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1. Introduction. In a recent paper, [4], Smith and Tarski studied
the interrelations between completeness and distributivity properties of
a Boolean algebra. Independently, the author also obtained some of the
results of Smith and Tarski. This work was reported in [2]. The present
paper continues the study of distributivity in Boolean algebras. Specifi-
cally, it deals with the problem of imbedding a Boolean algebra B in
an α-distributive, /^-complete algebra, a and β being infinite cardinal
numbers. If it is required that the imbedding be regular, that is, preserve
existing joins and meets, then (see [3]) the problem is equivalent to the
question of when the normal completion of B (or a subalgebra of the
completion) is α-distributive. Our two main results can be briefly stated
as follows :

THEOREM 3.1. Every a-distributive Boolean algebra can be regularly
imbedded in an a-complete, a-distributive Boolean algebra.

THEOREM 5.1. There exists an a-field of sets whose normal com-
pletion is not a-distributive.

Between these principal results, we obtain two simple conditions,
one of which is necessary, the other sufficient for the normal completion
of a Boolean algebra to be α-distributive. These appear naturally as
particular cases of more general facts relating properties which are
similar to, but not identical with α-distributivity and ^-completeness.

2. Preliminary results. The notation of this paper will be the same
as that of [2]. The Greek letters α, β and γ always denote cardinal
numbers, while p, <? and τ are used as indices belonging to sets R, S
and T respectively. The symbol oo will be used as though it were
a largest cardinal. This is a notational convenience, and in no case in-
volves questionable logic. As in [2], a subset A of an arbitrary Boolean
algebra B is called a covering (of B) if the least upper bound of A in
B is the unit u of B. If the elements of the covering A are disjoint,
then A is termed a partition. Finally, if the covering ^partition) A is
of cardinality less than, or equal to a, symbolically A^α, then A is
called an α-covering (respectively, α-partition). If A and A are sub-
sets of B, then A is said to refine A when every aeA is<£some aeA.
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DEFINITION 2.1 (Smith-Tarski). A Boolean algebra B is called (a,
β) -distributive if

Λ V b = \ / Λ b ί ) F = T

holds identically when S^a, T^β and the bounds are assumed to exist
in B.

Some elementary consequences of this definition are worth noting :

(2.2) If B is (α, /^-distributive and a'-^a, βf^βy then B is (a\ β')~
distributive. Any regular1 subalgebra of an (a, β)-distributive Boolean
algebra is (a, β)-distributive. Every Boolean algebra is (n, β)-distributive,
where n is finite and β is arbitrary.

The last assertion of (2.2) is a variant of the Tarski-von Neumann
theorem (see [1], p. 165). This infinite distributivity is a property of
Boolean algebras which we use repeatedly and without mention.

A useful characterization of (α, /^-distributive Boolean algebras is
given by the following theorem, which, in somewhat different terms,
appears in [4]. Since this characterization is used often in the sequal,
we sketch a proof.

THEOREM 2.3. Let a and β be arbitrary cardinal numbers. A Boolean
algebra B is (a, β)-distributive if and only if, for any family {Aσ\σ e S} of β-
coverings of B with S^af there is a covering of B which refines every Aσ.

Proof Suppose B is (^/^-distributive. Let {AJσ-eS} be a given
family of /5-coverings with S^a. It can be assumed that every Aσ is
indexed by the same set T: Aσ={aστ\τ^T}. Let A~{aeB\{a} refines
every Aσ). Clearly A refines every Aσ. If A is not a covering of B, there
exists bφO (the zero of B) which is disjoint from every as A. Setting
bστ=aστΛb, it is easy to see that AaVAT=&>0= VψΛAψoo T h ί s c o n "
tradicts (α, β)-distributivity. Thus A is a covering.

Conversely, let B satisfy the condition of the theorem. Suppose
Vrerbσr, ΛσesVτ6ϊ*crr=& and Λσ€A< (̂σ) exist for all & G S Siπd all ψ e F
= TS. Let ω be a symbol not in T. Put T = T[j{ω}, 6^=6', Aσ={bστ\
τeT'},bφ= ΛaeΦσφ(σ) for all φeF. Then each Aσ is a /9-covering, so by
assumption there is a covering A which refines every Άσ. If a e A, then
either a<^bφ for some φeF, or else a<^b\ Thus, if c^>bφ for all φ>
cVδ'^l.u.b. A^u (the unit of B). Hence, c^b. Since b is obviously
an upper bound of all bψ1 it follows that b=/\φeFbφ.

For simplicity, an (a, α)-distributive B. A. is just called α-distribu-
tive.

1 A subalgebra B of a Boolean algebra B is called regular (see [3]) if, whenever a
— l.u.b. A in B (a£B, A^B), then α=l.u.b. A in B also. Of course, in a Boolean al-
gebra, this property implies its dual and conversely.
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COROLLARY 2.4. A Boolean algebra B is a-distributive if and only
if every family {Aσ\σ e S) of binary partitions with S^La has a common
refining covering.

Indeed, if {Aσ\<r e S} (S^a) is a family of α-coverings, say Aσ

= {aστ\τeT}9 then, setting A σ τ =[α σ τ , ( O ' ] , the set {Aστ\σeS, reT} is
a family of no more than a binary partitions of B and any covering which
refines all Aσr is a common refinement of all Aσ (because /\7{aστy — 0.

For future reference, we list some of the well known properties of
the normal completion (or completion by " cuts " ) of a Boolean algebra.
The Stone-Glivenko theorem ((2.5) below) is proved in the standard re-
ference [1], The proofs of (2.6) to (2.8) are conveniently collected
in [3].

(2.5) (Stone-Glivenko) The normal completion of a Boolean algebra
is a Boolean algebra.

(2.6) Let B be the normal completion of the Boolean algebra B.
Then B is a regular subalgebra of B.

(2.7) Any Boolean algebra B is dense in its normal completion B.
That is, if OΦbeB, then there exists beB with k

(2.8) If the Boolean algebra B is a dense subset of the complete
Boolean algebra B, then B is isomorphic to the normal completion of
B. Moreover, if BaBaB and B is complete, then B—B.

DEFINITION 2.9. Let B be a Boolean algebra. Let B be the normal
completion of B. Let a be an infinite cardinal number. The normal a-
completion of B is the intersection of all α-cornplete subalgebras of B
which contain B. Denote this algebra BΛ. It will also be convenient
to write B°° for B.

Clearly, BΛ is the smallest α:-complete subalgebra of B°° containing
B. Moreover, B is dense in B* and is regularly imbedded in B*.

3. The imbedding theorem. The primary purpose of this section
is to prove Theorem 3.1 (stated in the introduction). However, the
method of the proof is used several times in the following sections, so
it behooves us to present it in a form which is sufficiently general to
cover all future needs.

LEMMA 3.2. Let B be a complete Boolean algebra. Let %_be a non-
empty family of partition of B such that if {Aσ\σ e S} gSί and S ^ α , then
some A e 2ί refines every Aσ. Let B be the set of all joins of subsets of
the partitions A in Si. Then B is an ct-complete Boolean algebra such
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that A^B for every A 6 Si and every a-covering of B is refined by some
Ae3ί. Hence, B is a-distribittive.

Proof If C g A e 31, then (l.u.b. C)' = Lu.b. (A-C), since A is
a partition. Hence B is closed under complementation. Suppose {cσ\σ e S}
is a subset of B with S<^a. By definition of B, for each σ e S , there
exists a partition A^eSI and a subset Cσ^Aσ such that c σ=l.u.b. Cσ.
Then Aσ refines the binary partition {cσ, (cσ)'}. Let A e 2ί be a common
refinement of all Aσ. Then A is a common refinement of all {cσ, (cσ)'}
and g.l.b. {cσ |σ-eS}=l.u.b. {aeA\a<Zcσ all o eSjeB. Indeed, c = l.u.b.
{αeA|α<^cσ, all σ e S J ^ v ^ σ is clear. But also, c' = l.u.b. {αeA|α<;
(Co)', seme <reS}^ΛσeιJίCσ)':=(ΛσeίPo)'- Hence, B is an α-complete B.A.
Obviously, A^B for all A 6 St. If A is an α:-covering of B, then, as
proved above, every binary partition {c, c'} with c e A is refined by some
Ac e St. Choosing A e §ί to be a refinement of all these Ac gives a refine-
ment of A. In fact, any aeA satisfies either α<^c, or a<Lc' for all
e e l If a^c' for every c, than α^Λ c e2C / = (l.u.b. A)' = 0, since A is
a covering. Thus every aeA satisfies a<^c for some e e l

Proof of (3.1). Let 5 be the normal completion of B. Let 3ί be
the set of all partitions of B, which are of the form Π σ € ) SA σ= {bφ\φe 2s},
where the Aσ~ {aσ0, ασl} are binary partitions of B and bφ= Λσe,$Ar<κo ) 6 J?.
The fact that Π ê̂ Ao- is a partition follows directly from the assumed
distributivity of B. If Aτ=UσesωAσre^L for all r e ϊ 7 with T^a, then
A=Π τ e r Π σ e s C τ )A < n .e Sί is a common refinement of all Aτ. Thus, the
hypotheses of (3.2) are satisfied. Consequently, there is an α:-complete,
α-distributive Boolean algebra B with Bξ^BξΞ^B. Since B is a regular
subalgebra of B, it is also a regular subalgebra of B.

4 Conditions for distributivity. In this section, we will examine
the following five properties of a Boolean algebra B :
( IΛ ) B is α-complete
( IIa ) every subset of an ^-partition of B has a l.u.b. in B
(IΠβ) every /3-covering of B can be refined by a /^-partition
(7FΛ β) B is (α, /^-distributive
( VΛβ ) If {Aσ\o-eS} is a set of /9-partitions of B with S^a, then there

is a covering of B which is a common refinement of every Aσ.
Certain relations between these properties are more or less evident.

(4.1) (a) Ia and IIΛ are hereditary in a, that is, I,, implies Iy and
II"Λ implies Πy for all γ<^a

(b) IVΛβ and V̂ β are hereditary in both a and /3
(c) Ia implies Πa

(d) IVΛβ implies VΛβ
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(e) VΛβ and IΠβ together imply IVΛβ

(f) if IΛ holds for all a<β, then ΠIβ, is satisfied
(g) IVaΛ is equivalent to Va2 and hence to VΛΛ

(h) III"oo is always satisfied, so IV^ is equivalent to F̂ oo.

Proofs. The statements (a)-(e) are obvious. If Z? is α-complete for
all a<β, and A—{aξ} is a ^-covering of B indexed by the set of all
ordinals ξ of cardinality less than β, then {cξ\ξ<β} will be a/3-partition
refining A if Cξ=aξA(Vv<^aηy. The assertion of (g) is a restatement of
(2.4). Finally, with the help of Zorn's lemma, it is always possible to
construct a partition to refine any covering. This construction, the de-
tails of which we omit, proves (h).

It appears from (4.1) (e)-(h) that the condition VΛβ is only slightly
weaker than IVaβ. On the other hand, the condition IIa is substantially
weaker than IΛ, as the following example indicates. Let X be a set of
cardinality β let B be the Boolean algebra of finite subsets of X and
their complements. If a is any cardinal number less than β, then any
α-partition of B is finite. Consequently, B satisfies IIΛ. In one case
however, the properties IΛ and IIΛ are equivalent, namely :

(4.2) //«, is equivalent to Zoo.

Proof. Let C be an arbitrary subset of B. Let C'={deB\d*c = Q,
all ceC}. Then clearly, u is the only upper bound of the set CuC,
that is, CuC" is a cover. By (4.1) (h), there is a partition A refining
CuC. If D={aeA\{a} refines C}, then A-D= {ae A|αΛC = 0, all ceC}.
Hence l.u.b. C=l.u.b. D exists by //«,.

It is appropriate now to explain the object of studying the various
properties listed above. Our main interest, of course, is the relation
between /«, and IVΛoύ, and specifically we would like to find simple neces-
sary and sufficient conditions for the normal completion of a Boolean
algebra to satisfy IVΛΛ. It is rather easy to prove that IVaoo is sufficient
and /FΛθχP(αθ is necessary for α-distributivity in Z?°°. The effort to fit
these two facts into a broader pattern leads to consideration of conditions
Πβ and Vaβ. It turns out that properties IIβ and Vaβ are tied together
rather closely. Unfortunately Iβ and IVaβ do not enjoy such an intimate
relationship and the two conditions mentioned above are the more or less
accidental offspring of Πβ and Vaβ rather than the progeny of Iβ and
IVΛβ.

THEOREM 4.3. // the Boolean algebra B satisfies VΛβ and Z77, where
y—βΛ, then B satisfies Vay.

Proof. The theorem is trivial if a is finite, so it will be assumed
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that a is an infinite cardinal number. Let A be a ^-partition of B.
Then A can be indexed by a subset of Ts, where T=β and ~S=a, say
A={aφ}. Since B satisfies Πy, it is meaningful to define 6στ = l.u.b.
{aψ\φ(σ-) = τ} for each σeS, τeT. Then Aσ={bσr\τeT} is a β-partition
of B and it is easy to see that any common refinement of all Aσ is also
a refinement of A, Now suppose {Ap\peR} is a set of ^-partitions of
B and R<^a. For each p in β, define (as above) a set of /^-partitions
{Apσ\σeSp} with the property that a common refinement of every Apσ

with o e Sp is also a refinement of Ap. Consider the set of all ^-parti-
tions {Apσ.\σ-eSp, peR). There are at most a2-a of these, so by pro-
perty Vaβ, there is a covering A which refines every Apσ. But then A
refines every Ap. Thus, B satisfies Vay.

COROLLARY 4.4 (Smith-Tarski [4]). IfB is a-distributive and ^-com-
plete, then B is (a, ^-distributive.

COROLLARY 4.5. A necessary condition that Bβ be a-distributive,
where β^2Λ, is that B be (a, ^-distributive.

Indeed, if Bβ is ^-distributive, then by (4.4) it is (a, 2*)-distributive.
But B is a regular subalgebra of Bβ and hence (by (2.2)) B is also (a,
2")-distributive.

We do not know whether the converse of 4.5 holds. That is, if

B is (α, 2*)-distributive, does it follow that B%Λ is α-distributive ? This
seems doubtful, but if the goal of 2*-completeness (that is, property I2<Λ)
is replaced by the property IIι0L, then a positive result is obtained (in
Corollary 4.8 below).

THEOREM 4.6. Let B be an arbitrary Boolean algebra. Define B to
be the intersection of all algebras B with the property Πβ such that
B^BQB00. Then B satisfies IIβ. Moreover, B has property VΛβ if and
only if B has property F Λ β . Also, if B is a-complete and satisfies Vaβ,
where βΛ—β, then B is a-complete.

Proof. Clearly B satisfies Πβ. Since B is a regular subalgebra of
By the property VΛβ for B implies the same property for B. To estab-
lish the converse, it is sufficient to show that every β-partition of B can
be refined by a β-partition of B.

Let SI be the set of all β-partitions of B. By (2.5), every A e Si can
be considered as a partition of B°°. By (2.2), every finite subset of 31
has a common refinement in SI. Let B be the set of all joins in B°° of
a subset of some A e 31. By (3.2), B is a Boolean algebra containing B.
Clearly B^B. Suppose A is a /5-partition of B, say A— {aτ\τ e T]. Then
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aT=Vi&«rrkeSv} with bσreB, b^b^^O for σψσ\ and Sr^β. Con-
sequently, A— {bσr\σ- e Sτ, reT} is a /^-partition of B which refines A.
The join of any subset of A is also the join of a subset of A and
therefore in B. Since A was an arbitrary /^-partition, B has property
//β. Consequently, B^B. Thus every /9-partition of B=B can be re-
fined by a ^-partition of B.

Finally, suppose B is ^-complete and satisfies VΛβ, with βΛ~β. If
{ΛrKeS}, S^α: is a set of β-partitions of B, then ΠσesΛr={ΛσeA-l
δσ6^4σ} is a βΛ=/3-partition. Hence, by (3.2), Z?=J3 is α-complete.

COROLLARY 4.7. The normal completion of a Boolean algebra B is
(<%, oo )-distributive if and only if B is (a, ^-distributive.

Proof By (4.6), (4.1) and (4.2).

COROLLARY 4.8. // the continuum hypothesis is true for the infinite
cardinal a (that is, 2a covers α), then an a-complete Boolean algebra B
can be regularly imbedded in an a-complete, a-distributive algebra satis-
fying IIzΛ if and only if B is (a, ^-distributive.

Proof. The sufficiency of (α, 2α)-distributivity is a consequence of
(4.6) and (4.1). The necessity follows from (4.3), (4.1) and (2.2).

5. An example. Because of (4.5), the Theorem (5.1) of the intro-
duction can be proved by constructing an α-field which is not (α, 2*)-
distributive.

Let X be a set of cardinality 2*. Denote by Y the set of all ordinal
numbers of cardinality less than a. Let Z be the set of all bounded func-
tions in Yx, that is, functions / for which there is an η e Y such that
f[x)<η for all x in X. Let £? be the collection of all sets of the form

where WQX, W^a and ψ e Yw. It is obvious that -^contains the empty
set and is closed under α-intersections.

Let ^ be the a -field generated by ^ . It is to be shown that S^
is not (a, 2*)-distributive. The proof hinges on a lemma, which is useful
in its own right.

LEMMA 5.2. Let Z be a set. Suppose J5f is a nonempty family of sub-
sets of Z with the following properties :
(i) every a-intersection of sets in J2^ is in 5^;
(ii) the complement of any set of Jzf is a union of sets of JSf.
Let ά^ be the a-field generated by ~Sf. Then Jίf is dense in κ^

r.
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Proof. Let lδ be the complete B. A. of all subsets of Z. Let SI be
the collection of all partitions A of 58 with AgΞ-2^. If {Aσ|σeS}£Ξ2l,

and say Aσ={Lσr\τeTσ}y then by (i), UσesAσ= {C\σesLσφM\φ
sTV} is in 21 and refines every Aσ. Let 58 consist of all sets
such that both V and VG are disjoint unions of set of J*f. By

(3.2) and (ii), j£fS&+7& and 8̂ is an α-field. Thus, j ^ ^ J ^ g ί ? . . Since
every set of 23 is a union of sets of jSr̂ , the same is true of ^~ and
in particular, ^f is dense in

We now proceed to prove that ^ is not (a, 2*)-distributive. For
each pair (x, η) with xeX and ηe Y, define T(Xt^ — {feZ\f(x) = η}.
Clearly TiXtΎ)^ e £?. For each η e Y, let Av={TCx>^\xe X}. The argument
is completed by showing
( 1 ) Av is a 2*-covering of ^
(2 ) no covering of J^ refines every A,.

Proof of (1). Evidently, Z^ = 2Λ, so the only thing to prove is that
the l.u.b. of Av in J^~ is Z. The first step is to show that the conditions
(i) and (ii) of (5.2) are fulfilled, so that ^ is dense in ^ . Condition
(i) is clear. For condition (ii), let L=Lw>(pe S^. Then L°=\Jxew{f e Z\
f(x)Φφ(x)}=\Jxew(V{T(XlV')\ηΦφ(x)}) is a union of sets of jSf7.

Since jSf is dense in . J S it is enough, in proving (1), to show that
if L e ^ satisfies LΓiT(Xtη )=φ for all x, then L—φ. Suppose LΦφ and
say L=Lw>φ. Pick / e L and let # e X — TΓ. Define geZ hy g{x) = η,
9(y):=zf(y) if ^ ^ ^ . Then ^ e Γ(aj>^ and geL. Hence, Lf]T(x,^Φφ, which
is the required conclusion.

Proof of (2). First note that Π , € F ( U Λ ) = Φ
 F o r otherwise there

would be a n / e Z whose range included every ηeY, contray to the bounded-
ness of the functions of Z. But if A is a subset of S^ which refines
every Aη, then i M s u A , for all η. Hence, (J AgΞ ΓUeF( U ^ ) = Φ, so A
cannot be a covering.
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