CURVATURE IN HILBERT GEOMETRIES

Paul Kelly and Ernst Straus

For every pair of points, p and q, interior to a simple, closed, convex curve C in the Euclidean plane, the line $\xi=p \times q$ cuts C in a pair of points u and v. If C has at most one segment then the Hilbert distance from p to q, defined by

$$
h(p, q)=\left|\log \left(\begin{array}{cc}
u p & v q \\
u q & v p
\end{array}\right)\right|,
$$

is a proper metric (where up denotes the Euclidean distance from u to p), and is invariant under projective transformations. The geometry induced on the interior of C is a Hilbert geometry, and the Hilbert lines are carried by Euclidean lines [2].

We shall be concerned here with curvature at a point defined in a qualitative rather than a quantitative sense (cf. [1, p 237]).

Definition 1. The curvature at p is positive or negative if there exists a neighborhood U of p such that for every x, y in U we have

$$
2 h(\bar{x}, \bar{y}) \geqq h(x, y),
$$

respectively

$$
2 h(\bar{x}, \bar{y}) \leqq h(x, y),
$$

where \bar{x}, \bar{y} are the Hilbert midpoints respectively of the segments from p to x and p to y. If there is neither positive nor negative curvature at a point then the curvature is indeterminate at that point. This qualitative curvature is clearly a projective invariant.

In order to state our result we need one more concept.
Definition 2. A point p is a projective center of C if there exists a projective transformation, π, of the plane so that πp is the affine center of πC.

A projective center is characterized by the following. Let ξ be a line through p, and let $\xi \cap C=\{u, v\}$, and let p_{ξ}^{\prime} be the harmonic conjugate of p with respect to u and v. Finally, let L_{p} be the locus of all p_{ξ}^{\prime}. Then p is a projective center if and only if L_{p} is a straight line.

Conic sections are characterized by the fact that every point in their interior is a projective center [3]. We can now state our main result, which solves a problem of H. Busemann [1, Problem 34, p. 406].

Theorem. If p is a point of determinate curvature then it is
a projective center of C. In particular, if the curvature is determinate everywhere then C is an ellipse and the Hilbert geometry is hyperbolic.

We first establish some lemmas.
Lemma 1. For any point p, interior to C, there exists a line η (possibly the line at infinity) which intersects L_{p} in at least two points and does not intersect C.

Proof. There is at least one chord of C which is bisected by p. If ξ_{1} is the line of such a chord then ξ_{1} intersects L_{p} at q_{1} on the line at infinity. If L_{p} has a second point at infinity then the line at infinity satisfies the lemma. If L_{p} has only one point at infinity then L_{p} is a connected curve. It cannot lie within the strip formed by the two supporting lines of C which are parallel to ξ_{1} for then it would intersect C. There is therefore a point q_{2} of L_{p} outside this strip and the line $\eta=q_{1} \times q_{2}$ satisfies the lemma.

Corollary. For every p in the interior of C there exists a projective transformation, π, so that πC is a closed, convex curve, and so that πp is the midpoint of two mutually perpendicular chords of πC whose endpoints are points of differentiability of πC.

Proof. Since all but a denumerable set of points of C are points of differentiability, we may choose the line η of Lemma 1 so that $\eta \cap L_{p}$ contains $p_{\xi_{1}}^{\prime}$ and $p_{\xi_{2}}^{\prime}$ and so that C is differentiable at its points of intersection with ξ_{1} and ξ_{2}. Now let π_{1} be a projective transformation which maps η into the line at infinity, and let π_{2} be an affine transformation which maps $\pi_{1} \xi_{1}$ and $\pi_{1} \xi_{2}$ into perpendicular lines. Then $\pi=\pi_{2} \pi_{1}$ has the required properties.

Lemma 2. If a chord of C, of (Euclidean) length $2 k$, has p for its midpoint and if q is a neighboring point on the chord at (Euclidean) distance ds from p, then $d S=(2 / k) d s+O\left(d s^{3}\right)$, where $d S=h(p, q)$.

Proof. If the endpoints of the chord are u and v, and the order of the points on the chords is u, p, q, v, then, by definition,

$$
\begin{aligned}
d S= & \log \left(\frac{u p+p q}{u p}\right)\left(\frac{v p}{v p-p q}\right)=\log \left(\frac{k+d s}{k}\right)\left(\frac{k}{k-d s}\right) \\
= & \log \left(1+\frac{d s}{k}\right)-\log \left(1-\frac{d s}{k}\right) \\
= & {\left[\frac{d s}{k}-\frac{1}{2}\left(\frac{d s}{k}\right)^{2}+\frac{1}{3}\left(\frac{d s}{k}\right)^{3}-\cdots\right] } \\
& \quad-\left[-\frac{d s}{k}-\frac{1}{2}\left(\frac{d s}{k}\right)^{2}-\frac{1}{3}\binom{d s}{k}^{3}-\cdots\right]
\end{aligned}
$$

$$
=\frac{2}{k} d s+O\left(d s^{3}\right)
$$

Lemma 3. Let (r, θ) be polar coordinates whose pole p is an interior point of C at which the curvature is determinate. If C is differentiable at the ends of two perpendicular chords which bisect each other at p, then C satisfies the " one-sided" differential relations

$$
\begin{align*}
& \left.\frac{d}{d \theta}\binom{\csc 2 \theta}{r^{2}}\right|_{\theta_{0}^{+}}=\left.\frac{d}{d \theta}\left(\frac{\csc 2 \theta}{r^{2}}\right)\right|_{\left(\theta_{0}+\pi\right)^{+}} \\
& d \tag{1}\\
& \left.d \theta\left(\frac{\csc 2 \theta}{r^{2}}\right)\right|_{\theta_{0}^{-}}=\left.\frac{d}{d \theta}\left(\frac{\csc 2 \theta}{r^{-2}}\right)\right|_{\left(\theta_{0}+\pi\right)^{-}}
\end{align*}
$$

for all θ_{0}.
Proof. We first introduce Cartesian coordinates, with origin p, so that the y-axis intersects C at points of second order differentiability, and so that the axes do not coincide with the two given chords bisected by p. The curve C is then given by an "upper" arc $y=y_{1}(x)$ and a "lower" arc $y=-y_{2}(x)$. Let the bisected chords lie on the lines $\xi_{1}: y=a x$ and $\xi_{2}: y=(1 / a) x$ respectively. Let $b_{1}=(d x, a d x)$ and $c_{1}=(2 d x$, $2 a d x)$ on ξ_{1}, and $b_{2}=(d x,-(1 / a) d x)$ and $c_{2}=(2 d x,-(2 / a) d x)$ on ξ_{2}, where $d x$ is positive and chosen so that b_{1}, b_{2}, c_{1}, and c_{2} lie inside C. Assume that p is a point of negative curvature. Then.

$$
\begin{equation*}
2 h\left(m_{1}, m_{2}\right) \leqq h\left(c_{1}, c_{2}\right) . \tag{2}
\end{equation*}
$$

where m_{i} is the Hilbert midpoint of the segment from p to c_{i}.
To show that $h\left(m_{i}, b_{i}\right)=O\left(d x^{3}\right)$, we define $d S_{1}=h\left(p, c_{1}\right)$ and $d s_{1}=p c_{1}$. With $2 k$ representing the Euclidean length of the chord on ξ_{1}, it follows from Lemma 2 that $d S_{1}=(2 / k) d s_{1}+O\left(d s_{1}^{3}\right)$, and hence that

$$
\begin{equation*}
h\left(p, m_{1}\right)=\frac{1}{2} d S_{1}=\frac{1}{k} d s_{1}+O\left(d s_{1}^{3}\right) . \tag{3}
\end{equation*}
$$

Also, from Lemma 2 and the relation $d s_{1}=2 p b_{1}$, it follows that

$$
\begin{equation*}
h\left(p, b_{1}\right)=\frac{2}{k} p b_{1}+O\left[\left(p b_{1}\right)^{3}\right]=\frac{1}{k}\left(d s_{1}\right)+O\left(d s_{1}^{3}\right) . \tag{4}
\end{equation*}
$$

Since $h\left(m_{1}, b_{1}\right)=\left|h\left(p, m_{1}\right)-h\left(p, b_{1}\right)\right|$, equations (3) and (4) imply that $h\left(m_{1}, b_{1}\right)$ $=O\left(d s_{1}{ }^{3}\right)$. But $d s_{1}=d x\left(1+a^{2}\right)^{1 / 2}=O(d x)$, hence $h\left(m_{1}, b_{1}\right)=O\left(d x^{3}\right)$. Similarly, $h\left(m_{2}, b_{2}\right)=O\left(d x^{3}\right)$, and therefore

$$
\begin{equation*}
h\left(m_{1}, b_{1}\right)+h\left(m_{2}, b_{2}\right)=O\left(d x^{3}\right) . \tag{5}
\end{equation*}
$$

From the triangle inequality,
(6)

$$
h\left(m_{1}, m_{2}\right) \geqq h\left(b_{1} b_{2}\right)-h\left(m_{1}, b_{1}\right)-h\left(m_{2}, b_{2}\right) .
$$

This, together with (5), yields

$$
\begin{equation*}
h\left(m_{1}, m_{2}\right) \geqq h\left(b_{1}, b_{2}\right)-O\left(d x^{3}\right), \tag{7}
\end{equation*}
$$

and from (1) and (7) we obtain

$$
\begin{equation*}
2 h\left(b_{1}, b_{2}\right)<h\left(c_{1}, c_{2}\right)+O\left(d x^{3}\right) . \tag{8}
\end{equation*}
$$

We now wish to calculate the distances in (8). First, we have

$$
\begin{align*}
h\left(b_{1}, b_{2}\right)= & h\left[(d x, a d x),\left(d x,-\frac{1}{a} d x\right)\right] \tag{9}\\
= & \log \left[\begin{array}{c}
y_{1}(d x)+\begin{array}{c}
1 \\
a \\
d x \\
y_{1}(d x)-a d x
\end{array} \\
y_{2}(d x)+a d x \\
y_{2}(d x)-\frac{1}{a} d x
\end{array}\right] \\
= & \log \left[1+\frac{d x}{a y_{1}(d x)}\right]+\log \left[1+\frac{a d x}{y_{2}(d x)}\right] \\
& \quad-\log \left[1-\frac{a d x}{y_{1}(d x)}\right]-\log \left[1-\frac{d x}{a y_{2}(d x)}\right] .
\end{align*}
$$

Using the Maclaurin expansion of the logarithms, and collocting first and second degree terms, we obtain

$$
\begin{align*}
h\left(b_{1}, b_{2}\right)=d x & \left(a+\frac{1}{a}\right)\left[\frac{1}{y_{1}(d x)}+\frac{1}{y_{2}(d x)}\right] \tag{10}\\
& +\frac{d x^{2}}{2}\left(a^{2}-\frac{1}{a^{2}}\right)\left[\frac{1}{y_{1}^{2}(d x)}-\frac{1}{y_{2}^{2}(d x)}\right]+O\left(d x^{3}\right) .
\end{align*}
$$

Because both of the functions $y_{1}(x)$ and $y_{2}(x)$ are convex and have second derivatives at $x=0$, they can be represented in the form

$$
\begin{equation*}
y_{i}(d x)=y_{i}(0)+y_{i}^{\prime}(0) d x+O\left(d x^{2}\right), \quad i=1,2 \tag{11}
\end{equation*}
$$

and hence

$$
\begin{align*}
& \frac{1}{y_{i}(d x)}=\frac{1}{y_{i}(0)}-\frac{1}{y_{i}^{\prime}(0)} y_{i}^{2}(0) \tag{12}\\
& \frac{1}{y_{i}^{2}(d x)}=\frac{1}{y_{i}^{2}(O)}+O(d x) .
\end{align*}
$$

The substitution of (12) in (10) gives

$$
\begin{align*}
h\left(b_{1}, b_{2}\right) & =d x\left(a+\frac{1}{a}\right)\left[\frac{1}{y_{1}}-\frac{y_{1}^{\prime} d x}{y_{1}^{2}}+\frac{1}{y_{2}^{2}}-\frac{y_{1}^{\prime} d x}{y_{2}^{2}}\right] \tag{13}\\
& +\frac{d x^{2}}{2}\left(a^{2}-\frac{1}{a^{2}}\right)\left(\frac{1}{y_{1}^{2}}-\frac{1}{y_{2}^{2}}\right)+O\left(d x^{3}\right),
\end{align*}
$$

where $y_{i}=y_{i}(0)$. Hence

$$
\begin{align*}
2 h\left(b_{1}, b_{2}\right) & =2 d x\left(a+\frac{1}{a}\right)\left[\frac{1}{y_{1}}+\frac{1}{y_{2}}-\frac{y_{1}^{\prime} d x}{y_{1}^{2}}-\frac{y_{2}^{\prime} d x}{y_{2}^{2}}\right. \tag{14}\\
& \left.+\frac{d x}{2}\left(a-\frac{1}{a}\right)\left(\frac{1}{y_{1}^{2}}-\frac{1}{y_{2}^{2}}\right)\right]+O\left(d x^{3}\right) .
\end{align*}
$$

By the substitution of $2 d x$ for $d x$ we obtain

$$
\begin{align*}
h\left(c_{1}, c_{2}\right) & =2 d x\left(a+\frac{1}{a}\right)\left[\frac{1}{y_{1}}+\frac{1}{y_{2}}-\frac{2 y_{1}^{\prime} d x}{y_{1}^{2}}-\frac{2 y_{2}^{\prime} d x}{y_{2}^{2}}\right. \tag{15}\\
& \left.+d x\left(a-\frac{1}{a}\right)\left(\frac{1}{y_{1}^{2}}-\frac{1}{y_{2}^{2}}\right)\right]+O\left(d x^{3}\right) .
\end{align*}
$$

Substituting this and (14) in (8) we have

$$
\begin{align*}
& 2 d x\left(a+\frac{1}{a}\right)\left[\begin{array}{l}
1 \\
y_{1}
\end{array}+\frac{1}{y_{2}}-y_{1}^{\prime} d x-y_{2}^{\prime} d x\right. \tag{16}\\
& \\
& \left.\quad+\frac{d x}{y_{1}^{2}}\left(a-\frac{1}{a}\right)\left(\frac{1}{y_{2}^{2}}-\frac{1}{y_{1}^{2}}\right)\right] \\
& <2 d x\left(a+\frac{1}{a}\right)\left[\begin{array}{l}
1 \\
y_{1}
\end{array}+\frac{1}{y_{2}}-\frac{2 y_{1}^{\prime} d x}{y_{1}^{2}}-\frac{2 y_{2}^{\prime} d x}{y_{2}^{2}}\right. \\
& \\
& \left.\quad+d x\left(a-\frac{1}{a}\right)\left(\frac{1}{y_{1}^{2}}-\frac{1}{y_{2}^{2}}\right)\right]+O\left(d x^{3}\right) .
\end{align*}
$$

By dividing both sides of this inequality by $2 d x(a+1 / a)$, and then rearranging the terms, we obtain

$$
\begin{equation*}
d x\left(\frac{y_{1}^{\prime}}{y_{1}}+\frac{y_{2}^{\prime}}{y_{2}}\right)-\frac{d x}{2}\left(a-\frac{1}{a}\right)\left(\frac{1}{y_{1}^{2}}-\frac{1}{y_{2}^{2}}\right)<O\left(d x^{2}\right) . \tag{17}
\end{equation*}
$$

Division of both sides of (17) by $d x$ yields a new inequality whose right side is $O(d x)$ but whose left side is independent of $d x$. From this it follows that

$$
\begin{equation*}
\frac{y_{1}^{\prime}}{y_{1}}+\frac{y_{2}^{\prime}}{y_{2}}-\frac{1}{2}-\left(a-\frac{1}{a}\right)\left(\frac{1}{y_{1}^{2}}-\frac{1}{y_{2}^{2}}\right) \leqq 0 . \tag{18}
\end{equation*}
$$

Consider now a reflection in the y-axis taking C into a curve \bar{C} which is divided by the x-axis into an "upper" arc $z=z_{1}(x)$ and a " lower" arc $z=-z_{2}(x)$. With the lines $z=(1 / a)$ and $z=-a x$ playing the roles of ξ_{1} and ξ_{2}, and with $\bar{b}_{1}, \bar{c}_{1}, \bar{b}_{2}, \bar{c}_{2}$ defined respectively by $(d x,(1 / a) d x),(2 d x$, $(2 / a) d x),(d x,-a d x)$, and $(2 d x,-2 a d x)$, a repetition of the former argument leads to

$$
\begin{equation*}
\frac{z_{1}^{\prime}}{z_{1}^{2}}+\frac{z_{2}^{\prime}}{z_{2}^{2}}-\frac{d x}{2}\left(\frac{1}{a}-a\right)\left(\frac{1}{z_{1}^{2}}-\frac{1}{z_{2}^{2}}\right) \leqq 0 . \tag{19}
\end{equation*}
$$

Since $z_{i}=y_{i}$ and $z_{i}^{\prime}=-y_{i}^{\prime}$, (19) is also

$$
\begin{equation*}
-\frac{y_{1}^{\prime}}{y_{1}^{2}}-\frac{y_{2}^{\prime}}{y_{2}^{2}}+\frac{d x}{2}\left(a-\frac{1}{a}\right)\left(\frac{1}{y_{1}^{2}}-\frac{1}{y_{2}^{2}}\right) \leqq 0 . \tag{20}
\end{equation*}
$$

Combining the opposite inequalities (18) and (20), we obtain

$$
\begin{equation*}
\frac{y_{1}^{\prime}}{y_{1}^{2}}+\frac{y_{2}^{\prime}}{y_{2}^{2}}-\frac{1}{2}\left(a-\frac{1}{a}\right)\left(\frac{1}{y_{1}^{2}}-\frac{1}{y_{2}^{2}}\right)=0 . \tag{21}
\end{equation*}
$$

Since (21) is an equality, it is clear that the same result would have been obtained if all preceding inequalities has been reversed. In other words (21) holds if p is a point of determinate curvature.

To express (21) in polar coordinates, let the polar axis be ξ_{1} and let θ_{0} designate the angle between the polar axis and the upper half-line of the y-axis. The angles of inclination to the x-axis of the tangent lines to C at $\left(0, y_{1}\right)$ and $\left(0, y_{2}\right)$ are α_{1} and α_{2} respectively and the clockwise angles from the radius vectors to the tangent lines at these points are ω_{1} and ω_{2}. From the standard relationships between polar and Cartesian coordinates, it follows that

$$
\begin{align*}
& y_{1}^{\prime}(0)=\tan \alpha_{1}=-\cot \omega_{1}=\left[\begin{array}{ll}
-\frac{1}{r} & \frac{d r}{d \theta}
\end{array}\right] \theta_{0} \tag{22}\\
& y_{2}^{\prime}(0)=-\tan \alpha_{2}=\cot \omega_{2}=\left[\begin{array}{ll}
\frac{1}{r} & \frac{d r}{d \theta}
\end{array}\right] \theta_{0}+\pi
\end{align*}
$$

Also, by definition, $a=\cot \theta_{0}$ so $\frac{1}{2}\left(a-\frac{1}{a}\right)=\cot 2 \theta_{0}$. Substituting this and (22) in (21) we obtain

$$
\left[-\frac{1}{r^{3}} \frac{d r}{d \theta}\right]_{\theta_{0}}+\left[\begin{array}{cc}
1 & d r \tag{23}\\
r^{3} & d \theta
\end{array}\right]_{\theta_{0}+\pi}-\left(\cot 2 \theta_{0}\right)\left[\begin{array}{c}
1 \\
r^{2}\left(\theta_{0}\right)
\end{array}-\frac{1}{r^{2}\left(\theta_{0}+\pi\right)}\right]=0
$$

and hence

$$
\begin{equation*}
\left[\frac{1}{r^{3}} \frac{d r}{d \theta}+\frac{1}{r^{2}} \cot 2 \theta\right]_{\theta_{0}}=\left[\frac{1}{r^{3}} \frac{d r}{d \theta}+\frac{1}{r^{2}} 2 \theta\right]_{\theta_{0}+\pi} . \tag{24}
\end{equation*}
$$

Multiplying both sides of (24) by $2 \csc 2 \theta_{0}=2 \csc 2\left(\theta_{0}+\pi\right)$ we have

$$
\begin{equation*}
\left.\frac{d}{d \theta} \frac{(\csc 2 \theta)}{r^{2}}\right|_{\theta_{0}}=\left.\frac{d}{d \theta} \frac{(\csc 2 \theta)}{r^{2}}\right|_{\theta_{0}+\pi} . \tag{25}
\end{equation*}
$$

Since (25) involves only first derivatives, it holds for all θ_{0} for which r is differentiable at both θ_{0} and $\theta_{0}+\pi$. Since the one-sided derivative exists everywhere, we get the desired relations in (1), for all θ_{0}, from the semi-continuity of the one sided derivative.

Proof of the Theorem. According to the corollary of Lemma 1 there is always a projective transformation such that, after the transformation,
p satisfies the conditions of Lemma 3. From (1) we obtain

$$
\begin{equation*}
\int_{\theta_{0}}^{\theta} d\left(\frac{\csc 2 \theta}{r^{2}}\right)=\int_{\theta_{0}+\pi}^{\theta+\pi} d\left(\frac{\csc 2 \theta}{r^{2}}\right), \tag{26}
\end{equation*}
$$

where the integrals are Stieltjes intergrals and the interval $\left(\theta_{0}, \theta\right)$ does not contain a multiple of $\pi / 2$. Hence

$$
\begin{equation*}
\frac{1}{r^{2}(\theta)}=\frac{1}{r^{2}(\theta+\pi)}+k_{j} \sin 2 \theta, k_{j}=\mathrm{constant} \tag{27}
\end{equation*}
$$

where

$$
(j-1) \frac{\pi}{2} \leqq \theta \leqq j \frac{\pi}{2},(j=1,2,3,4)
$$

Since r is differentiable at the points for which $\theta=0, \pi / 2, \pi, 3 \pi / 2$, we obtain from (27), upon differentiation at these points, the relations $k_{1}=k_{2}=k_{3}=k_{4}$. On the other hand, if we replace θ by $\theta+\pi$ in (27) we obtain the relations $k_{1}=-k_{3}$, and $k_{2}=-k_{4}$. In other words, $k_{j}=0$ and $r(\theta)=r(\theta+\pi)$. Since this shows p to be a metric center, it was initially a projective center.

The last statement in the theorem is well known (see [3] and e.g. [2, p.164]).

If a Hilbert metric is defined in the interior of an n-dimensional, convex surface S, the definitions for curvature and projective centers are unchanged. The metric for the space induces, on any plane through an interior point p, a two-dimensional Hilbert geometry. If p is a point of determinate curvature, it is a two-dimensional projective center for every plane through it. Since the L_{p} locus for every plane section is a line, it is easily seen that the total L_{p} locus must be a plane and hence that p is a projective center of S. If curvature is determinate everywhere then S is an ellipsoid and the geometry is hyperbolic.

It seems probable that a Hilbert geometry can contain no points of positive curvature.

References

1. H. Busemann, The geometry of geodesics, Academic Press, N.Y. 1957.
2. -, and P. Kelly, Projective geometry and projective metrics, Academic Press, N.Y. 1953.
3. T. Kajima, On a characteristic property of the conic and the quadric,, Sci. Rep., Tohoku Univ. 8, 1919

University Of California, Santa Barbara And Los Angeles.

