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1. Introduction. The expression [L, 3, /, p] will mean ( i ) L is a real linear

space and 3 a set of linear transformations of L into L; ( i i ) / is a linear func-

tional on a linear subspace Dy of L; ( i i i ) p is a positively homogeneous sub-

additive functional on L; (iv) fζ p; (v) TDfCDf and fT = / for each T G 3 . If

[L, 3 , /, p ] , then \L, 3, /, p) will denote the set of all F such that [ L9 3, F,

p ] , /)/?'= L, and F\Df = f. With / denoting the identity transformation on L, the

Hahn-Banach theorem [2, p.28] asserts that if [L, {/}, /, p ] , then (L, {/}, /,

p) is nonempty. More general conditions have been obtained by Agnew and Morse

[ 1] and Woodbury [ 10] under which (L, 3, /, p) is nonempty, and by Dunford [3]

and Yood [ l l ] under which (L, 3, /, mp) includes for some m > 1 an F which is

not identically zero. Their results have applications to the extension and exist-

ence of measures [ 1; 3; 10; 11], limits, and so on [ l ] , and in proving the "nor-

mality" (a s used in connection with the Banach-Tarski paradox) of certain sets

[ 6 ] . We prove here a theorem whose corollaries include an extension of the re-

sults of Agnew and Morse and Woodbury, and also include the principal results

of Dunford and Yood, although Yood's work with relaxed boundedness conditions

is not covered here. In addition to the cases in which 3 is a commutative semi-

group or a finite or solvable group, we are able to handle the case in which 3 is

a compact group of bounded linear transformations.

2. The theorem. We shall use the following result.

(2.1) LEMMA. Suppose L9 3, /, and p satisfy conditions ( i ) - ( i i i ) , and for

each x G L let

k a positive integer, T. G 3 , y. G L

Then f <q on Df if and only if there exists F G (L, \ I}, /, p) such that FT = 0

on L for each T G 3 .
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Proof. If F is as described, x G Df, Tέ G 3 , and y. G L, then

f(x) = F ( x ) = F i x + 5 - T . y . l < p L + V * y . . . I

\ ι / \ i /

and thus f <_ q on Df. Now suppose conversely that f <_ q and note first that for

arbitrary x G L, 7̂  G 3, and y. G L,

0 = / ( 0 ) < <7(0) < p £

whence ^T(Λ ) > - p(-x) and 7 is everywhere finite-valued. Clearly q is posi-

tively homogeneous. Furthermore, if x and x' are points of L and 6 > 0 there

are transformations 7/, 7/ in 3 and points 3̂ ., y/ in L such that

k

and similarly for x'. But then

/ k k> \

^ph + έ^-y. ) + p p Σ ^ ^ Ί

^ ςr(Λ) + g(«") + 2 e .

Thus r̂ is subadditive, and since /< 9 the Hahn-Banach theorem quarantees the

the existence of an F G (L, ί /}, /, q) C (L, ί /1, /, p) . For Γ G 3 and z G L we

have

F ( Γ z ) < p ( Γ z + Γ ( - z ) ) = p ( 0 ) = 0.

Similarly, F(T(-z)) <0, so F has the desired properties and the proof is com-

plete.

( 2 . 2 ) T H E O R E M . // [ L , 3 , /, p ] , ί Λ e w the statements ( d ) - ( γ ) below are e-

quivalent. If [ L 9 3 , , / ^ p ] ατιc? 3 is a semi-group^ then ( C ί ) — ( 8 ) are equivalent:
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( α ) ( L , 3 , /, p) is nonempty;

(/3) for each finite j&C 3 , (L, &> /, p) is nonempty;

(γ) ifx£Df, Γ. G 3 , andy.&L, then / ( * ) < p ( % + £ * ( 7 \ - /) y . ) ;

( δ ) ί&ere exists g G ( L , { / ! , /, p) suc/i ίΛoί gST = gΓS αrcί/ gT < p whenever

S, Γe3.

Proof. Since F G ( L , ΰ , /, p> if and only if F G (L, {/},/, p) and FΛ = 0 for

each R G ci - /, from the lemma it follows at once that (α) and ( y ) are equivalent,

and from this it follows that they are both equivalent to (β). Now if F G \L, a,

f, p) and S, T G ΰ , then FST = F - F Γ S and F T = F 1 p, so ( α ) implies ( δ ) . We

complete the proof by showing that if [ L, o9 )9 p ] and u is a semi-group, then

( δ ) implies ( y ) .

Consider arbitrary x G Z)y, Γj G a , ŷ . G L, and let

We w i s h to prove 6 > 0. L e t Φ n be the s e t of a l l f u n c t i o n s on { 1, , k} to

f 0, , re}; a n d , for 1 g i £ k, l e t Φ Λ > ί be the s e t of a l l φ G Φn for w h i c h φ(i) =

0. F o r 0 G Φ n l e t

Define

Now g is linear,,g = / o n Dy, gSφ ̂ p on L, and fSψ — f on Dy, so we have

* 1
1 \ Φ6$nφeΦn

e.

But S i s a semi-group and gST = gTS for S, Γ G 3 , so the terms S

φ(i) ^ n and Sφ (~I) y . ίor φ(i) ^ 0 all cancel out, and we have

t for
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Now since gT < p for all T G 3 ,

gSφ (7\ n + 1 - I)y. = - [ gSψ 7\π+ι ( - y < ) + β S φ y . ] > - [p (- y 4 ) + p (y,

Hence

^ - Σ' Σ
1 = 1 φ € Φ n >

with

1

Thus 5 ^ (w + 1) e for each nf and since B is finite and independent of n this

implies that 6 > 0, completing the proof.

The expression [L, 3 , /, p ]^ will mean that [L, 3, /, p ] , & > 1, and 3 is p-

bounded with bound 6, that is, pT < bp for each T G 3 .

By using the lemma and the equivalence of (α) and (δ) in (2.2), one can

prove that if [L, 3 , /, p ] x and 3 is a semi-group, then (α) ~ ( δ ) are equivalent

to

(6) if x E Dff S. G 3 , Ti G 3 , and y. G L, then

3. The corollaries. The closure and convex hull of a set X will be denoted

by Cl X and conv X respectively.

(3.1) COROLLARY. Suppose [L, 3, /, p]b and either 6 = 1 or p > 0. Then

each of the following implies that \L9 3, /, bp) is nonempty:

( a ) 3 is α commutative semi-group;

(b) there is a linear transformation R of L into L such that /?3 = /?, fR = /,

and pR ( z) G Cl p ( conv 3 ( z)) for each z G L;

( c ) every finite subset o / 3 is contained in a finite subgroup of 3 ;

(d) p is a norm for L and 3 is a group which is compact in the uniform to-

pology of operators.
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Proof. For b = 1 we have p = bp; and for p ^ 0, p 1 bp ( since, as always,

b ;> 1). Thus [L, 3, /, fep] ? and (2.2) is applicable.

( a ) The Hahn-Banach theorem guarantees the existence of a

g E ( i , ί / i , / , p ) c(L,in,f,bp).

Since 3 is commutative, gST = gTS for S, Γ G 3 . Furthermore, gΓ £ pT ^ όp.

Thus ( δ ) of (2.2) is satisfied for [L, 3 , /, fep], and the desired conclusion fol-

lows from (2.2).

(b) Let R be as described. Then for x £ Dp Ί\ £ 3 , and y^ £ L> we have

) < P R ( x ) = p m x + Σ \

with

But pR( z) £ Cl p( conv 3 ( z)), so for each e > 0 there are S t , , Sn in 3and

*ι> * " » */i ]£ 0 with sum 1 such that pR{z) differs by less than e from pS(z) ,

with

Now

Thus f(x) <ibp(z), so (y) of (2.2) is satisfied and the desired conclusion fol-

lows from (2.2).

( c ) In order to show that (L, 3, /, bp) is nonempty it will suffice, in view of

(α) and (β) in (2.2), to show that (b) must hold if 3 is a finite group. Let

T\* ' * * f ^ b e the members of 3 and R = (l/n) ( 7\ + + Tn). Then the last

two conditions of (b) are clearly satisfied, and 3 Tj is merely a permutation of

3, so RTj = R for each /.
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The proof of (3.1) will be completed by showing that (d) implies (b) , but we

defer this until § 4.

(3.2) COROLLARY. Suppose [L, 3 , /, p ] p 3 is a semi-group, and for some

x G Df, f(x) -p{x) and p has a unique supporting functional at x {that is, there

is a unique linear functional F <±p on L such that F{x) = p{x)). Then \L, a,

f,p) is nonempty.

Proof. Consider an arbitrary S G 3; S generates in 3 a commutative semi-

group 5*, so by (3.1) ( a ) there must exist F$ G (L, S*, /, p). Now F$ < p and

Fs ( x) = /(x) = p ( x), so Fs = F. Thus we have

F e n (L, s*, f, p) = (L, 3, /, p),

5G3

completing the proof.

(3.3) COROLLARY. Suppose [ L, 3, /, p ]^ , either b - 1 or p > 0, and j is a

positive integer. Then each of the following implies that (L, 3, /, Up) is non-

empty.

( e ) 3 is a group and \L, 3 ' \ f, bJ~ p) is nonempty for some integer k with

0 < k <. j , where 3 ( A : ) is the kth derived group of 3 ;

(f) 3 is a solvable group, with 3'^' = {/!.

Proof ( e ) . It suffices to show that if 1 <: k £ j and there exists g E(L,

/, bi~kp), then (L, ΰ{k"ι\ f, bJ~kJtlp) is nonempty. Now for S, T G 3 ( * " " ι ) we

have TST~ιS~ι

gST = g(TST~ι S"1) ST = gTS.

Furthermore,

gT Ϊ bi'kpT ^ bi"kbp = bi~k+ιp.

Thus it follows from (2.2) that (L, 3 ( A ; " ι ) , /, bί~kJtlp) is nonempty, and this

completes the proof.

(f) If 3 ^ = {/I, then it follows from the Hahn-Banach theorem that (e) holds

with k = /.

( 3 . 4 ) C O R O L L A R Y . Let h be the linear functional with domain D^ - {θ\.

Suppose [ L , 3 , h, p], 3 i s p-bounded, p>OonL~\θ\, and there is an x G L -

{ θ ! such that Tx-x for each T G 3 . Then ι / ( a ) , ( c ) , ( d ) , or ( f ) i s satisfied,
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there exists an m < oo and a not-identic ally-zero F G (L, 3, h, mp).

Proof. For each real ί, let f(tx) = tp(x). Then [ L, 3, /, p], so from (3.1)

and (3.3) it follows that (L, 3, f, mp) is nonempty for sufficiently large m < oo.

Since / i s not identically zero, this completes the proof.

For the case in which p is 3-invariant (pT = p for each 7" G 3 ), (3.1) ( a )

was given by Woodbury [10], and (3.3) was proved by Agnew and Morse [ l ] ,

(3.4) (a) , ( c ) , and (f) were proved by Yood [11], who obtained his results

under boundedness assumptions weaker than those employed here.

By an argument analogous to that of Agnew and Morse [ l , p. 24-25] the fol-

lowing can be proved.

(3.5) HYPOTHESES: X is a set; til is a set of subsets of X such that if A,

B G lΐl, then A u B G lΐL and A — B G lΐl; m is a finitely additive real-valued meas-

ure on lίϊl; 3 is a group of biunique transformations of X onto X which is either

solvable or such that every finite subset is contained in a finite subgroup

kj, I T G 3 is a positive-valued function such that mT = k^m for each T G 3; &

is the set of all sets which are contained in some member of ίfl.

CONCLUSION: There is a finitely additive real-valued measure μ on & such

that μ I lΐl = m and μT — kτ for each T G 3 .

In particular, there is a finitely additive extension of Lebesgue measure in

the plane which is defined for every set of finite outer measure and multiplies

properly under every similarity transformation.

4. Compact groups. In this section we complete the proof of (3.1), but we

must first develop some tools. (4.1) collects some well-known facts, (4.2)
V

follows from a theorem of Smulian [8] , but is proved here for the sake of com-

pleteness.

(4.1) If E is a Banach space and F G £ * * , there is at most one point yF G E

such that F(f) ~ f(y ) for each f G i£*. If E is finite-dimensional, the point y F

exists for each F G i?**. // T is a bounded linear transformation of E into E,

F G £ * * , yF exists, and H G £ * * is defined by H(f) = F{fT) ( / G £ * ) , then

y^ exists and y „ = Ty^.

(4.2) Suppose E is a Banach space, F G E , and there is a compact set

X C E such that F(f) < supχf for each f G £*. Then yp exists and yp G

Cl conv X.
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Proof. Since f(yp) = F(f) £ sup χ /, yp is included in every closed half-

space containing X, and hence yp G Cl conv X. We still must show that y exists

and for finite-dimensional E this follows from (4.1). Let j& be the set of all

finite-dimensional linear subspaces of £ * , and for each S G & let Ks be the set of

all points x G Cl conv X such that F(f) = / ( * ) for each /G S. We shall show that

Ks is non-empty. Since, by a theorem of Mazur [ 5 ] , Cl conv X is compact, { AL \

S G M must then be a family of compact sets which has the finite intersection

property. But then there exists a point p G ̂ SE&^S a n ( ^ ** * s c ^ e a Γ t n a t P ~ ? F #

We now complete the proof by showing that Ks is nonempty for each S G A Let

E2 = U | / ( x ) = 0 for each f e S | ,

and let £ t be a subspace of E which is complementary to £ 2 . Then Eι is finite-

dimensional, and each point x of E has a unique expression in the form x = xι +

x2 with #£ G £/. The map xί \ x G E is continuous. For each fζiS let /^ = f\ Ex.

Then the map / |/G S is an isomorphism of S onto £ * . For each /G S let

). Then G G £ * * , and for each fχ G £ * we have

where Xι - {xι \ x G X }. Thus by the finite-dimensional case of (4.2) (already

established) there is a point qs G Cl conv | X t such that G(fί)=fί(qs)ίor each

/ G £ * . Since Cl conv X is compact and ( conv X) t = conv Xi9 we have Cl conv

Xί = (Cl conv Z ) r Thus qs = P s for some p s G Cl conv X, and we have

for each /G 5. Hence p s G K s , and the proof of (4.2) is complete.

(4.3) Suppose A is a Banach algebra and G a compact multiplicative sub-

group of A. Then there are points u, v G Cl conv G such that ug = u and gv = v

for each g G Gv

Proof. Let μ be the right-invariant Haar measure on G with μG = 1. For each

f£ £* let F(f) = fGfdμ. Then F satisfies the conditions of (3.2), so yp exists,

with y F G Cl conv G. Consider an arbitrary g G G. Let 7% = xg for each # G £ ,

and let # be defined as in (4.1). Then by (4.1), yH = 7> F But

= fGGf(xg)\xdμ = fGfdμ = F(f)9

so # = F. Hence Typ - yp, and since Typ = > F g we see that yp is the desired

point u. Using left-invariant measure, we obtain the desired v.
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If the identity map m of G onto G is regarded as a function from the measure-

space ( C, μ) to the Banach space A9 then u is merely the Pettis integral [7] of

m.

Now returning to the proof of (3.1), suppose (d) holds. Then applying (4.3)

to the Banach algebra of bounded linear transformations of E into E9 where E =

(L, p), we obtain a bounded linear transformation R of E into E such that RE

Cl conv 3 and RT = R for each T E 3 . From /? G Cl conv 3 it follows easily that

fR~f and p/? ( z) £ Cl p ( conv 3 ( z)) for each z E L, so ( b) holds and the proof

of (3.1) is complete.

We conclude with:

(4.4) Suppose K is a compact convex subset of the Banach space E and 3

is a compact group (in the uniform topology of operators) of bounded linear trans-

formations of E onto E, each mapping K into K. Then there is a point of K which

is invariant under every transformation in 3 .

Proof. By (4.3) there is an R E Cl conv 3 such that TR = R for each T E 3.

Since K is convex, if follows that RK C K. Then by the fixed-point theorem of

Tychonoff [9], R admits a fixed-point x E K. For each T E 3 we have Tx =

TR{x) = R(x) = x9 so the proof is complete.

For related results see Kakutani [4].
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