euclidean space; that is, S| is the x-axis, S, the y-axis, and
S, the z-axis. If we take T;, T, , T; as the three coordinate planes then the per-
missible point sets consist of the vertices of closed polyhedral surfaces whose
edges are parallel to the coordinate axes. If we take Ty, T,, T; as the three
coordinate axes then the permissible point sets consist of the vertices of closed
polyhedral surfaces whose edges are parallel to the coordinate planes.
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To each permissible point set p we now associate the functional

(2] =]-v1- B(=1)" 2(ti g ia) s

where the summation is extended over all the N different points of the permissible

set. If we generalize the concept of equivalence so that z ~ 7 whenever

z(s) = 2(s) = f1(Exs) + +++ + f1(Ers),

then 7, [ z ] is seen to be invariant under equivalence.

The leveling process consists in the construction of the sequences

2n(s), f Ers) o0, 71 (Ers)

according to the following rules:

zl(s) =z(s), z,,.1+j(s) =Zml+j-1(s) —fj(m)(Ef s),
1
f(m)(Es) = - sup 2 . (t)+ inf :z P - (t)
J J 2 Ejt=Ejs mltj-1 Ejt=Ejs ml*j-1
(j=1,++, L;n=0,1,+).

We can again define the nonincreasing sequence of nonnegative functionals

Mol2] = sup |24(s)]
seS

and
M[z] = lim Mp[2] .
n—o

All the above lemmas and theorems remain valid under these new definitions;
and the proofs, while more difficult to state, contain essentially no new ideas.
Probably the greatest deviation from the above proofs takes place in the con-
struction of the permissible set through the leveling process in the proof of Theo-
rem 3. We shall therefore describe that process in greater detail.

Choose N so large that My;4+, <M + €, and let Myj4pi41 = M + &;
then there exist two points ¢, and ¢4 in S such that £, ¢; = E; ¢;,;, and

Zypanre(t) M —€,

ZNl+nl+l(t1.1) <—M+e.
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and that there exist points ¢;,, and ¢,;,, in S such that B, ¢, = E,¢, 55 By,
= E2tl,1,2! and
Zypan (T <=M+ 3¢,

ZNl+nl(tl.1.2) >M—3e .

The next step in the leveling process adds the points ¢1,3, £1,1,3, £1,2,35
t1,1,2,3» and so on.After nl + 1 steps we have the set ¢y ,;, ..., ;. (m =0,1,+««,

nl;ijefl, 2, «+,1}), where
@) ZNl(tl,il,-u.i”) > M= (2nl+2__ l)e,

le(tl',;l,..., i2m+1) <-M+ (2nl+2 - 1)e.

In order to form a permissible point set we have to adjoin additional points so that
condition (b) will be satisfied. Condition (b) is already satisfied for all points
t1,iy,eee,im Withm < (n —1)l. The number of points with (v =1)I< m < nlis
I, and is therefore independent of n. It is easy to see that by adding a fixed
finite number of points (this number A depends on k and / but not on n) we can ob-
tain a point set which satisfies condition (b). Thus the augmented ;;oint set satis-
fies conditions (a), (b), (d). Since no points of the form E1yig, eeyimajed OF E1,iy,ee",
j»im» j were constructed in the leveling process we can satisfy condition (c) by de-
finition. For the nonaugmented point set, condition (c) is an immediate conse-
quence of (1) if € is sufficiently small. The augmented part can be constructed so
that (c) is satisfied.We denote the nonaugmented set by p', the augmenting set by
p”.

Thus we have constructed a permissible point set; if we form the corresponding
functional 77, [ z], then we have

molzl] == | 2 (=1)%2, (¢4, i1, 1)
5[ )
>y (—1)"z,,l(n.i,..~.,~,>|—l NETICTIS
B o' B Y
z% (B —A)[M— (272 — 1)€] —%A(M +¢€)
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24 B—A4A A
=M—-=M+ ——|(2"*? - ——]
B B [( ) =5l

where B = B(n) is the number of points in the permissible set, so that B(n) —
with n. For a suitable choice of € and n we have

[mplz]] > M~ €.

Hence Theorem 3 is true in this generalized case.

6. Further discussion of the leveling process. While the leveling process
gave rise to a sequence of functions z, ~ z with lim,_ lznll = [2z], we were
unable to show the convergence of the functions z,. In fact, we have not yet
proved the existence of a function z € Cg with z ~ z and ||z| = u[z], nor
did we investigate the rate of convergence of ||z,| . It is the purpose of this
section to treat the last two questions.

In order to prove the existence of z we prove the equicontinuity of the se-
quence {z,} and thus insure the existence of a convergent subsequence with a
continuous limit £. To this end we first prove:

LEMMA 5. If fi(x), f2(x) € C; and ||f; —f2| < €, then

max fl(x) —max f;(x)
0<xg 0<xg1

Proof. Since

<€ and

min fi(x) —min fo(x)| <e€.
0gx<1 0gx<1

min f(x) ==max [—f(=)],

0<x<1

it suffices to prove the first statement. Let

1(x1) = max fl(x) ;
0<x g1

then

falxy) > fi(x)) — € = Jax filx) — €,
<rg1

and hence

max fa(x) > max fi(x) —e,
0gxg
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or

max fi(x) — max f,(x) < €.
1 0<xg1

0<x<
Similarly,
max fo(x) — max f,(x) <e€.
0gx<1 0gxg1
We define
n
Ea(x) = X arlx),
k=1
— n
hn(y) = Z h'k(y) 1)
k=1
so that

Zoant1 =2 " 8n ~ hn.

The equicontinuity of {z,} will be the direct consequence of the following
result.

THEOREM 4. [f for fixed y and Ay we have

lz(x, y) = 2(x,y +8y)| < € for 0<x<1,
then we have

|hn(y) = ha(y +0y)| < € (hn=1,2°").
Similarly, if for fixed x and Ax we have

lz(x,5) —z(x +Dx,y)[ <€ for 0<Zy<1,
then we have

8n(x) —Ba(x +82)| < ¢ (h=12-+").

Proof. It obviously suffices to prove the first part of the theorem.
Let z* = z(x,y) — gn(x); then

|2*(x, y) = 2* (2, y +By)| = |2(x,3) —2z(x, y + By)| <€ for 0<x<1.
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Hence, if in Lemma 5 we let f(x) = z*(x,y) and f,(x) = z¥(x,y + Ay), we
obtain

’ max [2(x,y) = En(x)] = max [2(x, y +By) = En(x)] [ <e,
0<x<1 0gx<1

min [2(x, y) = 8a(x)] = min [2(x,y + Ay) = Ea(x)] '< €.
0gx<1 0<x<1

Now zyp41 = z — n — hy is vertically level. Hence

() = [onex 0 )= 80e)] 1 min (o0 9)~2n()])

ha(y + Ay)=% {02321[2(% y +y] *én(x)]+0rgirsll[z (x, ¥ +Ay)—én(x)]].

or

|hn(y) = ha(y +8y)]

<5 |omex e 9) = 2al)] = oo [ale,y +09) = Eal0)]|
pgx<1 0<x<1
+ Orgirll[z(x, y) — &n(x)] —orzigl[Z(x, y +8y) —gn(x)]]| < €.

The discussion so far has failed to settle the questions of the rate of con-
vergence of ||z,| and of the convergence of z,. We were able to obtain only
partial answers. At the suggestion of the referee we omit the proofs of most of the

following statements; their sequence will have to indicate our derivation.

LeEMMA 6. For n > 2 we have
lenll = [ Ball 2 [l gneall 2 Il Rraall > «2- .

LEMMA 7. We have also
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[ 2pnall 2 = zppigneyl + (@27 =2) [l gyl

N N
- kZ (2272 = D[ gysnill = kZ (2277282 = D[ Ayl -
=1 =1

THEOREM 5. The norm |z| satisfies

Izl > Nlgall = @2 =1)(llgall = llgn+al) -
THEOREM 6. For every € > 0 there is an ngy such that for all n > ny we have
leall < @ + €)llzll/10g2m .

COROLLARY. The following relations hold :

lim [[gn] = lim |[&a] = 0.

n—o n—@
DEFINITION. A function z(x,y) is level if it is both horizontally and verti-

cally level. '

THEOREM 7. For every z € Cpg there is a £ € Cg such that £ is level,
£ ~z,and ulz] = ”E” .

Proof. According to Theorem 4, the sequence {z,} has a uniformly convergent

subsequence izni} . Let

zZ = lim zp; .
i1—®

According to Theorem 6 we have
lim ” Zni+1 Zni” =0;
i~o
hence
zZ = ].im Zn‘+l D
i—m

Of the two functions z,,, z, one is horizontally level, while the other is

it1
vertically level; hence the common uniform limit is level.

Since z,, ~ z, we have Z ~ z and

”2 ”= lim ” zni“ = lim “ zn” = ,U'[Z] .
1~ n—o
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We remark that the bound obtained for ||g,|| in Theorem 6 does not seem to be
the best possible. In fact in all the cases we have investigated we obtained
lgnll < c27™ Such an estimate would of course settle the unsolved question of
the convergence of the sequence {z,}.

Another unsettled question is that of the existence of a minimizing function z
equivalent to a discontinuous function z. While Theorems 4-7 remain valid with
minor modifications for discontinuous z, Theorem 4 no longer implies the exist-

ence of a convergent subsequence of $znl.
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