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1. Introduction. G. PόΊya [2] has given various sufficient conditions on

the infinite matrix A to ensure that the infinite system of linear equations

Au = b, where b and u are column vectors, has a solution in u It is remarkable

that there are no conditions on the given column vector b

R. G Cooke [ 1 , pp.34-35] established the existence of reciprocals of a

matrix A satisfying Pόlya's conditions, given in the following theorem.

THEOREM 1 (Pόlya). In the infinite system of linear equations

oo

(l l) Σ*ai9i
ui = bi (ι = 1 , 2 , 3 , . . . ),

where { b{ \ is an arbitrary sequence, let (α/,/) satisfy the conditions

( i ) the first row aγj contains an infinity of nonzero elements, and

\aXj\ + | α 2 / | + ••• + I α M f / |
( i i ) l i m inf j = 0 for every fixed i >_ 2.

/-oo K/l

Then there exists an infinite sequence {UJ\ satisfying (1.1), such that all the

left sides are absolutely convergent.

It follows [ l , pp.34-35] that if a matrix A-(aij) satisfies ( i ) and ( i i ) ,

then A has an infinity of linearly independent right-hand reciprocals, and that

if A ', the transpose of A, satisfies ( i ) and ( i i ) , then A has an infinity of linear-

ly independent left-hand reciprocals.

In this paper it is shown that Pόlya's theorem can be applied to establish

the existence of solutions of the infinite matrix equation

Received December 8, 1952, and in revised form June 15, 1953. The author wishes to
express his thanks to Dr. R. G. Cooke and Dr. P. Vermes, who have read the manuscript
and made some useful comments. He also thanks the referee for his comments on Theo-
ems 2 and 4, which were of assistance in clarifying the proofs.

Pacific J. Math. 4 (1954), 21-28

21



22 J. COPPING

AX-XB = C,

where B and C are arbitrary given matrices, and A is a given matrix satisfying

( i ) and ( i i) of Theorem 1. The principal tool is given in Theorem 2, where the

doubly infinite set (#Γ,s) of the matrix elements of X is found as a solution of

a simple infinite set of equations. Theorem 3 then gives the main result. In

§§3 and 4, other solutions are obtained in the general case, and in the special

case

and the nature of the solutions is discussed.

2. Vie shall establish the following result.

THEOREM 2. Suppose A satisfies conditions ( i ) and ( i i ) of Theorem 1, and

B and C are arbitrary given infinite matrices. Let the set of linear equations

(2 D Σ, (δk$s anfΓ- δnfΓ bSfk) xΓfS = cnfk
r,s

b e w r i t t e n i n t h e o r d e r ( n = 1 , k = 1 ) 9 ( r c = 2 , A; = 1 ) , ( r e = 1 , k ~ 2 ) , • • • , w h e r e

Σ Γ ) S denotes the "Cauchy sum"$ ( r = 1, s = 1 ) , ( r = 2, s = 1 ) , ( r = 1, s = 2 ) ,

•••. Then the matrix of the system of equations (2.1) satisfies the conditions

( i ) and ( i i ) of Theorem 1.

Let M be the matrix of the system of equations ( 2 . 1 ) , so that δ ^ > s an^r —

δnfr i>sfk
 1S t n e element of M in the row defined by the pair n9k9 and in the

column defined by the pair r9s. The elements of the first row of M ( that i s , the

row n = k - 1 ) , for which s = 1, r = 2, 3, , are α 1 # 2 > « i , 3 » 5 hence the first

row of U contains infinitely many nonzero elements, so that condition ( i ) of

Theorem 1 is satisfied by M.

To show that M sat is f ies ( i i ) of Theorem 1, observe that if { μj] i s any sub-

sequence of the positive integers, then the condition

| α i f μ , | + l«2 # μ ; | + ••• + |βi-l ,μy |

(2 .11) lim inf = 0
/ -» oo I «i, μj I

for a particular value of i implies condition ( i i ) of Theorem 1 for this value of

i. Hence it is sufficient to show that, corresponding to each fixed integer λ > 1,

there is a semi-infinite submatrix M\ of M9 of order λ x o c , consisting of the
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first λ elements of a certain infinite subset of the columns of M9 such that M\

satisfies condition (ii) of Theorem 1 for the particular value λ of i. We shall

find such submatrices M\ (λ = 2, 3, ), in each of which all the elements are

either zero or elements of the matrix A, and are so arranged that (2.11) is

satisfied for i = λ.

Let the λth row of M correspond to the suffixes n - p, k - q, p and q being

fixed positive integers, not both equal to 1. Consider the column of M for which

r = r(t) = p + q + t and s = q9 where t is any fixed positive integer. The first

λ elements in this column correspond to pairs of suffixes n9 k9 such that their

sum is nondecreasing (that is, 1, 1; 2, 1; 1, 2; 3, 1; 2, 2; ), so that both/i

and k are less than p + q. Hence, for these pairs of values of n and k9 δ w > Γ = 0,

so that no elements of the matrix B occur among the first λ elements of this

column.

The only nonzero elements among the first λ elements of this column are

therefore those for which ^k,q ~ 1> that is, k — q9 and n = 1, 2, ,p — 1, p; and

these elements are

al,p+q+t, a2,p+q+t 9 ' * * 9 ap-l,p+q+t > ap,p+q'rt

We now select the columns of M\ by keeping s = q fixed, and letting r = r(t)

assume in success ion all the values of p + q + t9 where p, q are fixed, and

t = 1, 2, 3, , in success ion. Hence, to show that M\ sat is f ies condition ( i i )

of Theorem 1 for the particular value i = λ, we must show that

n-\ I an>p+q+t I
lim inf • •— = 0 ,

l

which is clearly true, since, by hypothesis, the matrix A satisfies condition

(ii) of Theorem 1. Thus Theorem 2 is now proved.

T H E O R E M 3 . Let A satisfy conditions ( i ) and ( i i ) of Theorem 1. Then the

equation

(2.2) AX-XB = C,

where B and C are arbitrary given infinite matrices, has an infinity of solutions.

For, by Theorem 2, the equations (2.1) have an infinity of sets of solutions,

and, for each set, all the series on the left of (2.1) are absolutely convergent.

Take any such set and rearrange each of the series in (2.1) as a "sura by rows".

This gives
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OO CO

Γ=l 5 = 1

Thus X = (xΓfS ) is a solution of (2.2).

3. Certain conditions may be imposed on the solutions obtained by the

method of Theorem 3.

THEOREM 4. // A satisfies conditions ( i ) and ( i i ) of Theorem 1, then

there is an infinity of solutions of the equation

AX-XB = C,

each of which is a lower semimatrix [ 1 , p. 6] whose principal diagonal elements

are zero.

Returning to Theorem 1, observe that if the given conditions of that theorem

are satisfied when the column-suffix / is restricted to a subsequence S of the

positive integers, where S is independent of the row-suffix i, then solutions

{ UJ \ exist such that UJ — 0 whenever j is not in S.

For, let H be the matrix obtained from A by selecting the columns of A

whose suffixes are in S, so that

ni,p = ai,kp vp = 1, A o , , I = 1, Z, ά , ,

where { kp\ is the subsequence S of the positive integers. Then H satisfies the

conditions of Theorem 1, so that, given any column-vector b, there are vectors

v such that Hv = b; that is,

OO OO

ai,kp

 vp Ξ 2 ^ hi,p vp = bi \i = 1,^,3, •••;,
p=l p = l

where each of the series is absolutely convergent.

If we now write UJ = vp when j - kp (p - 1, 2,3, ), and UJ = 0 otherwise,

we have

ai,j ui ~ ^i ( i = 1,2,3, ) f

where each of the series is absolutely convergent.
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This result clearly can be applied to the matrix of (2.1). For, in the proof

of Theorem 2, in which it was shown that M satisfies conditions ( i ) and ( i i )

of Theorem 1 we considered only the columns of M for which r > s. Hence there

are solutions {xΓfS I of the equations (2.1) for which xΓfS = 0 when r < s, and

the property of absolute convergence of all the double series involved holds

as before, so that Theorem 3 again follows, with solutions X for which xΓfS — 0

when r <̂  s. This completes the proof of Theorem 4.

THEOREM 5. Suppose A satisfies conditions ( i ) and ( i i ) of Theorem 1,

and let P ~ (pn ^) be any given matrix such that AP and PB exist. Then there

is an infinity of solutions of the equation

for each of which xnfk = pn,k fOΓ a^ k >_ n.

Consider the equation

(3.1) AX-XB = C~AP + PB.

By Theorem 4, this equation has an infinity of solutions, each of which is a

lower semi matrix whose principal diagonal elements are zero. Let Y be such

a solution. Then Y + P is a solution, of the type required of the equation

AX-XB = C.

The theorem is thus proved.

Theorem 5 may be applied to obtain transformations of the form

where A satisfies conditions (i) and (ii) of Theorem 1 and B is an arbitrary

matrix, and then Y"1 AY is associative for multiplication. For, in Theorem 5,

put C = 0, P = /, the unit matrix. Thus solutions of the equation

(3.2) AX-XB = 0

exist, which are lower semimatrices with no zero elements in the principal

diagonal. Let Y be such a solution. Then

and Y has a two-sided reciprocal Y~ι which is a lower semimatrix [ l , p 19, 22]•
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Since Y is row-finite, YB exists, and hence AY exists; that is,

exists for each i and k Hence

ί = l

j-k ί=l

Also

since the double series concerned are finite, so that

where Y~ιAY is associative,

4. In considering the nature of the solutions obtained by the methods of

Theorems 3, 4, and 5, it would be desirable to know whether solutions exist

which belong to a given "associative field" [1, pp.9, 26]. For example, the

equation

(4.1) AX-XD = 0,

where D is a given diagonal matrix, is of fundamental importance in quantum

mechanics, and in the theory of consistency of Toeplitz transformations of

divergent sequences. For such applications, solutions Y of (4.1) are required

such that

YDY'1 = A, Y-lAY = D9

respectively [1, pp.41, 101], and such that Y, Y~ ι and A belong to the same

"associative field."

The method of §3 above fails to give solutions Y of (4.1) such that

YDY'1 = A.
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For the solutions obtained by this method are lower semimatrices, so that

YDY-1 = A

would imply that A is a lower semimatrix, which is impossible under the given

conditions ( i) and ( i i) of Theorem 1, Moreover, although the method of § 3

gives solutions Y of (4.1) such that

r ι . AY = D,

these solutions cannot satisfy the condition that Y, Y~ι and A should belong to

the same "associative field," for this would again imply

YDY'1 = A,

which is impossible.

Another case in which the existence of a solution belonging to a given

"associative field" can be shown to be impossible is provided by the following

theorem.

THEOREM 6. // A belongs to a "field with an associative bound," [ 1,

p. 27 I 1 , then no solution of the equation

AX ~ XA = /

belongs to the same field.

For suppose if possible that Y is a solution belonging to the same "field"

as A, Then

AY -YA = / ,

and from the associative property it follows by induction that for each positive

integer n,

(4.2) AYn - YnA =nYnml.

Denoting the bound of Y by | Y \9 and applying its properties [ l , pp.26, 27]

to equation (4.2), we obtain

n \ Y n - ι \ = | n y " - ι | < \ A Y n \ + \ Y n A \ < 2 \A\ \Y\ I Y " - ι L

For example, A, Kr, Kc , and Hubert matrices [ 1, pp.63, 25, 29, 243 J.
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Observe that Yn ^ 0 for any positive integer n, for if p is the smallest positive

integer such that Yp = 0, then equation (4.2) is contradicted when n - p.

Hence \Yn'ι\ £ 0, so that

for each positive integer n, contradicting the hypothesis that | Y \ exists.
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