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l Introduction, Tn their study of real quadratic functionals

Ja

admitting a singularity at the end-point x — a Morse and Leighton [11]
showed that if χ — a is not its own first conjugate point then the
corresponding Euler differential equation

(1.1) (r(x}y' + q(x)y)'-(q(x)y'+p(xyy) = O, a<x^b ,

possesses a non-trivial solution u(x) such that ιι(x)]y(x)-*Q as x-*a+ for
each solution y(x) of (1.1) that is independent of u(x). Such a solution
u(x) was termed a focal solution belonging to x—a by Morse and Leighton
[11], but in a subsequent continuation of the study by Leighton [8] the
terminology was changed to principal solution.

If j\t) is a real-valued continuous function on to^t<oo and

(1.2) x"+f(t)x = 0 , tQ^t<cv ,

is non-oscillatory, Hartman and Wintner [4] have termed a non-trivial
solution x(t) a principal solution if

(1.3)

for U greater than the largest zero of x(t), and proved that a non-
oscillatory equation (1.2) has a principal solution that is unique to an
arbitrary non-zero constant factor; moreover, if x(t)^0 is a solution of
(1.2) which is not principal then every solution y(t) of (1.2) is of the
form y(t)—Cx(t) + o(\x(t)\) as £->oo, where the constant C is or is not
zero according as y(t) is or is not principal. In view of this latter
result, for a non-oscillatory equation (1.2) a solution x(t) is principal in
the sense of Hartman and Wintner if and only if it is principal in the
sense of Morse and Leighton.

Recently Hartman [5] has considered a self-ad joint vector differential
equation
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(1.4) (R(t)x')'+F(t)z = O ,

where R(t), F(t) are nxn matrices which are continuous and hermitian,
while R(t) is positive definite on the interval of consideration. An nxn
matrix solution of the corresponding matrix differential equation

(1.4') (R(t)X')'+F(t)X=0

is termed "prepared" by Hartman if X*(t)R(t)X'(t) is hermitian. Under
the assumption that the class Γ of solutions X—X(t) of (1.4') which are
prepared and non-singular on a corresponding interval ax<t<oo is non-
empty, Hartman showed that in Γ there exists a solution which is
principal in the sense that the least proper value λΛ(t) of the positive
definite hermitian matrix

(1.5) [ (X*X)~ιds , (to sufficiently large t>t()),

satisfies λx(t)->°o as £->oo, and this principal prepared solution is unique
up to multiplication on the right by an arbitrary non-singular constant
matrix, while there also exist in Γ solutions that are non-principal in
the sense that the greatest proper value μx(t) of (1.5) remains finite as
£->oo moreover, if Y(t) and X(t) are matrices of Γ which are principal
and non-principal, respectively, then X~\t)Y(t)-*§ as t—>oo.

Hartman's assumption that the above defined class Γ is non-empty
is indeed an hypothesis of non-oscillation, since in view of the results
of a recent paper of Reid [13] the class Γ is non-empty if and only if
(1.4) is non-oscillatory for large t in the sense that there exists a t{)

such that if x(t) is a solution of (1.4) satisfying χ(t1) — 0=x(tI) with t{)<tι

<t2 then x(t)=0.
It is to be noted that Hartman's definition of principal solution for

an equation (1.4) which is non-oscillatory for large t has the undesirable
feature of limiting the considered matrix solutions of (1.4') to the class
Γ indeed, Hartman [5 §11] gives an example of a non-prepared
solution X(t) of (1.4') that is non-singular for large t, and such that
the least proper value λx(t) of the corresponding hermitian matrix (1.5)
satisfies Λχ(£)->oo as £->oo. Moreover, as Hartman points out, his
classification of principal and non-principal solutions does not present a
disjunctive alternative in the class Γ.

For a self-adjoint vector differential equation of somewhat more
general type than that considered by Hartman, and which is non-
oscillatory for large values of the independent variable, the present
paper presents a generalized definition of principal solution that dis-
tinguishes such solutions in the class Γo of all matrix solutions which
are non-singular for large values of the independent variable. In
addition, it is shown that principal solutions possess on Γ,, certain
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properties that are extensions of properties established by Hartman for
the class Γ. It is to be commented also that the presented determination
of a principal solution is by variational methods and is direct in nature,
in contrast to the indirect character of the proofs of the existence of
a principal solution in the above-cited papers of Hartman, Hartman and
Wintner, and Morse and Leighton in this connection it is to be remarked
that although the existence of a principal solution for (1.1) was established
indirectly by Morse and Leighton [11], the properties of principal
solutions derived in their Theorem 2.2 permit a ready direct determination
of such a solution.

Sections 2 - 8 of the present paper deal with a self-ad joint
^-dimensional vector equation with complex coefficients that is a direct
generalization of the scalar equation (1.1) Section 9 is devoted to a
more general differential system with complex coefficients that is of the
general form of the accessory differential equations for a variational
problem of Bolza type.

Matrix notation is used throughout in particular, matrices of one
column are termed vectors, and for a vector y = (y«), (α = l, ••• , ri), the
norm \y\ is given by (\yΎ\z+ ••• +\yn\')112* The symbol E is used for
the nxn identity matrix, while 0 is used indiscriminately for the zero
matrix of any dimensions the conjugate transpose of a matrix M is
denoted by M*. Moreover, the notation M^>N, (M>N), is used to
signify that M and N are hermitian matrices of the same dimensions
and M—N is a nonnegative (positive) hermitian matrix.

2. Formulation of the problem. For x on a given interval X:
a<x<oo let ω(x, y, π) denote the hermitian form

(2.1) ω(x, y, π) = π*R{x)π + π*Q{x)y + y*Q*{x)π + ιβP{x)y ,

in the 2n variables y, π = (ylf ••• , yn, πlf , πn). It will be assumed
throughout Sections 2-8 that R(x), Q(x), P(x) are nxn matrices having
complex-valued continuous elements on X, with R(x), P(x) hermitian, and
R(x) non-singular on this interval.

If c, d are points of X the symbol I[y c, d] will denote the
hermitian functional

(2.2) I{y; c, d] = ^ω(x, y, yr)dx .

For the functional (2.2) the vector Euler equation is

(2.3) L[u]=(R(x)uf + Q(x)uY-{Q*{x)u;+P{x)u)-0 ,

which may be written in terms of the canonical variables

u(x), v(x)=R(x)u'(x)
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as the first order system

(2.4) u' = A(x)u+B(x)v , v' = C(x)u~

where the nxn coefficient matrices of (2.4) are continuous on X and

given by A~— R^Q, B=R~ι, C=P—Q*R~ιQ in particular, the matrices
B(x), C{x) are hermitian on X and B(x) is non-singular on this interval.

Corresponding to (2.3) and (2.4) are the respective matrix equations

(2.30

(2.4r) lΓ=A(x)U+B(x)V, V = C(x)U-A*(x)V.

In [13] the author has discussed various criteria of oscillation and
non-oscillation for an equation (2.3) in which the coefficient matrices
satisfy weaker conditions than those imposed above although the
results of the present paper hold for equations of the generality discussed
in [13], for simplicity specific attention is restricted to the case described
above.

Throughout the subsequent discussion of Sections 2-8 we shall deal
consistently with the cononical system (2.4) and associated matrix
system (2.40, instead of the equivalent respective equations (2.3) and
(2.3r)> since in Section 9 there is considered a vector differential system
more general than (2.3), but with associated canonical system still of
the form (2.4).

If U(x)=\\UΛ£x)\\, V(x) = \\VΛJ(x)\\, (α = l, , n j = l , , r) are
nxr matrices, for typographical simplicity the symbol (U(x) V(x))
will be used to denote the 2nxr matrix whose j-th column has elements
Uυ(x), , Unj(x), Vυ(x), , Vnj(x). In the major portion of the
following discussion we shall be concerned with matrices (U(x) V(x))
which are solutions of the matrix differential system (2.4;).

If (ϋΊ(x) VΊ(x)) and (U2(x) V2(x)) are individually solutions of
(2.4r) then, as noted in Lemma 2.1 of [13], the matrix U1

:¥(x)V2(x)~
VΊ*(x)U.χx) is a constant. This matrix will be denoted by {Ulf U2} it is
to be remarked that for the problem formulated above there is no
ambiguity in this notation, since the V(x) belonging to a solution (U(x)
V(x)) of (2.4') is uniquely determined as V(x)=R(x)U'(x) + Q(x)U(x). As
in [13], two solutions (u^x) vλ(x)) and (u2(x) v.£x)) of (2.4) are said to
be (mutually) conjoined if {u19 u2}—0. If (U(x) V(x)) is a solution of
(2.40 whose column vectors are conjoined solutions of (2.4), then (U(x);
V(x)) will be termed a matrix of conjoined solutions. In particular, if
U(x), V(x) are nxn matrices such that (U(x) V{x)) is a matrix of
conjoined solutions of (2.4), then U(x) is a prepared solution of (2.30 i n

the sense of Hartman [5]. If the coefficients of (2.1) are real-valued,
then two real-valued solutions of (2.4) are conjoined if and only if they
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are conjugate in the sense introduced originally by von Escherich. The
reader is referred to [13 pp. 737, 743] for comments on the use of
the synonym ' 'conjoined" for the case of (2.1) with complex-valued
coefficients.

Two points s, t of X are said to be (mutually) conjugate, (with
respect to (2.3) or (2.4)), if there exists a solution (u(x) v(x)) with
U(X)3ΞO on [s, t] and satisfying u(s) = 0=u(t). The system (2.4) will be
termed non-oscillatory on a given interval provided no two distinct points
of this interval are conjugate; moreover, (2.4) will be called non-oscillatory
for large x if there exists a subinterval a0 <#<oo of X on which this
system is non-oscillatory.

3. Related matrix solutions of (2.4'). Suppose that (U(x) V(x))
is a solution of (2.4') with U(x) non-singular on a given subinterval XQ

of Xy and denote by K the nxn constant matrix such that {U, U) ==K.
If (UQ(x) V0(x)) is a 2nxr matrix solution of (2.4') on XQ9 and Ko is the
nxr constant matrix such that {U, U0}=K0, then from this latter
relation it follows that the nxr matrix H(x)=^U~1(x)U0(x) is such that

(3.1) U0(x) = U(x)H(x), V0(x)=V(x)H(x)+U*-ι(x)[K0~-KH(x)] ,

and in view of the relation K=—K* it may be verified readily that

(3.2) {Uo, U0}^-H^

where Kτ is a constant rxr matrix. Moreover, from the differential
equations UQ' = AU0+BVΰ9 U' = AU+BV it follows that

(3.3) H\x)^U-\x)B{x)W-λ{x){K,~KH{x)l xeX0.

Conversely, if KQ is an arbitrary nxr constant matrix, and H{x) is an
nxr matrix satisfying the corresponding matrix differential equation
(3.3), then it follows readily that the 2nxr matrix (U0(x) V0(x)) defined
by (3.1) is a solution of (2Λf) with {U, U0}~Kϋ, and {Uoy Uo} given
by (3.2).

Now if x = s is a point of X and T(x) = T(x, s U) is the solution
of the matrix differential system

(3.4) T= - Ό-ι{x)B{x)U*-\x)KTy T(s) = E ,

then by the method of variation of parameters it follows immediately
that H(x) is a solution of (3.3) for a given nxr matrix Ko if and only
if there is an nxr constant matrix Hϋ—H{s) such that

(3.5) H(x) = T(x, s U)[HQ+S(x, s U)KQ] ,

where
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(3.6) S ( x , s ; U) = \ * T - ι ( t , s ; U ) U ~ \ t ) B { t ) U * - \ t ) dt, x , seXό.

The corresponding solution (UQ(x) V0(x)) of (2.4') determined by (3.1)
is such that

(3.7) U0(x)=U(x)T(x, s ; U)\U-χs)UQ(s) + S(x, β U){U, Γ/J | .

In general, if F(x) is a continuous nxn matrix and Y(x) is the
fundamental matrix of Y'=F(x)Y satisfying Y(s)=E, then Z=Y*~ι(x)
is the fundamental matrix solution of Z'=—F*(x)Z satisfying Z(s) = E.
As K={U, U} satisfies K=-K* it follows that T*-ι(x)^T*-ι(x, s; U)
is the solution of (T*-1)'^ -KU'^BWU^WT*-1 satisfying T*-ι(s) = E.
Now if H(x) is a solution of (3.3) then

[K0-KH(x)J = ~Kσ-\x)B(x)U"-\x)[K,-KH(x)] ,

and hence K0-KH(x) = TM-{(x, s U)[KQ-KHQ]. Since ίΓ={ί7, £7} and
Ko~ {U, Uo}, this latter relation may be written as the following identity
for solutions (U^x) VQ(x)) and (U(x) V(x)) of (2.47), with U{x) non-
singular on the interval of consideration XQ and x, s arbitrary values
on this interval,

(3.8) {U,U0}-{U, U}U-\x)Ulx)^T*-\x, s; U)[{U, Uo}

-{U, U}U-\s)U0(s)].

In particular, if {U, ?7}=0 then

(3.9) K=0, T(x, s) U)=E, H(x) = H0+[KU-ι(t)B(t)U*-\ί)dt ,

and the UQ(x), Vt(x) given by (3.1) satisfy {UOf UQ}--0 if and only if
the rxr constant matrix H0*K0 is hermitian. In case {U, U}—0 the
formula (3.7) reduces to a relation that may be found in various recent
papers, (see Sternberg and Kaufman [14]; Barrett [1 and 2]; Hartman [5]).
For future reference the above results are collected in the following
theorem.

THEOREM 3.1. // (U(x) V(x)) is a solution of (2.4/) with U(x) non-
singular on a subinterval Xo of X, and K is the constant nxn matrix
such that {U, U}==K, then an nxr matrix Uϋ{x) belongs to a solution
(U^x); V0(x)) of (2.4;) on X, if and only if Uΰ(x) = U(x)H(x), where H(x)
is of the form (3.5) with T(x, s U) and S(x, s U) determined by (3.4)
and (3.6), respectively, and HΰJ KQ are nxr constant matrices. Moreover,
for such a U^x) the corresponding V0(x) is given by (3.1), {U, U0}=Kΰf

{Z70, C70} has the value (3.2), and the identities (3.7), (3.8) hold for x, s
e l o ; in particular, if K=0 then T(x, s; U)=E and {Z70, J70}ΞΞ0 if

and only if the constant rxr matrix HQ*K0 is hermitian.
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It is to be emphasized that the above theorem is quite independent
of any non-oscillatory character of (2.4). For example, the scalar
equation u"+u = 0 has solution u(x) = exj)(ix) which satisfies u(x)Φθ on
( — 00, 00), and with {u, u}~2i, T(x, s; u)~exp( — 2i(x~s))f S(x, s; u)
= sin(#—s)exp(i(#—s)) moreover, un(x)= sin x is a second solution of
this equation for which \u, u{)) •-.1, and one may verify readily the
identities (3.7) and (3.8).

THEOREM 3.2. Suppose that (U(x) V(x)) is a solution of (2.4) with
U(x) non-singular on a subinterval Xo of X. If se Xo then for t e Xΰy

tΦ-Sj the matrix S(t, s U) is singular if and only if t is conjugate to
s. In particular, if (2.4) is non-oscillatory on a subinterval X o : a0 <x
<oo, and (U(x) V(x)) is a solution of (2A') tυith U(x) non-singular on
Xo, then for s e Xo the matrix S(t, s U) is non-singular for t e Xo,
tφs; moreover, if there exists an seX0 such that S~\x, s; U)->0 as
X-+OO then S-[(x, r; U)->0 as x-^oo for arbitrary reXQ.

As B(x) is non-singular, if u(x)=0, v(x) is a solution of (2.4) on a
given subinterval of X then (̂̂ )ΞΞΞΞO on this subinterval. In view of
this condition, which is a property of "normality" of (2.4), it follows
that if (U,(x); V{]{x)) is a solution of (2A') with U0{s) = 0 and V0(s) non-
singular then t is conjugate to s if and only if U0(t) is singular. Now if
(U(x) V(x)) is a solution of (2.4') with U(x) non-singular on Xo, then
for seX0 the above-defined (U0(x) VQ(x)) is such that {U, UQ} is the
non-singular matrix C/*(s)F0(s), and from (3.7) it follows that U0(x)^
U(x)T(x, s; U)S(x, s; U)UM(s)V0(s) for xe Xo, and thus S(t, s; U) is singular
for a value te Xo, tΦs, if and only if t is conjugate to s. Consequently,
if (2.4) is non-oscillatory on a subinterval XQ, and (U(x) V(x)) is a
solution of (2.4') with U(x) non-singular on XQ, then S(t, s U) is non-
singular for teXQ, tΦs. Now the fundamental matrix T(x, s; U) of
(3.4) satisfies the well-known relation T(a;, s; U) = T(x, r; U)T(r, s; U)
for r, s 6 Xo, and by direct computation it follows that

(3.10) S(x, s; U) = T(8, r; U)[S(x, r ; U)-S(s, r; U)]

for r, s, xe XQ. If for a general non-singular matrix M the supremum
and infimum of \My\ on the sphere \y\ = l are denoted by μ(M) and λ{M),
respectively, then the relation

μ(M'1)\My\ ^ IM

implies that l~λ{M)μ(M-γ). As the condition that S'\x, s; Z7)->0 as

eτ->oo is equivalent to μ(S'1(x9 s; t/))->0 as ^->oo, this condition holds
if and only if λ(S(x, s ; C7))->oo as α;->oo. Now in view of the non-
singularity of T(s, r; U) it follows from (3.10) that for r, seX{] we
have λ(S(x, s ί7))-^oo as a;->oo if and only if λ(S(x, r; Z7))->oo as



154 WILLIAM T. REID

In view of the result of Theorem 3.2, for an equation (2.4) that is
non-oscillatory for large x a solution (U(x) V(x)) of (2.4') will be termed
a principal solution if U(x) is non-singular for x on some interval Xσ:
av<x<co and S~\xy s Z7)-+0 as #->oo for at least one (and consequently
all) seXu. If (U(x) V(x)) is a matrix of conjoined solutions of (2.4)
with U(x) non-singular for large x this deίiniton clearly reduces to that
of Hartman [5]. In the following sections it will be shown that if R(x)
is positive definite on X, and (2.4) is non-oscillatory for large x, then
there does exist a principal solution of (2.4'), and this principal solution
is unique up to multiplication on the right by a non-singular constant
matrix. In general, however, one has the following theorem, which
shows that if (2.4) is non-oscillatory for large x then a solution of (2.4/)
which is principal in the sense defined above possesses a property
corresponding to that used as a definitive property by Morse and
Leighton [11] for the scalar eqution (1.1).

THEOREM 3.3. // (2.4) is non-oscillatory for large x, then a solution
(U(x) V(x)) of (2.4') is a principal solution if U(x) is non-singular for
large x and there exists a solution (U^x) V0(x)) of (2.4') with U0(<x)
non-singular for large x and such that for some value s e X,

(3.11) U<r\x)U{x)T{xy s ; I7)->0 as α->oo

moreover, {U, Uo} is non-singular for any such (UQ(x) VQ(x)). Conversely,
if (2.4) is non-oscillatory for large x, and (U(x) V(x)) is a principal
solution of (2.4'), then any solution (UQ(x) VQ(x)) of (2.4') with {U, Uo}
non-singular is such that UQ(x) is non-singular for large x and (3.11)
holds for arbitrary s e X.

Suppose that (2.4) is non-oscillatory for large x, and that there is
a solution (U(x) V(x)) of (2.4') with U(x) non-singular on an interval
XQ: ao<x<<^. If (U0(x) VG(x)) is also a solution of (2.4') then by (3.7),

(3.12) [U(x)T(x, s ; U)YιUJίx) = υ-\s)U0(8) + S(x, s; U){U, UQ}

moreover, if U0(x) is non-singular and satisfies (3.11) for some seX n ,
then λ([U(x)T(x, s C/)]-1f70(^))->co as ίr->oo and from (3.12) it follows
that {U, Uo} is non-singular and λ(S(x, s; C7))->co as x->co, so that
(U(x) V(x)) is a principal solution of (2.4').

On the other hand, if (2.4) is non-oscillatory for large x, and (U(x);
V(x)) is a principal solution of (2.4'), then for s sufficiently large we
have that λ(S(x, s U))-+m as ίr->oo. For such a value s, and (U0(s)
V^x)) a solution of (2.4') with {U, Uo} non-singular, we have ^(U-^U^s)
+S(x, s; U){U, Z70})->oo as ^->co, and hence from (3.12) it follows
that λ(\U(x)T(x, s; UJl^U^x))-*oo as -̂>c>o, which is equivalent to the
condition that UQ(x) is non-singular for large x and satisfies (3.11). As
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T(x, s; U) = T(x, r; U)T(r, s; U), if (3.11) holds for one value s then
this condition holds for arbitrary s ε X.

4. Certain basic results of the calculus of variations. For the
functional (2.2) an ^-dimensional vector function y(x) will be termed
differentially admissible on a subinterval of X if on this subinterval y(x)
is continuous and has piecewise continuous derivatives. For brevity, if
[c, d] is a compact subinterval of X the symbol H+[c, d] will signify
the condition that I[y c, d]>0 for arbitrary y(x) differentially admissible
on [c, d], and such that y(x)^0 on [c, d], y(c) = 0 = y(d). We shall also
denote by HR the condition that R(x) > 0 on X in view of the basic
assumption that R(x) is non-singular on X the condition HR holds
whenever there is a single s of I such that .R(s)>0.

For the subsequent discussion the following known variational results
are basic.

THEOREM 4.1. // [c, d] is a compact subinterval of X then a necessary
and sufficient condition for H+[c, d\ is that HR hold, together with one
of the following conditions :

(i) (2.4) is non-oscillatory on [c, d]
(ii) there exists a matrix (U(x) V{x)) of conjoined solutions of (2.4)

with U(x) non-singular on [c, d].

THEOREM 4.2. If [c, d] is a compact subinterval of X such that
TJ+[Cj d] holds, then for arbitrary vectors yCJ yd there is a unique solution
(u(x) v(x)) of (2.4) satisfying u(c)=ye9 u(d)=yd, and I[y c, d]>I[u c, d]
for arbitrary differentially admissible y(x) with y ^ u on [c, d], y(c)

— u{d).

THEOREM 4.3. Suppose that [c, d] is a compact subinterval of X
such that H+[c, d] holds. If (Uc(x) Ve(x))f [(Ud(x) Vd(x))], is the solution
of (2.4r) determined by Uc(c) = E, Uc(d) = 0, [Ud(d)=E, Ud(c) = O], and
(U(x); V(x)) is a solution of (2.4') satisfying U(c)=E, V(c)>Ve(c),
[U(d) = E, V{d)<Vd(d)}, then (U(x) V(x)) is a matrix of conjoined
solutions of (2.4) with U(x) non-singular on [c, d].

For the case in which the coefficient matrices of (2.1) are real-valued
the results of Theorems 4.1 and 4.2 are classical results in the calculus
of variations, (see, for example, Morse [10 Chapter I], or Bliss [3
Chapter IV] for the general case of complex coefficients these results
are contained in Theorems 2.1 and 2.2 of Reid [13]. In connection
with Theorem 4.2 it is to be commented that if

u; c, d]=
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for differentially admissible r/{χ)y u(x), then in case (u(x) v(x)) is a
solution of (2.3) on [e, d] we have

(4.1) Ify, u; c, d] =

A ready consequence of (4.1) is that if (u(x) v(x)) and y(x) satisfy the
conditions of Theorem 4.2 then

(4.2) I[y c, d] = I[u c, d] + I[y-u c, d] ,

which is the well-known ' 'integral formula of Weierstrass" for the
functional (2.2).

Theorem 4.3 is a comparison theorem of Sturmian type that is a
special case of results of Morse [9 §10, or 10 Chapter IV, §8] in
case the coefficients of (2.1) are real-valued, and Morse's method may
be extended readily to prove the stated result. The method introduced
by Hestenes [6], (see also Bliss [3 §§86-87]), to establish the corresponding
result for variational problems of Bolza type yields the following brief
and elegant proof of the statement of the theorem involving (Uc(x) Vc(x))
the statement involving (Ud(x) Vd(x)) follows by a similar argument.
By Theorem 4.2 the condition H+\c, d] implies the existence of the
solution (Ue(x); Vc(x)) of (2.4') satisfying Ue(c)=E, Ue(d) = 0 the end
condition Uc(d) — 0 clearly implies that (Uc(x) Vc(x)) is a matrix of
conjoined solutions and consequently V<(c)=Uc*(c) Vr(c) is hermitian. For
(U(x); V(x)) a solution of (2.4;) satisfying U(c) = E, V(c)>Vc(c) the
matrix U(d) is non-singular, since if U(d)ς = 0 then u(x) — (U(x)~Uc(x))ξy

v(x) — (V(x)—Vc(x))ξ is a solution of (2.4) satisfying u(c) — 0—u(d) so
that U(X)ΞΞQ by Theorem 4.1, and hence (V(c)- Vc(c))ξ = 0 and 6^0.
Moreover, U(x) is non-singular on c<x<d, since if c<b<d and U(b)ξ—0
then y(x) defined as y(x) — (U(x)—Uc(x))ξ, c<,x<,b, and y(x)— — Uc{x)ς,
b<,x^d, satisfies y(c) — 0 — y(d) and is differentially admissible on [c, d],
while in view of the hermitίan character of U^(b)Vc(b) we have

c, d]^ξ^[U^b)-U

= -ς*U*(b)[V(b)~

= -ξ*{Uc, U-Uc)ξ

and consequently ΐ[y c, cZ]<0 unless ?=0, so that ς — 0 in view of

H+[c, d\.

5. Systems (2. 4) that are non-oscillatory for large x. For a system
satisfying HE and non-oscillatory for large x, the following theorem
determines a particular matrix of conjoined solutions which subsequently
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will be shown to be a principal solution, as defined in Section 3.

THEOREM 5.1. Suppose that (2.4) satisfies HR and is non-oscillatory
on a subinterval XQ: α 0 <#<oo of X. IfseXQ and for teX0, tΦs,
the matrix (Ust{x) Vsf{x)) is the solution of (2.4') determined by USύ(s)
= E, Ugt(t) = 0, then [7s,oo(^) = lim,,_ Ust(x), Fs,βo(aτ) = lim/._0O V8(x) exist

and (Usfoo(x) Vsfoo(x)) is a matrix of conjoined solutions of (2.4) with
Usfoo(x) non-singular on Xo; moreover, Ur,0O(x)=U8,O0(x)Ur,00(s) and Vrtoo(x)
= Vsfeo{x)Urfco(s) for r, s, xeX0.

As the initial condition Ust(t) = 0 implies {Ust, Ust}=0, it follows
that if s, teX0, sΦt, then (Ust(x) V8t(x)) is a matrix of conjoined
solutions, so that the matrix Uft(x)Vst(x) is hermitian for xe X in
particular, Vst(s) is hermitian. For a given seXQ let r, t be points of
Xn satisfying r<s<t, and for an arbitrary non-zero constant vector ξ
let y(x) denote the vector function defined on [r, t] as

(5.1) y(x)=U8r(x)ζ on [ r , s]; y(x)=Ust(x)ξ on [s, t] .

Now this vector function y(x) is differentially admissible and y(r) — 0
= y(t)> so that under the hypothesis that (2.4) satisfies Hn and is non-
oscillatory on X() it follows from Theorem 4.1 that

r, ί] = f*^*(β)^r(s)6-f*Z72(β)F ίe(β)f===^ .

As this relation holds for arbitrary non-zero vectors ξ we have

(5.2) Vst(s)<Vsr(s) for r, s, te XQ, r<s<t .

For s<t<d, and ς an arbitrary non-zero constant vector, let u(x)
= Usd(x)ξ, v(x)=V8d{x)ζ and y(x)=U8t(x)ξ on [s, t], y(x)=0 on [t, d].
Then (u(x) v(x)) is a solution of (2.4), while y(x) is differentially
admissible and satisfies y(s)=u(s), y{d) — u{d), y(x)^u(x) on [s, d], so that

(5.3) -ξ*Vsd(8)ξ = I[u; 8, d]<I[y; s, d] = /[i/ s, t]= -ξ*

in view of Theorem 4.2 that is,

(5.4) Vst(s)<Vsd(s) for s, t, de X,, s<t<d .

By a similar argument it follows that

(5.5) Vsc(s)< Vsr(s) for c, r, seXQ, c<r<s .

From (5.2), (5.4) it follows that for fixed s e X 0 the one-parameter
family of hermitian matrices Vst(s), s<t<oz, is monotone increasing and
bounded, so that there is an hermitian matrix VS}OO such that Vsd{s)->
Vs.* as d-^oo. Moreover, in view of (5.2), (5.4), (5.5) it follows that

(5.6) Vs,{8)<Vg,~<Vβr(8) for r, s, teX0, r<s<t ,
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If (Us1oo(x) Vs,oo(x)) is the solution of (2.4') determined by the
initial values Us100(s)=E, Vs,0O(s)=Vsf00 then clearly (Usί(x) Vst(x))->
(Usfco(x); V8too(x)), while the hermitian character of V^oo^Uf^s^sy^s)
implies that {U89eo, Usfoΰ}—0, and (U890O(x) V89Jjx)) is a matrix of
conjoined solutions. Moreover, in view of Theorem 4.3, inequality (5.6)
implies that US9oo{x) is non-singular on each subinterval [r, t\ of XQ with
r<s<t, and hence US900(x) is non-singular on Xo.

The final statement of the theorem is an immediate consequence
of the fact that Ust(x) = Urί(x)U7t

Ί(s), Vst(x)=Vrt(x)U;?{s) for r, s, teX0,
rφt9 sΦt.

If (2.4) is oscillatory on X then there exists a t such that there
are points s of X which precede t and are conjugate to t9 and consequently
there is a largest such conjugate point s—c{t) preceding t. For a
system (2.4) satisfying HR it follows from Theorem 4.1 that if c(t)
exists for a value t = t1 then c(t) exists for tλ<t<oo and increases with
t. In accordance with the terminology introduced by Morse and Leighton
[11] for a scalar second order linear differential equation, the first
conjugate point c(oo) of x~co on X is defined as the limit of c(t) as
ί-^oo. Clearly such a system (2.4) is non-oscillatory for large x if and
only if either (2.4) is non-oscillatory on X or c(co) exists and is finite-
If c(oo) exists and is finite then (2.4) is non-oscillatory on (c(<χ>), oo)>
so that the interval Xo of Theorem 5.1 may be chosen as this interval,
and consequently for c(oo)<s<oo the matrix of conjoined solutions
(U89oo(x); V8fco(x)) has U89co(x) non-singular on (c(oo), oo). On the other
hand, the definition of c(oo) implies that (2.4) is oscillatory on an arbitrary
subinterval (α0, oo) of X with αo<c(<χ>)> a n ( i Theorem 4.1 implies that
Us,oo(x) is singular at some point of such a subinterval (a0, oo), so that
by continuity UsfOc(x) is singular for χ=c(co). That is, if HR holds and
(2.4) is non-oscillatory for large x then the matrix of conjoined solutions
(US9oo(x)\ Vs,oo(x)) of Theorem 5.1 is such that c(oo) exists on X if and
only if ί7s,co(^) is singular at some point of X, in which case c(co) is
the largest value of x for which Usfoo(x) is singular.

6. Principal solutions. From Theorem 5.1 it follows that if (2.4)
satisfies HR and is non-oscillatory on Xo: α 0 0 < o o then there exist
matrix solutions (U(x) V(x)) of (2.4r) with U(x) non-singular on XQ.
The basic result on principal solutions for such a system (2.4) is contained
in the following theorem.

THEOREM 6.1. Suppose that the equation (2.4) satisfies HR and is
non-oscillatory on a subinterval Xo: aQ<x<co of X. If (U(x) V(x)) is
a solution of (2A') with U(x) non-singular on an interval Xv: aTI<x<,oQ
then for s a point common to Xo and Xπ the
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(6.1) M(s; tO-lim^oo S~ι(t, s; U)

exists and is finite. Moreover, M(s U) — 0 and (U(x) V{x)) is a
principal solution of (2A') if and only if U(x) = Ur9eo(x)C9 V(x)=Vr,0O(x)C,
where r is any fixed value on XQ, (Ur9βo(x) Vr9co(x)) is the matrix of
conjoined solutions as determined by Theorem 5.1, and C is a non-singular
constant matrix.

In view of Theorems 3.2 and 5.1 it clearly suffices to establish the
result of the above theorem for s — r a point common to Xo and XΌ.
For such a value s it follows from Theorem 3.1 that

Usfβo(x)=U(x)T(x, s; U)[U-\s)+S(x, s; U){U, Usyoa}] ,

U8t(x) = U(x)T(x, s; U)[E-S(x, s ; U)S~\t, s ;

and since U8t(x)-+U89oo(x)9 Vst(x)->Vsfoo(x) as x-+<χ> it follows t h a t M(s U)

defined by (6.1) exists and has the finite value

(6.2) . M(s; U)=-{U, US9Oΰ}U(s) .

In particular, (6.2) implies that M(s Z7) = 0 if and only if {Z7, Z7s)oo}=0.
As 0={Usfoo, U89OO} = V89βo(s) - V*ιOO(s) it follows t h a t θ = { ί 7 , Usyoa]
= U^s)Vs,4s)-V*(s)Us,4s) = U*(s)V*oo(s)-V*(s) if and only if (U(s)
V(s)) satisfies with the non-singular matrix C— U(s) the initial conditions
U(8) = U89β.(8)C, V(8)=V8,»(x)C9 and therefore U(x)=U89βo(x)C9 V(x)
= Vs^{x)C.

In particular, under the hypotheses of Theorem 6.1 it follows that
if (U(x) V(x)) is a principal solution of (2.4') then (J7(α?) F(a?)) is a
matrix of conjoined solutions of (2.4), and therefore T(x, s U)Ξ=E.

As the first conclusion of Theorem 3.3 with UQ{x)—U{x) implies that if
(2.4) has a solution (U(x) V(x)) with J7(a?) non-singular for large x9

and T(x, s; U)~>0 as a -^oo, then (U(x) F(a?)) is a principal solution,
the following corollary is direct consequence of the results of Theorems
3.3, 6.1, and formula (6.2).

COROLLARY. In case (2.4) satisfies HR1 and is non-oscillatory for
large x9 then :

(i) if(U(x); V(x)) is a solution of (2A') with U(x) non-singular on
Xo: α 0 <#<oo, and seXQ, then it is not true that T(x, s ; U)->0 as
X~>OD

(ii) if (U(x) V(x)) is a principal solution of (2.4r), then for a
solution (U0(x); VQ(x)) of (2.4r) the matrix {U, UQ} is non-singular if and
only if U0(x) is non-singular for large x and U^1(x)U(x)-^0 as #—>oo,
moreover, if {U, Uo} is non-singular then, for s sufficiently large, lim^oo
S(t, s, UQ) exists and is non-singular.

Finally, we shall establish the following result in particular,
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conclusion (v) generalizes a result of Hartman [5].

THEOREM 6.2. Suppose that (2.4) satisfies HR and is non-oscillatory
on a subinterval X o : α 0 <#<oo of X, while (Us}oo(x); Vsteo(x))9 seX0, is
the matrix of conjoined solutions as determined by Theorem 5.1. If
(U(x) V(x)) is a solution of (2.4') with U(x) non-singular on XQ9 and
S(co, r U) = l i m ^ S(x, r U) exists and is finite for some reX01 then
for arbitrary s e X{):

(i) S(CXD, s; U) exists, and

(6.3) S(oo, s; U) = T(8, r; U)[S(<χ>, r U)-S(s, r ; U)\ for s, xeX,;

(ii) {Uj USJOO\ is non-singular]
(iii) U~\x)Us,oΰ(x)-^0 as x-±cx>
(iv) {U, US)00} — {U, U)U~\s) is non-singular, and Γ(oo, s U)

= lim^oo T(x, s U) exists and is equal to the non-singular matrix
[U^, U}-ι[{U8W U}-U*-ι(8){U, U}];

(v) U89eo(x)=-U(x)S(oo, x; U){U, t/,,4
Conclusion (i) is an immediate consequence of relation (3.10). Now,

as established in the proof of Theorem 6.1, the matrix M(s Z7) = Hindoo
S~\t, s; U) exists and has the finite value -{Ϊ7, Usfoo] U(s), so if
S(oo, s; U) exists and is finite we have

(6.4) # = - S ( c o , s; U){U, Ugfβa\U(8),

and hence {£7, Usfoo} is non-singular; in turn it follows from the
Corollary to Theorem 6.1 that (ii) implies (iii).

In order to establish conclusion (iv), it is noted that the non-
singularity of U(x) on Xo implies the validity of (3.8) with UQ—Usfoo(x)f

so that

(6.5) {U, US^}-{U, U}U-\x)UsUx)

= T*-1(a?, s; U)[{U, U899O}-{U, U}U~\s)]

for s, xeX0. From conclusions (ii), (iii) and relation (6.5) it follows
that if ξ is a constant vector satisfying [{U, Us90O} — {U9 U}U-\s)]ξ=Q
then f = 0, so that {U9 Usίoΰ}-{Uy U}U-\s) is non-singular for seX0.
This result, together with conclusions (ii), (iii) and relation (6.5), imply
that for seX0 the matrix T*~\x9 s; U) approaches the non-singular
matrix {U, Us}ΰO}[{Uf Usyoo}~{U, U}U"ι(s)Y\ which is equivalent to the
final statement of conclusion (iv).

Finally, it is to be noted that (6.4) is equivalent to

E=-U(x)S(oo, x; U){U, UX1OO}, for x e X(),

and as Us9βo(t) = Ux9βo(t)US9oo(x)9 V,,4t)=Vx10O(t)Us,4x) for s9 t9 x e X() it
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follows that {U9 Ux9~)UΛ9Jx)-^{U9 U89CB} and U89»(x)=--U(x)S(oo, x; U)
{Uy Usyoo) for xf $eX0, thus establishing conclusion (v).

7. An example. In the notation of the preceding sections, the
example of Section 11 of Hartman [5] shows that for an equation (2.4)
which satisfies HR, and is non-oscillatory for large x, there may exist
solutions (U(x) V(a )) of (2.4') with U(x) non-singular for large x and
such that

(7.1) Γf" U-\t)B(t)U*-\t)dtV^O as a;->co ,

while (U(x) V(x)) is not a principal solution. As shown by Theorem
6.1, for general solutions (U(x) V(x)) of (2.4') with U(x) non-singular
for large x the discriminating property for principal solutions is not
(7.1), but rather S~\x, s Z7)-»0 as a?-*oo. We shall proceed to illustrate
the results of the preceding sections by the example of Hartman.

For typographical simplification α 2 x 2 matrix ||ΛfΛβ||, {a9 β — l, 2),
will be displayed as M=(MU; M12; M21; M22). In this notation the
two-dimensional vector equation of Hartman's example is

(7.2) u" + P{x)u = Q9 0<a?<°°, with P(a?) = (0 0; 0; (4af)-χ).

For (7.2) the matrix solutions (Ust(x) Vst(x) = U8t(x)) of Theorem 5.1
have

Zjst(jx) = ((x--fyl(s—.fy 0 0 (a?/s)1/2 (In t—In #)/(ln t—In s)) .

and consequently (U89co(x) Vsyoo(x)) has Z7s,«x,(a?) = (l 0 0 (a;/s)1/2).
Hartman's example involves the principal solution (Σ7i,oo(a?) Vl900(x)) for
which U19co(x) = (1 0; 0; xι/i)9 and the matrix solution (U(x)', V(x))
having Z7(a?) = (l x 0; x11'1). For these matrix solutions one may
compute readily the following quantities

Six, s U89eo) = (x—s 0 0 s(ln x—\n s)) ,

{C7, U}=(0; 1; - 1 ; 0), {Ulfeo, U}=(0; 1 0 0) ,

T(x9 1 Z7) = (l— x In a? 1—x~x In a? In a? 1 + ln a?) ,

S(a?, 1 U) = (x—1+x In x —In a? —x In a; In x) ,

M(l Z7) = (0 0 1 1) U-\x)Ul9OΛ(x) = (l -a? 0 1) .

It is to be noted that {Ul9oo, U\ is singular, so that the corollary
to Theorem 6.1 implies that the matrix U~\x)U19eo(x) does not tend to
0 as #->co, a fact that is obvious from the specific value of this matrix.

To illustrate further the results of the preceding section, consider
the solution {Uλ{x)'9 V^x)) of (2.4;) with £7^) = (x 1; 0 ; xV2 \n x).
For this solution U^x) is non-singular for x>l9 and one has



162 WILLIAM T. REID

,,co(a?) = (l/a?; - l / ( s 1 / 2 x In χ)\ 0 ; l/(s1/2 In x)) ,

{£Λ, £Λ}=(0; - 1 ; 1 ; 0), {Usfoo, ^ } = ( 1 ; 0 ; 0 ; s"1'3) ,

^3(ln a?)aC^rI(a?)fi(a?)Z7*-|(a;) = ( l+a<ln x)£ - a ? ; - a ? ; of) .

Moreover, if θ — θ(x, s) = (l/ln a?) —(1/ln s), it may be verified t h a t

T(x, s; UΛ) = (l-θlx; (x-s-θ)l(sx) 0; l + θ!s) ,

S(a?, s ; Σ71) = ((^~s~W(sa?); 0/s 0/a? -0) ,

(a - s ) ^ - 1 ^ , s; £Λ) = ( ^ ; a? s; l-(a?--s)/0) ,

from which one may verify readily that for 1< s < oo,

T(co, s; ί/1) = ( l ; 1/8 -1/ln s; l - l / ( s In s)) ,

S(oo, s; Z7t) = (l/s; ~l/(s In s) 0 1/ln s) ,

J|f(s; J70 = (β; 1; 0; In β) .

8. Further properties of principal solutions. Suppose that (2.4)
satisfies HR, and is non-oscillatory on a subinterval Xo: α 0 0 < c o of
X ; for s, t ε XQ, s<t, let Yst{x)—Ust{x) on a?^ί, and F5,(X)ΞΞΞ0 on x^t,
where, as in Theorem 5.1, (Usl(x) Vst(x)) is the solution of (2.4r)
satisfying U8t(s) = Ef Ust(t) = 0.

For brevity, if y(x), u(x) are differentially admissible vector functions
on [s. oo) such that

(8.1) lim,_/[2/, ?fc s, ί]

exists and is finite, the value of (8.1) will be denoted by I[y, u s],
moreover, for brevity we shall write I[y s] in place of I[y, y s]. In
particular, for arbitrary constant vectors ξ we have I[Ystξ s] — I[Ustξ;
s, t\. Now from relations (5.3) and (4.2) it follows that

0<ξ*[Vs^)-Vst(s)]ξ = I[Ystξ s]~I[Ysdξ; s] = I[YJ~YS(£ s]

for s<t<d, s e XQ, and since Vst(s)-+Vs,oo as t-*oo it follows that for
s e XQ, and ξ an arbitrary constant vector,

(8.2) I[Ystξ-Ysdξ; s ] -0 as *, d->co.

It is to be emphasized that in general it is not true that

(8.3) -f*Vβ,0O(s)f = /[Z7β,βof si for s e XQ ,

although - f * F β t ( s ) f = / [ y Λ t f β] for ί > s , and Y,H(x)ξ->Us,4x)ς as ί->co ;

moreover, in general it is not true t h a t the vector function Us,00(x)ξ is
bounded on [s, oo), although Y8t(x)ξ=0 for a ̂ ί . The statements are
illustrated by the well-known scalar second order equation %"+%/(4a;2)
= 0, which is non-oscillatory on (0, oo); for this equation ιιΛ^{x) — xι/λ
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and ^ ^ ( l ) = 1/2, while ω(x, ultoo, u\foo)-^~0. However, much more can
be said about the principal solutions (USJOO(x) Vsioo(x)) in case the
hermitian integrand function ω is such that

(8.4) ω(x, y, rr)^O for arbitrary x, y, π with x e XQ .

In view of the continued understanding that R(x) is non-singular on X,
it is clear that (8.4) implies HR, as well as the result that H+[s, t\ holds
for arbitrary compact subintervals [s, t] of Xo, so that (2.4) is non-
oscillatory on Xo.

THEOREM 8.1. // condition (8.4) holds on a subίnterval Xo: α o < # < oo
of X then (8.3) is valid; moreover, U*s^(x)Vs,o,(x)S0 on s^x<oo and
^*.9>ooFs,oo->0 a s x-+oD.

Since V8t(s)-+Vs,co(8), and the vector function Yst(x)ξ tends to Usfoo(x)ξ
uniformly on each compact subinterval of [s, oo) as £-»oo, whenever
condition (8.4) holds on Xo it follows readily from the relation — ?*Fίt(s)6
= I[Ysti s] that I[Us10Oξ s] exists and

Now VSJO0(s) is hermitian and by (4.1) we have

- ξ * V 8 , » ( 8 ) ξ = I l Y , t ξ , US,J; s , t] = I l Y 8 t ξ , U89βoξ; 8 ] .

Moreover, whenever (8.4) holds we have the Schwarz inequality

, U89βoξ; r-}\*^I[Y8tξ; r]I[Us,J r] for

and as I\YJ r\^I\Y8tξ s]^I[Yspξ s] for t^p>s it follows that for
given p>s, ε>0 there exists a value r = rξ>s such that

As SR(iirβίf, C^,^; s, r])^I[Us,J; β, r] as ί-»co, and /[ίT,,^ s, r\
^I[Us,J;s] by (8.4), it follows that - P F s ) M ( s ) ^ ί [ ί / s , i β], thus
completing the proof of (8.3). Finally, condition (8.4) implies that for
ξ a non-zero constant vector the integral I[Usfooξ s, r] = f*[Z7£oo(r)F,,ee(r)
— ys,oo(s)]f is a monotone increasing function of r on s < r < o o which
tends to I[U8fαoξ s]~ — ξ^Vsyoΰ(s)ξ as r->co, and consequently Z7s%(r)
Fs,oo(r)^0 on (s, oo) and C/s*4r)Fs,4r)->0 as r->co.

In particular, if R{x)=E, Q(#)EΞΞO and P(a?)^0 on X, then the above
theorem implies that (\Us,^(x)ξ\2y = 2ξ*U*<x>(x)Vs,Co(x)ξ^0, so that for such
an equation (2.4) the norm of the vector function U89oo(x)ξ tends to a
limit as a?->oo. This particular result has been established by Wintner
[16].

It is to be emphasized that condition (8.4) does not imply that
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Usfoo-*0 as X-+O3. For example, (8.4) holds for the scalar equation

(u'l(ex + 2))' - 2uj{ex + 2)1 = 0

with general solution u~cx(l + e~x) + c>ex, and principal solution uΰyoo(x)

= (l + e~*)l2.

THEOREM 8.2. // HR holds and (2.4) is non-oscillatory on a siώinterval
Xo: aύ<.x<oo of X then Us,Oΰ(x)-+0 as #->oo if there exists a constant
kyO and a continuous positive function h(x) such that if s, d e Xo,
s<d, then

(8.5) I[y; s, d\^k^[h(x)\y'\*+\y\ψι(x)]dz

for arbitrary y(x) which are differentially admissible on [s, d] and satisfy

If the vector function y(x) is differentially admissible on [s, d], and

= 0 = y(d), then

2|2/(α?)|a =

the last inequality holding for arbitrary continuous positive functions
h(x). Consequently the hypothesis of Theorem 8.2 implies that there
is a positive constant k such that

(8.6) 2k\y(x)\^Ily; s, d] for s^x^d

holds if 8, d 6 Xo, s<d, and y(x) is a differentially admissible vector
function on [s, d] with y(s) = 0 = y(d). In particular, if s<t<d and ξ is
a constant vector, then y(x) = Ysι(x)ξ — Ysd(x)ξ is such a vector function
with 2/(#)=0 for a ̂ eZ and /[?y s, d] — I[y; s], so that

(8.7) 2k\Yst(x)ξ-Ysd(x)ξ\2^I[Ysβ-Ysdξ s], s^x<™.

Inequalities (8.2), (8.7) then imply that as t->oo the convergence of
Ys(x)ξ to USJOO(x)ς is uniform on s^x<oo. As Ysfc(̂ )ςΞΞΞθ for x^t it
then follows that Us,oo{x)ξ—>0 as .τ~>oo for arbitrary constant vectors f,
so that Usyoo(x)-^0 as

THEOREM 8.3. // on a subinterval XQ: ao<x<c& of X we have Q(x)
Ξ^O, R(x) of class C with R(x)>0, R/(x)^0J and there is a non-negative

continuous function k(x) such that \ k(x)dx is divergent and y*P(x)y

yΛR(x)y for arbitrary vectors y, then Uf^(x)R(x)Us,oΰ(x)~^0 as x->oo.
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The hypotheses of the theorem clearly imply condition (8.4) on XQ.
Now if Q(ar)=-0 and R(x) is of class C" we have V89βo(x) = R(x)U/

89βo(x)9

and as {U89CO9 U890O} = 0 it follows that (U*»RUΛ9J)' = 2Dr*ββyβ,ββ

+ Z7;;;ooJR
/t/s,co, so that in view of the condition β'(#)^0 and the last

conclusion of Theorem 8.1 we have (^*eo#ϊ7s,oo)'^0 on Xo. Consequently,
for an arbitrary constant vector ξ the non-negative function ξ^Uf^x)
R(x)Us,Oΰ(x)ξ is non-increasing on Xo, and thus tends to a non-negative
limit as #->oo. Moreover, by Theorem 8.1 the integral I[U89ooξ s]
exists and is finite, so that in view of the relation

and the divergent character of \ k(x)dx, it follows that ς*UTt0O(x)R(x)

Usfco(x)ς->0 as #-*oo, for ξ an arbitrary constant vector.
As a particular instance of the above theorem we have the following

result.

COROLLARY. If on a subinterval XQ: αu<α;<oo of X we have Q(x)
J), R(x) a constant matrix 12>0, and there is a non-negative continuous

function kL(x) such that I kL(x)dx is divergent and y:¥P(x)y^:k1(x)\y\2 for

arbitrary vectors y, then for s e XQ we have Usyo2(x)~>0 as #->oo.
For the case of a scalar equation the result of the above corollary

in essence dates from Kneser [7], as has been pointed out by Wintner [15].
Added November 20, 1957. P. Hartman has pointed out to the

author that the following argument establishes the conclusion of Theorem

8.3 with the hypothesis that \ k{x)dx is divergent replaced by the

xk(x)dx is divergent. Since Theorem 8.1 implies

that Z7β*ooVs,oô 0, from the condition UfιOORfUS9oo^0 and the expression
given for (Uf^RU^)' in the proof of Theorem 8.3 it follows that the

integral I Uf^Vsyoΰ dx exists. From Theorem 8.1 it follows that

f/ίco"Fs,oo->0 and

for α0<O^<oo and arbitrary constant vectors ξ, and as U8

¥

tJPU8,O0'*tto the

integrals ί°° U^PU^dx and fTί°° Uft00PU8fΌOdt]dx exist for aQ<u<oo

an integration by parts then yields the existence of the integral

\xU;4x)P(x)Us,ΰΰ(x)dx. Consequently the condition that y*P(x)y

^>k(x)y*R{x)y for arbitrary vectors y implies that the integral
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I xk(x)Ufoΰ(x)R(x)Us,co(x)dx exists, and in view of the relations U?ooRUsfoo

^0, (U*«RU8foo)'^0 it follows that Uf^RU^-^Q whenever [°°xk(x)dx is

divergent.

9. A more general differential system. In this section we shall
consider a differential system with complex coefficients that is of the
general form of the accessory differential equations for a variational
problem of Bolza type, (see, for example, Bliss [3 §81] and Reid [12]).
As in § 2, ω(x, y, π) will denote an hermitian form (2.1) with R(x),
Q(x), P(x) nxn matrices having complex-valued continuous elements on X:
a<x<oo, and R{x), P(x) hermitian on this interval. In addition,
consider a vector linear form

(9.1) Φ(a?, y, π)=φ{x)π + θ(x)y ,

where φ(x) and θ(x) are mxn, (m<n), matrices with complex-valued
continuous elements on X. Instead of the hypothesis of Section 2 that
R(x) is non-singular, it is now assumed that the (n + m) x (n + m) hermitian
matrix

R(χ) φ*(χ)
(9.2)

ϋ φ{x) 0

is non-singular on X; in particular, the non-singularity of (9.2) on X
implies that ψ(x) is of rank m on this interval.

For the variational problem involving the functional (2.2) subject
to the auxiliary m-dimensional vector differential equation

(9.3) Φ(x, y, y') = Q

the Euler-Lagrange differential equations are in vector form

(9.4) (R(x)ur + Q(x)u + φ*{x)μ)f - (Q*(a?K+P(Φ + θ*{x)μ) - 0 ,

Φ(x, u, u') = 0 ,

where u(x) is an ^-dimensional vector function and μ(x) is an m-
dimensional "multiplier" vector function.

The inverse of the non-singular matrix (9.2) is of the form

! T(x) τ*(x)

lτ(x) t(x) Γ

where T(x) and t(x) are hermitian matrices of orders n and m,
respectively, and τ(x) is an mxn matrix. In terms of the canonical
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variables

u(x), v(x) = R(x)u\x) + Q(x)u(x) + <p*(x)μ(x)

the Euler-Lagrange equations (9.4) become a vector differential system
(2.4), with now

(9.5) A=-(TQ + τ*θ), B = T, C=P-Q*TQ-Q*τ*θ-θ*τQ-θ*tθ

the matrices B and C of (9.5) are hermitian on X, while B is a non-
negative definite matrix of rank n — m with Bφ^ — 0 throughout this
interval. Throughout this section we shall continue to refer to the
vector equation (2.4) and the corresponding matrix equation (2.4'), with
the understanding that the coefficient matrices are given by (9.5).

As in Section 2, if (U^x) Vx(x)) and (U2(x) V%(x)) are solutions
of (2.40 then the matrix U^(x)V2(x)-V1"(x)U2(x) is a constant; to
denote this matrix by {Ulf U2} now in general involves an ambiguity,
however, since if (U(x) V(x)) is a solution of (2.40 there may exist
other matrices VQ(x)ΦV(x) such that (U(x) VQ(x)) is also a solution of
(2.40- This ambiguity does not exist, however, if (2.4) is such that
whenever U(X)^ΞΞQ, V(X) is a solution of this equation on a non-degenerate
subinterval of X then v(x)=0 on this subinterval if this property
holds the equation (2.4) is said to be identically normal, or to be normal
on every subinterval, on X. It is to be commented that this condition of
normality was used in Section 3 to show that if (2.4) is non-oscillatory
on Xo, and (U(x) V{x)) is a solution of (2.40 with U(x) non-singular on
this interval, then S(t, s; U) is non-singular for s, t e Xo, sΦt.

For the equation (2.4) now under consideration one may define the
concepts of conjugate point, non-oscillation on a subinterval, and non-
oscillation for large x, in precisely the language of Section 2. For the
problem involving the functional (2.2) subject to the differential equation
(9.3) an ^-dimensional vector function y(x) will now be said to be
differentially admissible on a subinterval of X if on this subinterval
y(x) is continuous, has piecewise continuous derivatives, and satisfies
(9.3) for a compact subinterval [c, d] of X the symbol H+[c, d] will
again denote the condition that I[y c, d]>0 for arbitrary differentially
admissible y(x) which are not identically zero on [c, d] and satisfy y(c)
— 0 — y(d). For the problem now considered the symbol HR signifies the
condition that for all x e X we have π*R(x)π>0 for arbitrary non-zero
vectors π satisfying the restraint φ(x)π~0; in view of the basic assumption
that (9.2) is non-singular throughout X it follows that HR holds whenever
there is a single s e X such that π*R(s)π>0 for arbitrary non-zero
vectors π satisfying φ(s)π — 0.

With the above definitions, the result of Theorem 4.1 is valid for
the equation (2.4) now under consideration. In this connection, it is to



168 WILLIAM T. REID

be commented that if we write y~(yl+iyl), (cv — 1, ••• , ri), and denote
by z the real 2%-dimensional vector function with components (y\, •• ,y\n

y\> * * >2/«)» ^hen ω(x, y, yf) is a quadratic form ωo(x, z, zf) in (z, z') with
real coefficients, and (9.3) is equivalent to a real 2m-dimensional vector
differential equation Φ0(a?, z, 2') = 0. Moreover, 22+[c, d] and HB are
individually equivalent to the corresponding conditions H\\cy d] and H°R

for the associated real problem in z, and for this latter problem the
conclusion that 22+[c, d] implies EPR is a well-known result of the calculus
of variations, (see, for example, Bliss [3 Theorem 78.2 and Lemma
81.2]). For a problem of the sort formulated above which satisfies HR,
the method of proof of Lemma 89.1 of Bliss [3] yields the result that
22+[c, d] holds if and only if there is a matrix (U(x) V(x)) of conjoined
solutions of (2.4) with U(x) non-singular on [c, d], and the method of
proof of Lemma 89.2 of Bliss [3] establishes that 22+[c, d] holds if and
only if (2.4) is non-oscillatory on [c, d].

For a differential system (2.4) of the type now under consideration,
the result of Theorem 4.2 is valid only if this system is normal on the
interval [c, d], since if y(x) is differentially admissible then y(c), y(d)
must satisfy v*(d)y(d) — v*(c)y(c) = O with all vector functions ^(^belong-
ing to abnormal solutions WΞΞO, V(X) of (2.4) on [c, d]. On the other hand,
if (2.4) is normal on every subinterval of X then Theorems 4.2 and 4.3
hold, as well as relations (4.1) and (4.2) for vector functions that
are differentially admissible for the problem of this section.

From the above remarks it follows that for systems (2,4) with
coefficient matrices given by (9.5), and which are normal on every
subinterval of X, the various theorems of Sections 3-6 remain valid,
with no changes in proofs required. An important illustration of this
class of systems (2.4) is afforded by certain systems (2.4) that are
equivalent to self-adjoint scalar differential equations of even order.
Indeed, suppose that Pj(x)f (j = 0, 1, ••• , 2ri), are real-valued functions
with p.in(x)r£θ on X and Pj(x) of class Ca/2) or C ( c j + 1 ) ί 2 ) according as j
is even or odd, and let R(x), Q(x), P(x) be diagonal matrices with PΛoί{x)
= (~l)-1p a^3(aj), QΛ«(a?) = i(-l)*paβ-i(aj), (α = l, •••, n), RJίx)=Q for

a < n a n d R n n ( x ) = { — l)np27t(x), w h i l e Φ(x, y , π) = (πβ — y β + 1 ) , ( β = l , •••,
71 — 1). The corresponding vector differential system (2.4) is readily
seen to be normal on every subinterval, and (u(x) v(x)) is a solution
of this system if and only if ua(x) = y^~l)(x), (a — I, ••• , n), where y(x)
is a solution of the self-adjoint differential equation

It is to be noted also that for a system (2.4) normal on every subinterval
the results of Theorems 8.1 and 8.2 are valid, with (8.4) replaced by



PRINCIPAL SOLUTIONS OF NON-OSClLLATORY SYSTEMS 169

the condition that ω(x, y, π)Ξ>0 for arbitrary (x, y; π) with x e Xo,
and satisfying Φ(x, y, τr) = O.

Finally, it is to be remarked that for an equation (2,4) with
coefficients given by (9.5), and which is not normal on every subinterval
of X, there do exist suitable modifications of Theorems 4.2 and 4.3
which with an altered definition of principal solution enable one to
establish certain results corresponding to those of Sections 5,6 however,
the details of these results will not be presented here.
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