INVARIANT EXTENSION OF LINEAR FUNCTIONALS

V. L. KLEE, JR.

1. Introduction. The expression [ L, 3, f, p] will mean (i) L is a real linear
space and O a set of linear transformations of L into L; (ii) f is a linear func-
tional on a linear subspace Dy of L; (iii) p is a positively homogeneous sub-
additive functional on L; (iv) f< p; (v) TDyC Dy and fT = f for each T € S, If
[L, 3, f, pl, then (L, 5, £, p) will denote the set of all F such that[L, 3, F,
pl, DF = L, and F|Df= f. With I denoting the identity transformation on L, the
Hahn-Banach theorem [ 2, p.28] asserts that if [L, {I}, f, p], then (L, {I}, f,
p) is nonempty. More general conditions have been obtained by Agnew and Morse
[1] and Woodbury [ 10] under which (L, 3, f, p) is nonempty, and by Dunford [3]
and Yood [ 11] under which (L, 5, f mp) includes for some m > 1 an F which is
not identically zero. Their results have applications to the extension and exist-
ence of measures [1; 3;10; 11 ], limits, and so on [1], and in proving the “‘nor-
mality’” (as used in connection with the Banach-Tarski paradox) of certain sets
[6]. We prove here a theorem whose corollaries include an extension of the re-
sults of Agnew and Morse and Woodbury, and also include the principal results
of Dunford and Yood, although Yood’s work with relaxed boundedness conditions
is not covered here. In addition to the cases in which O is a commutative semi-
group or a finite or solvable group, we are able to handle the case in which O is
a compact group of bounded linear transformations.

2. The theorem. We shall use the following result.

(2.1) LEMMA. Suppose L, 3, f, and p satisfy conditions (i)-(iii), and for
each x € L let

k a positive integer, T, € 3, y; € L.

k
g(x) = inf {p(x + 2 Tiyi)

1

Then f< q on Dy if and only if there exists F € (L, {13, f, p) such that FT = 0
on L for each T € 9.
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Proof. 1f F is as described, x € Dp T; € 3, and y; € L, then

k k
f(x) =F(x)=F(x+Z Tiyi) gp(x+2Ti yi)’
1

1

and thus f < ¢ on Df. Now suppose conversely that f < ¢ and note first that for
arbitrary x € L, T; € 3, and y;, €L,

k k
0=1(0) < q(0) ip(z T,'yi) ;p(-x)+p(x+ > Tm) ,
1 1

whence ¢(x) > — p(~x) and g is everywhere finite-valued. Clearly ¢ is posi-
tively homogeneous. Furthermore, if x and x” are points of L and € > 0 there

are transformations T;, T/ in O and points ¥;5 ¥, in L such that

k
p(x +Z Tiyi) < g(x) + €,
1
and similarly for x". But then

k E’
g(x + x%) gp(x +x"+ D Ty, +2 Ti'yi')
1 1

IA

k k’
p(x + > T, yi) + p(x’+ Z Ti'yl.’)
1 1

g(x) + q(x") + 2¢€.

I

Thus ¢ is subadditive, and since < g the Hahn-Banach theorem quarantees the
the existence of an F € (L, {1}, f, ¢) (L, {1}, f, p). For T€3 and z€ L we

have

F(Tz) <p(Tz + T(-2z)) = p(0) =0.
Similarly, F(T(-z)) <0, so F has the desired properties and the proof is com-
plete.

(2.2) THEOREM. If[L,S, f,p), then the statements (&) — (y) below are e-
quivalent. If [L,S, f,p] and 3 is a semi-group, then (&) — (8) are equivalent:
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(o) (L, 3, £ p) is nonempty;
(B) for each finite dC S, (L, & f, p) is nonempty;
(y) ifx€D;, T, €5, andy, €L, then f(x) <p(x+ S5 -0y

(8) there exists g€ (L, {1}, f, p) such that gST = gTS and gT < p whenever
S, Ted.

Proof. Since Fe (L, 3, f, p) if and only if F € (L, {1}, f, p) and FR =0 for
each R € J — I, from the lemma it follows at once that () and (y) are equivalent,
and from this it follows that they are both equivalent to (3). Now if F ¢ (L, J,
f, p) and S, T €9, then FST = F = FTS and FT = F <p, so (&) implies (8). We
complete the proof by showing that if [L, &, f, p] and O is a semi-group, then
(8) implies (y).

Consider arbitrary x € D]r, T,€9, y; € L, and let

k
€ = p(x+ 2 (T, —l)yi) - f(x).

1

We wish to prove € > 0. Let @, be the set of all functions on {1, --., £k} to
{0, --+, nl; and, for 1 <i <K, let D, ; be the set of all ¢ € O, for which ¢ (i) =
0. For ¢ € @, let

_ b)) 79(2) B(k)
S, = T 72 L g,

Define

k
A=20 22 g5 (T,-Dy,.
i=1 ¢ed,

Now g is linear,.g = fon D, g54 <pon L, and fSy = fon Dy, so we have
k
A= 3 gSplx+3(T,-Dy, |- 2 fSex<(n+1) e,
¢ed, 1 ded,

But & is a semi-group and gST = gTS for S, T € I, so the terms qu Ty, for
b (i) # nand Sy (=1) y; for ¢ (i) # 0 all cancel out, and we have

k
A=3 5 gS, (I - D)y,
i=1 ¢ed, ;
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Now since gT < p forall T € 3,

Hence

v

;:;.
(\V

!
™M=

> Ip(-y) +p(y)]l = (n+1)F1 B,
ben,i

i=1

with

k
B=-3"[p(-y;) + p(y)1.
1

Thus B< (n +1) € for each n, and since B is finite and independent of n this
implies that € > 0, completing the proof.

The expression [L, 3, f, P]b will mean that [L, 3, f, pl, b > 1, and J is p-
bounded with bound b, that is, pT < bp for each T € 3.

By using the lemma and the equivalence of () and (§) in (2.2), one can
prove that if [L, J, fs pl, and Jisa semi-group, then (&) — (§) are equivalent

to

(€¢) ifxeD Sies, T,;Eg,andyiEL,then

f’

k
flx) plx+ 2 (S Ti=T;8) ;).

1

3. The corollaries. The closure and convex hull of a set X will be denoted
by Cl X and conv X respectively.

(3.1) COROLLARY. Suppose [L, 3, f, pl, and either b=1 or p 2 0. Then
each of the following implies that (L, 3, f, bp) is nonempty:

(a) S is a commutative semi-group;

(b) there is a linear transformation R of L into L such that RS =R, fR = f,
and pR(z) € Cl p(conv 3(z)) for each z € L;

(c) every finite subset of O is contained in a finite subgroup of J;

(d) p is a norm for L and S is a group which is compact in the uniform to-

pology of operators.
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Proof. For b=1 we have p = bp; and for p >0, p < bp (since, as always,
b >1).Thus [L, 3, f, bp1, and (2.2) is applicable.

(a) The Hahn-Banach theorem guarantees the existence of a

ge (L1}, f,p) c(L, {1}, f, bp).

Since J is commutative, gST = gTS$ for S, T € 3. Furthermore, gT < pT < bp.
Thus (8) of (2.2) is satisfied for [L, 3, f, bp], and the desired conclusion fol-
lows from (2.2).

(b) Let R be as described. Then foerDf, T,-ES, and y; € L, we have
k
f(x) = fR(x) < pR(x) = p|Rx + > (RT,-R)y,;] = pR(z),

1

with

k
z=x+2 (T,-Dy,.
1

But pR(z) € Cl p(conv 3 (z)), so for each € > § there are Sis ey Spin Jand
Ly +++y t; 2 0 with sum 1 such that pR(z) differs by less than € from pS( z),
with

Now
n n
pS(z) < 2° ¢, pS,(2) < 2 t, bp(z) = bp(z).
1 1

Thus f(x) < bp(2), so (y) of (2.2) is satisfied and the desired conclusion fol-
lows from (2.2).

(c) In order to show that (L, &, f, bp) is nonempty it will suffice, in view of
(«) and (B) in (2.2), to show that (b) must hold if J is a finite group. Let
T, +++, T, be the members of S and R = (1/n) (T, +-+++Tp). Then the last
two conditions of (b) are clearly satisfied, and ) Ti is merely a permutation of

3, so RTj =R for each j.
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The proof of (3.1) will be completed by showing that (d) implies (b), but we
defer this until $ 4.

(3.2) COROLLARY. Suppose[L, 3, f, pl;s O is a semi-group, and for some
x € Df, f(x) =p(=) and p has a unique supporting functional at x (that is, there
is a unique linear functional F <p on L such that F(x)=p(x)). Then (L, 3,

f, p) is nonempty.
Proof. Consider an arbitrary S € O; S generates in J a commutative semi-

group S*, so by (3.1) (a) there must exist Fqe (L, S* f, p). Now F¢ <p and
FS (x) =f(x) =p(x), so Fy = F. Thus we have

F e n (L’S*’f’p>=(L’8:f,P>,
sed -

completing the proof.

(3.3) COROLLARY. Suppose[L, S, f, plys either b=1or p>0, and j is a
positive integer. Then each of the following implies that (L, 3, f, b/p) is non-
empty:

(e) 3 is a group and (L, g, s bj_kp) is nonempty for some integer k with
0 <k <j, where 3 s the k** derived group of 3;

(f) O is a solvable group, with 3 = {1}.

Proof (e). It suffices to show that if 1 <k < j and there exists g € (L, S(k),
fs b]_kp>, then (L, 3%=1) f pi-k+1p) g nonempty. Now for S, T € Ok=1) e
have TST™1S7! ¢ S(k), so

gST = g(TST™! S7t) ST = gTS.
Furthermore,
gl < bj_ka < bj'kbp = bj—k”p.

Thus it follows from (2.2) that (L, 3(*-1), f, B77%*1p) is nonempty, and this

completes the proof.

(f) 180 —¢y }, then it follows from the Hahn-Banach theorem that (e) holds
with & = j.

(3.4) CorOLLARY. Let h be the linear functional with domain Dh ={ol.
Suppose [ L, 8, h, pl, S is p-bounded, p > 0 on L ~ {0}, and there is an x € L -
{0} such that Tx = x for each T € 3. Then if (a), (c), (d), or (f) is satisfied,
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there exists an m < o and a not-identically-zero F € (L, 3, h, mp).

Proof. For each real ¢, let f(tx)=tp(x). Then [L, 3, f, pl, so from (3.1)
and (3.3) it follows that (L, &, f, mp) is nonempty for sufficiently large m < co.

Since fis not identically zero, this completes the proof.

For the case in which p is O-invariant (pT =p for each T € 3y, (3.1) (a)
was given by Woodbury [ 10], and (3,3) was proved by Agnew and Morse [1].
(3.4) (a), (c), and (f) were proved by Yood [11], who obtained his results

under boundedness assumptions weaker than those employed here.

By an argument analogous to that of Agnew and Morse [1, p.24-25] the fol-

lowing can be proved.

(3.5) HYPOTHESES: X is a set; Ml is a set of subsets of X such that if 4,
B<cM,then AuBeM and A — B € M; m is a finitely additive real-valued meas-
ure on M; S is a group of biunique transformations of X onto X which is either
solvable or such that every finite subset is contained in a finite subgroup;
ke |Te€ J is a positive-valued function such that m7 = kpm for each T € J; B

is the set of all sets which are contained in some member of .

CoNcLUSION: There is a finitely additive real-valued measure y on d such
that p|M=m and pT = k., for each Ted.

In particular, there is a finitely additive extension of LLebesgue measure in
the plane which is defined for every set of finite outer measure and multiplies

properly under every similarity transformation.

4. Compact groups. In this section we complete the proof of (3.1), but we
must first develop some tools. (4.1) collects some well-known facts. (4.2)
follows from a theorem of Smulian [8], but is proved here for the sake of com-

pleteness.

(4.1) If E is a Banach space and F € E**, there is at most one point YeEE
such that F(f) = f(yF) for each f€ E*. If E is finite-dimensional, the point Y5
exists for each F € E**, If T is a bounded linear transformation of E into E,
F e E**, Yp exists, and He E** is defined by H(f)=F(fT) (f € E*), then
yy exists and y, = Typ.

(4.2) Suppose E is a Banach space, F € E**, and there is a compact set
X C E such that F(f) < sup,f for each f € E*. Then Y exists and y, <
Cl conv A.
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Proof. Since f(yg)=F(f) <supyf, y. is included in every closed half-
space containing X, and hence y € Cl conv X. We still must show that Y p exists
and for finite-dimensional E this follows from (4.1). Let @ be the set of all
finite-dimensional linear subspaces of E*, and for each S € dlet KS be the set of
all points x € Cl conv X such that F(f) = f(x) for each f€ S. We shall show that
K is non-empty. Since, by a theorem of Mazur [5], Cl conv X is compact,{ K|
S € 3} must then be a family of compact sets which has the finite intersection

property. But then there exists a point p € g3 K¢ and it is clear that p =y ..

We now complete the proof by showing that K is nonempty for each S € A Let

E, = {x|f(x) =0 for each f€ S},

and let £, be a subspace of £ which is complementary to £,. Then E, is finite-
dimensional, and each point x of £ has a unique expression in the form x = x| +
%z with x; € E;. The map x, |x € E is continuous. For each fe Slet f =f[E,.
Then the map fl|f€ S is an isomorphism of S onto E’:. For each f€ S let G(f,) =
F(f). Then G € E":*, and for each f € ET we have

G(fl) = F(f) < supr= supxlfl’

where X, ={x,|x € X}. Thus by the finite-dimensional case of (4.2) (already
established) there is a point ¢ € Cl conv|X, such that G(f,) =f, (g,) for each
fl € E7. Since Cl conv X is compact and (conv X), = conv X, we have Cl conv

X, =(Cl conv X),. Thus q_ = Ps, for some p_ € Cl conv X, and we have
F(f) = G(f)) = f,(q,) = f(q,) = f(p)
for each f€ S. Hence p_ € K, and the proof of (4.2) is complete.

(4.3) Suppose A is a Banach algebra and G a compact multiplicative sub-
group of A. Then there are points u, v € Cl conv G such that ug = u and gv=v
for each g € G.

Proof. Let i be the right-invariant Haar measure on G with p G = 1. For each
fe E* let F(f) = fG fdu. Then F satisfies the conditions of (3.2), so ¥y exists,
with y . € Cl conv G. Consider an arbitrary g € G. Let Tx = xg for each x€ E,
and let # be defined as in (4.1). Then by (4.1), ¥, = Ty. But

B = FTY = [ ) du = [ fdu = FOP,

so H=F. Hence Ty, =y, and since Ty, =y g we see that y is the desired

point z, Using left-invariant measure, we obtain the desired v.
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If the identity map m of G onto G is regarded as a function from the measure-
space (G, u) to the Banach space 4, then u is merely the Pettis integral [ 7] of
m.

Now returning to the proof of (3.1), suppose (d) holds. Then applying (4.3)
to the Banach algebra of bounded linear transformations of E into E, where £ =
(L, p), we obtain a bounded linear transformation R of E into E such that R€
Cl conv 3 and RT = R for each T € 3. From R € Cl conv J it follows easily that
fR=fand pR(z) €Cl p(conv 3 (z)) for each z € L, so (b) holds and the proof
of (3.1) is complete.

We conclude with:

(4.4) Suppose K is a compact convex subset of the Banach space E and &
is a compact group (in the uniform topology of operators) of bounded linear trans-
formations of E onto E, each mapping K into K. Then there is a point of Kwhich

is invariant under every transformation in &.

Proof. By (4.3) there is an R € Cl conv & such that TR = R for each T € J.
Since K is convex, if follows that RK C K. Then by the fixed-point theorem of
Tychonoff [9], R admits a fixed-point x € K. For each T € 8 we have Tx =
TR(x) = R(x) = %, so the proof is complete.

For related results see Kakutani [4].
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