METHODS OF SUMMATION

G. M. PETERSEN

1. Methods of Rogosinski and Bernstein. In this note we shall discuss
certain matrix methods of summation, though otherwise S$1 and §2 are unre-
lated. In this section we wish to consider some of the properties of the method
(Bh), where we say that a series Zc::o u_ is summable (Bh) when
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The method (B”) has been the subject of recent papers by Agnew [ 1], Karamata
[5, 6], and Petersen [7]. It has been shown in the papers by Agnew and
Petersen that for 4 > 1/2 the method (B") is equivalent to the arithmetic means
of Cesaro (C), and in the paper by Agnew that for 0 < 2 < 1/2 the method is
equivalent to methods stronger than (C).

We shall now construct examples after a method of Hurwitz [4],. to show that
for A < O the method (B") sums a series not summable (C). Hence, since all
series summable (€ ) are summable (Bh), we shall have proved that (Bh) is

stronger than (C).

We shall first consider — 1 < A < 0, so that all the coefficients in any row
are positive except the nth coefficient cos {#n/[2(n + h)]}. We choose ug > 1
and assume that the first m ~ 1 terms of the series Zt:o u,, are known. Then

we select up, so that
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All of the u, are positive; and since
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for -1 < h < 0, the u, do not satisfy u, =0 (n), and hence Z?:o u, is not
summable (C); see [3].

If A < -1, we consider

m=1 1 -
B£=Z cosz( ’ ) —cosz(v+ )]Sv+cosz( - )Sm
Y=o 2 2 2

m+h m+h m+h

Here again we select positive increasing S, so that B}Z= 0 for v<m- 1.
Under the assumption that S, > v, v < m—1, we shall show that S, > m.
Observing that the first m — 1 coefficients of the S, are positive, we have
(setting #/[2(m+h)]=06):
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1 = m+h 2
sz(——-—h) X =>qm, qg>1.
7

Hence the series constructed does not satisfy the condition S, = 0(n), and is

not summable (C).

2. A Norlund method. The method defined by

has been used as an example in a recent paper by Agnew [2]. We shall treat

this method in a manner similar to that in which the method
th = (1=a)Sp-y + a$p
is treated in [ 7].

THEOREM. If

1 1
0n=[(1— 3) Sn+ T3 Sn+1 — 0o,

n

then
Sp=C-(-1)"'"(n+1)!+o0,,

where o,'l is convergent to o and C is a constant.
Proof. Since (we may assume S = 0)

(n+2)op-y = (n+1)Sp.y + Sp

I

n Sp.a + Spoy
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3 0o = 2SO +Sl ’

we have
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since 2 ,=q t, is absolutely convergent (0, — 0), we may write
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= (=1t . C-(n+D+0, + 0(1).

rlwh- .
1S proves our assertion.

Obvious extensions can be made to the methods

1 1
0n=[(1—n+k>sn +n+lc Sn+l],

or to iterations of these methods.
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