ON THE LERCH ZETA FUNCTION

T. M. AposToL

1. Introduction. The function ¢(x, a, s), defined for Rs > 1, x real, a # nega-

tive integer or zero, by the series

QRWII

a.1) ¢ (x,a,5) = X

n=0

a+n)s ’

was investigated by Lipschitz [4; 5], and Lerch [3]. By use of the classic
method of Riemann, ¢(x,a,s) can be extended to the whole s-plane by means of
the contour integral

s-leaz

1
(1.2) I(x,a,s) = fc 2 — dz ,

2mi 61— 2tz

where the path C is a loop which begins at —w, encircles the origin once in the
positive direction, and returns to — o . Since I(x,a,s) is an entire function of s,

and we have

(1.3) é(x,a,s) =T(Q —s)I(x,qa5),

this equation provides the analytic continuation of ¢. For integer values of x,
¢(x,a,s) is a meromorphic function (the Hurwitz zeta function) with only a simple
pole at s = 1. For nonintegral x it becomes an entire function of s. For 0 <x <1,

0 < a <1, we have the functional equation

_ I'(s)
@m)°

first given by Lerch, whose proof follows the lines of the first Riemann proof of

{emie/27200) (g x,5) + TUT2TBAIP(q,] ~ 1, 5)}

the functional equation for {(s) and uses Cauchy’s theorem in connection with the
contour integral (1.2).
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In the present paper, $2 contains a proof of (1.4) based on the transformation
theory of theta-functions. This proof is of particular interest because the usual
approach (Riemann’s second method) does not lead to the functional equation
(1.4) as might be expected but to a different functional relationship (equation (2.4)
below). Further properties of ¢(x,a,s), having no analogue in the case of {(s),
are needed to carry this method through to obtain (1.4).

In §3 we evaluate the function ¢(x,a,s) for negative integer values of s.
These results are expressible in closed form by means of a sequence of functions
Bnla, e2™%) which are polynomials in a and rational functions in e2™#*, These
functions are closely related to Bernoulli polynomials; their basic properties also

are develope& here.
2. Functional Equation for ¢(x, a,s). The theta-function
oo}
F3(yl7) = X exp (min®T + 2iny)

n=-0

has the transformation formula [6,p.475]

mLT

P (ylr) = (i)™ exp( - )03 (1

If we let

o0}
6(x,q,2) = exp(—ma®z) 3 (mx +miaz|iz) = X exp@nmix — mz(a + n)?),

n=-o

then we have the functional equation

(2.1) 0(a,— x,1/z) = [exp(2miax)]z"2 6(x,q,z).
The key to Riemann’s second method is the formal identity

22 7720 (s/2) T anfa¥? = [° 2927 anexp(—7zfn)dz.

n=1 n=1

Taking first a, = exp[@7i(n —1)1)], fp = (n =1 + a)? in (2.2), and then
anp = exp(—27inx), f, = (n — a)?, we obtain
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23)  7T(s/2) fp (5,0, 5) +exp(=27ix) $(=%1 = a,s)}
= (f1m + j;l) zs/z_le(x,'a,z)dz.

In the second integral in (2.3) we apply (2.1) and replace z by 1/z. Denoting the
expression in braces by A(x,a,s), replacing s by 1 —s, x by —a, a by x, using

0( —a,x,z) = 8(a,—x, z),and the relation
771/2.-81—‘(3/2)/{_‘ (1 —S

we are led to

)= 2(2m7° cos (ms/2)T(s),

(24) Ax,a,1 = s) =2@2m) cos (7s/2)I(s) exp(—2miax) A(—a,x,s) .

Thus Riemann’s method gives us a functional equation for A instead of (1.4). At

this point we introduce the differential-difference equations satisfied by ¢,

namely:
3 .
2.5) 3as) L i)
da
and
2
(2.6) -—?—(é{'—t-l’—sl + 2mad(x,a,s) = 2mi Hx,a, s — 1) .
x

The first of these follows at once from (1.1). To obtain (2.6) we first write

exp[277i(n + a)x]
(n + a)s

¢ (x,a,s) = exp(—27iax) Y

n=0

before differentiating with respect to x. The equations hold for all s by analytic
continuation.

The proof of (1.4) as a consequence of (2.4)now proceeds as follows. We differ-
entiate both sides of (2.4) with respect to the variable a, using (2.5) on the left
and (2.6) on the right, and replace s by s + 1 in the resulting equation. This
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leads to the relation

H(x,a,1—s) "'exp(‘—?..’ﬁix) ¢(—x,1—a,1—s)
=21 (27)7° sin (7s/2) '(s)
X [exp(—2miax)p(—a,x, s) *‘exp(*‘277ia(l —x))P(a, 1=x,s)] .

Adding this equation to (2.4) gives the desired relation (1.4).

This method has already been used by N. J. Fine [1] to derive the functional
equation of the Hurwitz zeta function. Fine’s proof uses (2.5)with x = 0. In our
proof of (1.4) it is essential that x 74 0 since we have occasion to interchange the
variables x and a, and ¢(x,a, s) is not regular for @ = 0; hence Fine’s proof is
not a special case of ours. Furthermore, putting x = 0 in (1.4) does not yield the
Hurwitz functional equation, although this can be obtained from (1.4) as shown

elsewhere by the author.

3. Evaluation of ¢(x,a,—n). If x is an integer, then @(x, a, s) reduces to the
Hurwitz zeta function {(s,a) whose properties are well known [6,pp.265-279] .
For nonintegral x the analytic character of ¢ is quite different fromthat of {(s,a),
and in what follows we assume that x is not an integer.

The relation (2.6) can be used to compute recursively the values of P(x, a, s)
fors = —1,—2,—3,++ «. As a starting point we compute the value at s = 0 by
substituting in (1.2). The value of the integral reduces to the residue of the

integrand at z = 0 and gives us

1
1-— exp(27fix)

¢(x,a,0) = = (i/2) cot mx + 1/2.

Using (2.6) we obtain
d(x,a,—1) = (a/2)(i cot mx + 1) — (1/4) csc*mx ,

H(x,a,—2) = (a?/2)(i cot mx + 1/4) = (a/2) csc?mx — (i/4) cot mx csc?7mx .

If we put s =—n in (1.2) and use Cauchy’s residue theorem we obtain, for

n > 0, the relation

_ /Bn+1(a, 627”:1)

¢(x’ ay..n) = n + l

b
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where (3,(a, &) is defined by the generating function

(3.1) , ___iz___z Z ﬁn(a,‘a) o
- n!

oer —

When o = 1, Bp(a, &) is the Bernoulli polynomial B,(a). For our purposes we
assume 0. 7 1, and in the remainder of this section we give the main properties of
the functions (B,(a, ).

Writing S8,(%) instead of 8,(0, %) we obtain from (3.1):

(3.2) Bn(a, ) i ( ),3 («)a (n>0),

from which we see that the functions (3,(a, &) are polynomials in the variable a.

The defining equation (3.1) also leads to the difference equation

(3.3) «Bn(a + 1,%) —Bp(a,«) =na™* (h>1).

Taking a = 0 we obtain, for n = 1, the relation

(3.4) aB1(1,0) =1 + By(a)

while for n > 2 we have

(3.5) aBn (1,4) = Bn(a) .

Putting ¢ = 1 in (3.2) now allows us to compute the functions S,(&) recursively
by means of

(3.6) Z:: ( )ﬁk(&

and (3.4), (3.5). From (3.1) we obtain B,(«) = 0; the next few functions are found
to be:

20 _3afa+1)
1 —_—(C{—l)2 ’ ,Bs(fﬂ) = (a—1)3 ’

4o(a? + 4o + 1) Sa(c® + 1102 + 1lx + 1)
4 ) ﬁS(a) = 5 )
(a—1) (a—1)

Pile) ==, Bale) =-

184(00 ==
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6a(at + 2603 + 6602 + 260 + 1)
(a—1)° |

Bs(a) =—

The general formula is

(3.7) Bala) = Z (=1)5st o™ (= 1) s

..l,

(o 1)"

where 15,9) are Stirling numbers of the second kind defined by

N ok
J!

G) =
3 =

’

with
A" = (AT x")ym, OIO*=0 if j>n, A0°=1,

in the usual notation of finite differences. (A short table of Stirling numbers is
given in [2].)
To prove (3.7) we put

et o 3 [,

1 =g \ 170

Using Herschel’s theorem [2, p.73] which expresses (e — 1)" as a power

series in z we obtain

(a0 —1)g(z, a)~1+§ zt: (

Comparing with

s = T ) S

we get (3.7).
The following further properties of the numbers S3,(a, &), which closely re-

semble well-known formulas for Bernoulli polynomials, are easy consequences of
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the above:

L8 _n!
——aa_pﬁn(ar(x-) _m/gn—p(a:a) (OSP Sn)r

fala +6.9) = X (7) Arlacnnt,

b,a) — , &

L2 Balt,a) e = o (6:0) ~ B () (n>0).
a n+1

Taking @ = b — 1 and using (3.3), we can also use this last equation to obtain

the functions Bp(a, &) recursively by successive integration of polynomials.

As a final result, takinge = 0,1,2,* * *,m — 1 in(3.3) and summing we obtain

n-1 o om . — 5.,
(3.8) Z a® = a—=1 z Brei(a, @) +18n+1( 1 0) = Ba 1() ’
a=0 nt+1l a

=1 n+1

a generalization of the famous formula giving 2a" in terms of Bernoulli poly-
nomials. This result is somewhat surprising because of the appearance of the

parameter & on the right. (When o = 1, (3.8) reduces to the Bernoulli formula.)
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