
ON THE LERCH ZETA FUNCTION

T. M. APOSTOL

l Introduction. The function φ(x9a9 s), defined for Hs > 1, x real, a ψ nega-

tive integer or zero, by the series

o° 2nπix

(1.1) φ (x,ass) = Σ 1 7 y '

was investigated by Lipschitz [4; 5], and Lerch [3]. By use of the classic

method of Riemann, φ{x, α, s) can be extended to the whole s-plane by means of

the contour integral

1 Λ zs"1eaz

α.2) «•".•)/
where the path C is a loop which begins at —-00 , encircles the origin once in the

positive direction, and returns to — 00 . Since I(x9a, s) is an entire function of s,

and we have

d 3 ) φ(x,a,s)=Γ{l-s)l(x,a,s),

this equation provides the analytic continuation of φ. For integer values of x,

φ(x,a,s) is a meromorphic function (the Hurwitz zeta function) with only a simple

pole at s — 1. For nonintegral x it becomes an entire function of s. For 0 < x < 1,

0 < a < 1, we have the functional equation

(1-4) φ{x, a,l-s)

first given by Lerch, whose proof follows the lines of the first Riemann proof of

the functional equation for ζ(s) and uses Cauchy's theorem in connection with the

contour integral (1.2).
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In the present paper, §2 contains a proof of (1.4) based on the transformation

theory of theta-functions. This proof is of particular interest because the usual

approach (Riemann's second method) does not lead to the functional equation

(1.4) as might be expected but to a different functional relationship (equation (2.4)

below). Further properties of φ(x9α,s), having no analogue in the case of ζ(s),

are needed to carry this method throu'gh to obtain (1.4).

In §3 we evaluate the function φ(xf α, s) for negative integer values of s .

These results are expressible in closed form by means of a sequence of functions

βn{a9e
2πix) which are polynomials in a and rational functions in e2Ίίιx. These

functions are closely related to Bernoulli polynomials; their basic properties also

are developed here.

2. Functional Equation for φ(x9 a, s ) . The theta-f unction

00

^3 (y lτ) = Σ exp (πin2r + 2iny)
n=-oo

has the transformation formula [6,p.475]

If we let

θ(x,a, z) = exp(—ττa2z)&3(πx+πiaz\iz) = Σ exp(2nπix — πz(a + n)2) ,
n=-oo

then we have the functional equation

(2.1) θ(a,~x,l/z)= [exp(2ττiax)]zi/2θ(χ,a,z).

The key to Riemann's second method is the formal identity

(2.2) π-°/*Γ(s/2) Σ «n/n's/2 = Γ ^ " 1 Σ α nexp(-τ,z/ n)dz.
n = l

Taking first an = exp[(2mU ~l)x)] , fn = U - 1 + a)2 in (2.2), and then

an = exp(— 2τrinx), fn — (n — a)2 , we obtain
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(2.3) 7 τ - s / 2 Γ ( s / 2 ) {φ{x,a,s) + exp(-2πίx) φ(-x,l - a,s)}

In the second integral in (2.3) we apply (2.1) and replace z by 1/z. Denoting the

expression in braces by K(x9α9s), replacing 5 by 1 — s, re by ~ o , α by x, using

θ{ — α,x9 z) — θ(αf ~xf z), and the relation

( ^ p ) 2(2τrΓs

 c o s (τrs/2)Γ(s) ,

we are led to

(2.4) Λ(x,α,l - s) = 2(2τ7)"5 cos (ττs/2)Γ(s) exp(~2πίαx) A ( - α , x,s) .

Thus Riemann's method gives us a functional equation for Λ instead of (1.4). At

this point we introduce the differential-difference equations satisfied by φ ,

namely:

α,s) , ,
= —sφ\x,α,s + 1;

σα

and

(2.6) h 2τfiaφ\xiays) — 2τri φ{x, α, s — l) .

'σx

The first of these follows at once from (1.1). To obtain (2.6) we first write

exp[2πi(n + a)x~\
φ(x,α,s) = exp( — 2πiαx)

(n + α)s

before differentiating with respect to x. The equations hold for all s by analytic

continuation.

The proof of (1.4) as a consequence of (2.4) now proceeds as follows. We differ-

entiate both sides of (2.4) with respect to the variable α, using (2.5) on the left

and (2.6) on the right, and replace s by s + 1 in the resulting equation. This
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leads to the relation

Φ{x, α, 1 —s) —exp(— 2ττix) φ(— x,\ —α, 1 —s)

= 2i(2π)"s sin (πs/2)Γ(s)

X [exp(~2τriαΛ:)φ(— α, %, S ) — exp(~ 2πia(l— x))φ(a, 1— x,s)] .

Adding this equation to (2.4) gives the desired relation (1.4).

This method has already been used by N. J. Fine [ l ] to derive the functional

equation of the Hurwitz zeta function. Fine's proof uses (2.5) with x = 0. In our

proof of (1.4) it is essential that x φ 0 since we have occasion to interchange the

variables x and α, and φ{x9a,s) is not regular for a — 0 hence Fine's proof is

not a special case of ours. Furthermore, putting x = 0 in (1.4) does not yield the

Hurwitz functional equation, although this can be obtained from (1.4) as shown

elsewhere by the author.

3. Evaluation of φ{x, a, — n). If x is an integer, then φ{x, a9 s) reduces to the

Hurwitz zeta function ζ(s,a) whose properties are well known [6,pp.265-279] .

For nonintegral x the analytic character of φ is quite different from that of ζ ( s , α ) ,

and in what follows we assume that x is not an integer.

The relation (2.6) can be used to compute recursively the values of φ(x, α, s)

for s = —1, —2, — 3, . As a starting point we compute the value at s = 0 by

substituting in (1.2). The value of the integral reduces to the residue of the

integrand at z = 0 and gives us

Φ(x,a,0) = -. - r = (i/2) cot πx + 1/2 .
1 "" exp(27T ix )

Using (2.6) we obtain

0 ( * , α , - l ) = (α/2)(i cot 77* + l) - (l/4) csc2πx ,

φ(x,a,-2) = (α2/2)(i cot πx + 1/4) - {a/2) csc2rrx - (i/4) cot πx csc2πx .

If we put 5 = — 71 in (1.2) and use Cauchy's residue theorem we obtain, for

n > 0, the relation

φ\x9a,—n) =
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where βn{a, α) is defined by the generating function

(3.1) , _ί^_. j«£«i . . .
α e ' - l „.„ »!

When OC = 1, βn(af(χ) is the Bernoulli polynomial Bn(a) For our purposes we

assume Ot ψ 1, and in the remainder of this section we give the main properties of

the functions βn(a,(X).

Writing βn(a) instead of βn(0, α) we obtain from (3.1):

(3.2) βn(a, α) = £ lϊ) βkfa) an~k (n > 0) ,

from which we see that the functions βn(a9 OC) are polynomials in the variable α.

The defining equation (3.1) also leads to the difference equation

(3-3) aβn(a + l,α) -βn(a,a) =nan~1 (n > l) .

Taking α = Owe obtain, for n — 1, the relation

(3.4) 0LβΛl,0i) = 1 +j81(α)

while for ^ > 2 we have

(3.5) α/3 B ( i ,α)=y8 B (α) .

Putting α — 1 in (3.2) now allows us to compute the functions βn(CL) recursively

by means of

(3.6) /3n(l,α) = Σ (n\βk{o>)
fe=o ' '

and (3.4), (3.5). From (3.1) we obtain /30(α) = 0; the next few functions are found

to be:

3α(α

u - 1 (cc- l ) 2 (&.-1)

_ , , 4α(ct2 + 4α + l) 5α(α3 + llα2 + llα + l)
β4(a) = — , /35(α ) = —

( α - 1 ) 4 (α — l ) 5
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6α(α4 + 26α3 + 66α2 + 26α

(α-l)6

The general formula is

n-1
(3.7)

where &jj are Stirling numbers of the second kind defined by

J 0 f e

i I

with

0 n = ( Δ ^ Λ ) X = O , Δ > 0 π = 0 i f j > n , Δ ° 0 ° = 1 ,

in the usual notation of finite differences. (A short table of Stirling numbers is

given in [2].)

To prove (3.7) we put

QLed α - 1
α

1 - α/

Using Herschel ' s theorem [2, p . 73] which expresses (ez — 1) Λ a s a power

ser ies in z we obtain

00 m

α I s
 Q I

Comparing with

.α)= Σ βn(a)~
nl

we get (3.7).

The following further properties of the numbers βn{a90L), which closely re-

semble well-known formulas for Bernoulli polynomials, are easy consequences of
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the above:

( 0 < p < n ) ,

k=o

J Pn(t,CC)cit =
α

lnλβk(a,a)b»-k,

J
α

n + 1

Taking a — b ~ 1 and using (3.3), we can also use this last equation to obtain

the functions βn(a, a ) recursively by successive integration of polynomials.

As a final result, taking a = 0,1,2, ,m — 1 in(3.3)and summing we obtain

U.8) Σ « = " T Γ Σ ^n+i (α. α) + — .

a generalization of the famous formula giving Σan in terms of Bernoulli poly-

nomials. This result is somewhat surprising because of the appearance of the

parameter α on the right. (When α = 1, (3.8) reduces to the Bernoulli formula.)
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