
MAPPING PROPERTIES OF CESARO SUMS OF ORDER TWO
OF THE GEOMETRIC SERIES

S. E. RAUCH

1. Introduction. Previous investigations of the mappings

of the unit circle \ z\ < 1, where

/,x /n + k\ /n + k-l\ /k\
s « " ( > - ( * ) • ( * ) • • • • • • ( * ) '

denotes the nth Cesaro sum of order k of the geometric series, have been made

by Fejer, Schweitzer, Sidon, and Szegδ. Knowledge of the properties of the

sums S^kHz) is valuable in the study of power series having coefficients

monotonic of order k + 1.

The present article provides additional asymptotic properties for

The following results are established:

THEOREM 1. For n sufficiently large, an dn exists such that yn(φ) is

increasing for 0 < φ < QLn and decreasing for (λn < φ < π. Furthermore,

an = a/* + 0(n'2), where π < a < 3π/2.

THEOREM 2. For n sufficiently large, a βn exists such that

<090<φ<βn,n~ O(mod 3)

< 0, 0 < φ < βn, n = l(mod 3)

< 0, 0 < φ < βn, n = 2(mod 3)
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where

and β = 2π, 4ιτ/3, 277/3 for n = 0, 1, 2 (mod 3), respectively.

THEOREM 3. For n sufficiently large, the mapping of \ z \ - 1 by

w = S{

n

2)(eiφ)

is convex for 0 < φ < γ 9 where γ is the maximum angle for which convexity

holds, and γn = γ/n 4- 0(n~2) where 2π < γ < %π.

2. Proof of Theorem 1.

2.1. A closed expression for y^(φ) has been presented by Szegδ [10]:

8 sin2 φ/2

sin(τι + 3/2)c6 sin2(n + l)φ/2
+ 3sin φ/2 sin2

The inequality y^{φ) < 0 is satisfied if

sin(n + 3,/2)φ
(2.2) + 3

sin φ/2 sin2

or

(2.3) n2 +3τι + 3 > n esc φ/2 + 3 csc2φ./2.

Let δ be fixed, δ > 0, and consider the restriction φ > δ/n. For τι suf-

ficiently large, sin (δ/2n) > 8/πn, and the previous inequality is maintained

if δ is chosen so that

n2 + 3n + 3 > n2π/δ +Zπ2n2/82, or π/8 + 3ττ2/δ2 < 1.

It is sufficient for the present problem to define δ = 3 π. Hence, if φ >_ 3π/n9

then y^(φ) < 0 and 3 π/n > an. Since
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where

am = m

n

ΊZ a™ c o s

/n + 2-m\

I 2 /'

it at once follows that y^(φ) > 0 for 0 < φ < π/2n.

2.2. In the next section it is shown that in the interval π/2n < φ < Sπ/n

there is exactly one φ = dn such that y^ (φ ) = 0 if n is sufficiently large. More

precisely, for the φ-Ckn the second derivative does not vanish and Cin ~ (X/n9

α > 0, where π < (X < 3 π/2. The magnitude of Ot is defined as the root of a

transcedental equation.

It is possible to express (2.1) in the following form:

(2.4) γ^iφ) = n2/8 gn(φ) cscV/2,

where the function gn(φ) is defined as

3 sm2(n+l)φ/21 sin(n + 3/2)φ 3 sm2(n+l)φ/2 /3 3\
gΛφ) = - 1 + -*— - I — + 1 .

sin<£/2 n2 sin2<^/2 W ^ 2 /

Let 9S = c/n, π/2 < c < 3 π, and then gn(φ) becomes a function of c, denoted

by Gn (c ). In addition,

lim G n (c) = - l/c2 . / ( c ) ,
71—»oo

where

/ ( c ) = 2c sin c + 6 cos c + (c 2 - 6 ) .

Furthermore, Gn(c) converges uniformly to this limit for arbitrary values of c

in the interval. It is sufficient to show that the function f(c) has a unique

simple zero in the interval π/2 < c < 3 π/2 to assure that gn(c) has a simple

zero in the same interval if n is sufficiently large.

An easy calculation yields

f'(c) = 8 cos 2 (c/2) (c/2 - tan c/2) .
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Thus it is seen that / ( 0 ) = 0, f'(c) < 0 for 0 < c < π; f(π) = ~ (12 - π2)

< 0, f'(c) > Ofor π < c < 2π; f(2π) > 0 and if c > 2π then f(c) > ( c - I ) 2

- 13 > 0. Since f(3π/2) > 0, there is a simple positive zero, c = (X, of the

function f(c),π<OL< 3 π/2. In conclusion, 0ίn ~ a/n$ π < a < 3π/2, for n

sufficiently large.

2.3. It is not difficult to find a more precise asymptotic expression for α π .

For this purpose let CXΛ = c/nf where c - 0ί + a/n and a is a bounded, real con-

stant. Let hn(a) denote gn(c) when the latter is regarded as a function of α.

Let φ = c/n; a simplification yields

— n2hn(a) = n2(2c sin c + 6 cos c + c2 — 6)/c2 + n (3 + 3 cos c - 6/c sin c)

+ (5/2-13c/6. s i n e - 5 / 2 . cos c) + O(l/τι).

If

Λ(c) = 3 c 2 [ l + cos c - 2/c sin c]

and

£(c)= c 2 [ 5 / 2 - 13c/6 sin c - 5/2 cos c ] ,

then it is possible to rewrite the previous expression in the form

- n 2 c 2 h n ( a ) = n 2 - f { c ) + n - h ( c ) + k ( c )

Let the functions / ( c ) , h(c), k(c) be expanded by Taylor's formula for values

of c near (X. Then the previous equality becomes

- n2c2hn(a) = n[α /'(a) + Λ(<X)] + α2/2 . /"(α) + α Λ'(α) + 4(α) + 0(l

Thus one obtains

lim [-n'C2hn(a)] = a.f'(a) + h(σ.) and /'(<X) ,ί 0.

Obviously the limit has a zero for the value a = - h (CL)/f'(ti), or

α = - 3α 2 /8 (1 + cos α - 2/α sin α ) . s e c 2 α / 2 ( α / 2 - t a n α / 2 ) " 1 ,

and (X is the simple zero of the function

/ ( c ) = 2 c sin c + 6 cos c + c2 — 6
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in the interval π < OL < 3 rr/2.

This shows that for n sufficiently large, y^(φ) = 0 for

φ=an = a/n + (a + en)/n2 ,

where βn —» 0. Thus the assertion of Theorem 1 has been verified.

3. Proof of Theorem 2.

3.1. In the article by Szegδ [10], a closed expression for xή(φ) is presented:

(3.1) x'n(φ)

0/2 f cos (» +3/2)0 3 sin(n + 3/2)0l

8 sin3 0/2 I c o s Φ/2 2 s i n 9 s/ 2 J

It immediately follows that Xn(φ) is negative if

(3.2) [3/(2τι + 3) ] 2 esc2 φ/2 + sec2φ/2 < 4, cot φ/2 > 0.

Let 0 < φ < π/n. As

n

Y^ 6m cos mφ,

where

/n + 2-m\

' • " I 2 I'
then xή(φ) < 0. Next consider the interval π/n <^ φ < 2 7r/3 - c/n, where c is

fixed, c > 0. Since

as a function of sin2 φ/2, is convex from below, it obtains its maximum at one

or both end-points of the interval. Thus in order to prove the inequality (3.2) it

is sufficient to consider only the end-point values of π/n < φ < 2π/3 — c/n.

It easily follows that (3.2) is satisfied by φ = π/τi. Now study φ = 27r/3 - c/n.

Since
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sin"2 φ/2 = 0(1), cos2<£/2 = 1/4 (1 + y/Ί c/n) + O(l/n2),

the left side of (3.2) then can be written as

c/n) + O{l/n2),

which indeed is less than 4 provided n is sufficiently large. The minimum value

of n is a function of c. Thus it now is established that xή(φ) < 0 for 0 < φ <

2 77/3 - c/n, if n is sufficiently large, n > riι(c), where c is an arbitrary posi-

tive fixed magnitude.

3.2. Next let φ = 2τr/3. By (3.1) it follows that

%n( 2 77/3 ) = - (2n + 3)/6\^3 (1 - c o s 2ττn/3)- 1/6 sin 2πn/3.

Three possible cases for the n arise. For n = 0(mod 3), Λ;^(2 77/3) = 0; whereas

for n = 1, 2 (mod 3), Λ^(2T7/3) < 0. Thus the behavior of xή(φ) in the neighbor-

hood of φ — 2 77/3 must be examined more fully, n = 0 (mod 3 )• Let

x'n{φ) = r(φ)'s(φ),

where

r(φ) = 1/8 cos φ/2 e sc 3 φj2

and

s ( φ ) = -(2rc + 3 ) ~ U + 3/2) . cos(τι + 3/2)ψ sec φ/2

+ 3/2- sin(/ι + 3/2)(^ esc φ/2.

As 5 = 0 for φ = 2 77/3, then

Upon letting N - n Λ- 3/2, we see that

5 '(277/3)= 0, %Π2τ7/3 ) = 0 .

An examination of the third derivative shows that
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As r(2τr/3) > 0, sgn*"(0)=sgns"(0) . Since

N3 sec 0/2- cos Nφ + O(N2),

then s"(2ττ/3) = -2/V3 + O(/V2), and for n sufficiently large 5 "(2τr/3) < 0.

It is now known than xήiφ) < 0 for 0 < φ < 2π/Z if n is sufficiently large.

3.3. This section extends the investigation beyond φ = 2 π/3 For this

purpose let φ = 2 77/3 + c/N, where again N = n + 3/2. The substitution of this

value of φ into (3.1) yields

o v f Ί 1 cos(2ιrn/3 + c)l 3 (2ιrn/3+c)

L 2
Kό.ά ) Xn{φ) 2 ί \ \ l .

cos φ/2 L 2 cos φ/2 J 2 sin φ/2

Any easy calculation shows that

sin <£/2 = V~372 + c/4/V + e 2 . O(l/N2),

cos 0/2= 1/2-VT c/4Λ' + c 2 . O(l/Λ/2).

The remainder of the section will study the separate cases of n (mod 3).

n = 0(mod 3). Let us rewrite (3.3) as follows:

8 sin3 φ/2 xήiφ)
(3.4)

cos φ/2 2 (1 - cos c )

y/ 3 Γ c cos c — sin c ] c 2

oa1 - cos c J 1 - cos c

Let

F(c) = [c cos c - sin c] [ 1 - cos c ] " ι .

Since

F'(c) - sine [s ine — c] [1 — cos c ] " 2 ,

it is easily seen that F(c) is decreasing for 0 < c < π and increasing for

77 < c < 277. It follows that xή(φ) < 0 for 0 < φ < 2π/3 + c/N9 where π < c <

2 77— e, 6 a fixed positive number. Now
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δ a fixed positive number for n sufficiently large. Then

so that, for the above value of φ9 (3.4) becomes

4 sin3<£/2 x^

cos φ/2 (1 — cos c )

In addition,

(1 - c os c Yι = (1 - c os 8/ yjU )" ι = 0 (N ).

Thus

x£(φ) < 0 if 2τ7V"3/δ2 < 1,

and

xήiφ) > 0 if 2πy/~3/δ2 > 1.

Thus

S=(2τ7) 1 / 2 . ( 3 ) ι / 4

furnishes the critical value of φ. It has been shown that, for n = 0 (mod 3 ),

x£(φ) < 0 for 0 < φ < 2ττ/3

and

x'n(Φ) < 0 for 0 < 0 < 277/3 + 27Γ/7V - O(N"3/2),

for n sufficiently large.

n = l(mod 3). It is possible to rewrite (3.3) so that the right side becomes

-2/V[ l-cos(c + 2ττ/3)]

By reasoning as in the previous case, one finds x£(φ ) < 0 for 0 < c <^ 4>π/3 - €,
e > 0, for n sufficiently large. Let
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c = 477/3 - δ / y Ί v .

Then the right side of (3.3) reduces to

- δ 2 + 4τ7/V~3 + O(1/\ΠV)

Therefore

x£(φ) < 0 if δ > 2 . πί/2 3 - ι / \

and

xi(φ) > 0 if δ < 2 πί/2 3 " 1 / 4 ,

for 71 sufficiently large. It follows that xή(φ) < 0 for 0 < φ < βny where

βn = 2τr/3 + 477/3W - O(/V" 3 / 2 ),

for n sufficiently large.

n Ξ= 2(mod 3). In this case the right side of (3.3) becomes

- 2 / V [ l - c o s ( c + 477/3)]

+ V"3 [c cos (c +477/3) ~ s i n ( c +477/3)]+ Ό(1//V).

It follows that xήiφ) < 0 for 0 <̂  c < 277/3 - e, 6 > 0, for re sufficiently large.

Let

c = 2 77/3 - δ/V~/V\

Then the right side of (3.3) is equivalent to

- δ 2 + 2τ7/V"3 + O ( Λ / " ι / 2 ) .

Thus

xi(φ) < 0 if δ > ( 2 τ 7 ) ι / 2 3 ι / 4

and

x£(φ) > 0 if δ < ( 2 τ 7 ) ι / 2 3 ι / 4 ,
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for n sufficiently large. It has been shown that xή(φ) < 0 for 0 < φ < βn9

where

βn = 2π/3 + 2π/SN - O(Λ'" 3 / 2 ) ,

for n sufficiently large.

If n + 3/2 is substituted for N, then the results expressed in Theorem 2 are

proved.

4. Proof of Theorem 3.

4.1 The Curvature of an image is defined to be

1/p = [ 1 + f t z f"(z)/f'(z)]. [\z f'(z)\]-1.

If the point w - f{z) traverses a closed, single-valued curve in a preassigned

positive direction, then the curve is called convex if

(4.1) l + R [ 2 . / " ( 2 ) / / ' ( 2 ) ] > 0.

Let us examine the inequality (4.1) for the function

if z — eι<P. By the employment of differentiation and elementary algebraic steps

after substituting the derivatives in the left side of (4.1), one obtains

l + R U . / " ( * > / / ' ( * ) ] = [*» yή' - < y'Δ - Ix'n2 + y ή 2 ] ' 1 .

Thus the condition for the mapping to be convex is satisfied if

(4.2) < yπ" - *„" . yB' > 0.

4.2. The next section studies the previous condition of convexity for the

function w = s£{z), z = el<£, where φ = γ/n, γ > 0, for n sufficiently large.

In the present case the expressions for y~n(γ/n) and #^(yΛO, for which see

(2.1) and (3.1), become

yή(γ/n) = n4/γ4 [- γ sin γ - 3 cos γ + 3 - γ2/2 + 0 (1/n)],

xή(γ/n) = n4/γ4 [~2γ - γ cos γ + 3 sin γ + 0 (1/n ) ] .
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Substitution of the latter expressions into (4 2) yields directly

(2 sin y - y cos y - y ) ( - 2 y - y cos y + 3 sin y)

- (-2 + y sin y + 2 cos y) (- y sin y - 3 cos y•+ 3 - y2/2) + 0 (1/n) > 0.

Further simplification of the previous inequality, which establishes the re-

quirement for convexity of the image of | z | = 1, leads to the convenient form

(4.3) siny (tan y/2-y/2) (6 - y2/2 - 3y cot γ/2) + 0 (l/n ) > 0.

The remainder of the section is devoted to determining the maximum value of

φ = γ/n which satisfies (4.3). In particular it is shown that the maximum angle

γn - γ/n for which the mapping of | z | = 1 by w = s%(z) is convex, where z = el(P,

is determined by 2 π < γ < 3 π, for n sufficiently large.

4.3. Consider the elementary function

v(y) = siny [tan (y/2)-y/2]

Define yQ by the equality tan (yo/2) = yo/2. Then it is easily shown that

(4.4)

v{γ) <

> 0, 0 < y < 2ττ,

< 0, 2π < γ < y 0 ,

> 0, y n < y < 3 77,

Let us define

f(γ) = 6 - y2/2 - 3y cot(y/2).

Then the image of | z | = 1 is convex if

(4.5)

f i γ )

> 0, 0 < y < 277,

< 0, 2τ7 < y < y 0 ,

> 0, y0 < y < 3 77,

for n sufficiently large.

Next it is shown that the first two inequalities for fiγ) in (4.5) are satis-

fied, however, for yQ < y < 3p, one finds that fiγ) < 0. Since

/ ' ( y ) . sin2(y/2) = - y s i n 2 ( y / 2 ) - 3 / 2 siny + 3y/2,
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by a further differentiation with respect to y one can obtain

d/dγ{f'(γ) - s in 2 (y/2) } = 1 - cos y - y / 2 s i n y ,

= sin y I tan ( y / 2 ) - y/2 } = v(γ).

Consider the interval 0 < y < 2π. By (4.4), v (y) > 0. Also /'(y) - s in 2 (y/2)=

0 if y = 0. Thus / ' ( y ) sin 2 (y/2) > 0 f or 0 < y < 2 TΓ, and consequently f ' ( y ) > 0

for the same interval. Finally,

which establishes the fact that / ( y ) > 0 in the interval 0 < γ < 2π.

In the interval 2π < γ < yQ, υ (y) < 0; therefore the function / ' ( y ) s in 2 (y/2)

is decreasing. It follows that

/ ' (y 0 ) . sin 2 (yQ/2 ) = γQ [3/2 - s in 2 (yQ/2 )] - 3/2 . sin yQ ,

and thus f'{γQ ) . s in 2 (y 0 /2) > l/2(y Q - 3 ) > 0. Consequently / ' (y) sin 2 (y/2)

and also f'(γ) are positive in the interval 2π < γ < γQ Hence f (γ) is in-

creasing. As / (y) has no lower bound as y approaches 2π from above, and

/•(yo) = 6 - y o

2 / 2 - 3 y o c o t ( y 0 / 2 ) < - yo

2/2 < 0,

then it can be concluded that f (γ) < 0 for2τr< y < y Q .

Finally consdier the interval γQ < γ < 3 π. Since v (y) > 0, / ' (y 0 ) s in 2 (y Q /2)>

0, and thus / ' ( y o ) > 0 , then / ' ( y ) > 0 holds for yQ < y 3 JΓ Hence f (γ) is in-

creasing. But

f(3n) = 6 - 9τ72/2 < 0,

so that a y exists such that / (y) < 0 occurs in the interval.

It was shown in (4.5) that if the image of \z\ = 1 was to be convex for

y0 < y < 37Γ, then f (γ) > 0. Thus the image is not convex for the complete

interval, which completes the proof of Theorem 3.
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