
EUCLIDEAN AND WEAK UNIFORMITIES

J. R. ISBELL

Introduction. This paper is a study in the structure of some special
classes of uniform spaces. In outline, machinery is developed in suc-
cessive stages, roughly two stages. The first stage is illustrated by an
unsuccessful attack on the characterization of subspaces of Euclidean
spaces, in the usual uniform structure. The second stage leads to a
characterization of those uniform spaces which are subspaces of Eucli-
dean spaces in the finest structure consistent with the topology.

The main tool in the second stage is a covariant functor on uniform
spaces to uniform spaces which is closely analogous to the derivative,
the main tool employed by Ginsburg and the author in [4]. It yields
also a number of results which complement, and a couple which improve,
results of [4] and of [5].

That tool is inapplicable to the study of the usual Euclidean uniform
structure. The approach attempted is to get a subspace of En as the
inverse limit of the nerves of its uniform covering, or of any basis of
uniform coverings. Indeed there is a basis of coverings whose nerves
are uniformly equivalent to subspaces of En—Euclidean coverings, let us
say, and the nerves, Euclidean complexes—and in some sense one can
set up an inverse system of mappings on these nerves "uniformly"
within En. The contribution of this paper is to formalize this approach
and clear away imaginary difficulties, leaving the very real difficulties
of characterizing Euclidean complexes and formulating reasonable cri-
teria for a whole sequence of complexes connected by mappings to fit
smoothly in En. Beyond this, it is shown that for a simplicial complex
to be Euclidean, it is sufficient that its 1-skeleton should be Euclidean.

The author has profited from discussions of this material with Er-
nest Michael, G. D. Mostow, and Edward Nelson.

1. Coverings. We follow the usual practice of designating a topo-
logical space (X, T) by the abbreviation X. For a uniform space (X, μ)
we write μX. As is fairly well known, the uniformity is determined
by a knowledge of

(a) which relations in X are entourages, or
(b) which coverings of X are uniform, or
(c) which pseudometrics on X are uniformly continuous. In this
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paper we are concerned mostly with coverings, and therefore we adopt
the convention that μ is the family of all uniform coverings. It is
convenient to choose the convention according to which a uniform cover-
ing need not consist of open sets. Let us recall the defining conditions :
X is a completely regular topological space and μ is a family of cover-
ings of the set X such that

( i ) If u e μ and u is a refinement of v, then v e μ
(ii) The intersection u/w of two coverings in μ is in μ
(iii) Every covering in μ has a star-refinement in μ
(iv) If {Ua} e μ then the interiors UJ* form a covering and this

covering is in μ
(v) For any point x the stars of x with respect to coverings in μ

form a neighborhood basis at x. (The reader who is unfamiliar with
the terminology should consult Tukey. [10])

Recall the notation u<*v for " u is a star-refinement of v", and
St(A, u) for the star of a set A with respect to a covering u. A normal
sequence of coverings is a sequence (un) satisfying un+1*<un for all n.
Recall that a function is uniformly continuous if and only if the inverse
image of every uniform covering is uniform.

We need the fundamental result

1.0. For every uniform covering u of a uniform space μX there is
a uniformly continuous pseudometric d on μX such that for each x in X,
the set of all y such that d(x,y)<l is a subset of some element of u.
Exactly this result does not seem to be in print, though Bourbaki has
a proof [3] of the corresponding statement connecting entourages with
pseudometrics. It will suffice to sketch the similar proof of 1.0. Take
a normal sequence (un) of uniform coverings, with u°—u. For each x,
y, in X, let g(x, y) be 0 if St(x9 un) contains y for all n, 2 if St(x, un)
never contains y, and otherwise 2ι~n, where n is the largest index for
which yeSt(x,un). Let d(x>y) be the infimum of 1 and all the various
finite sums Σ 0GPί> Pί+i)> where pλ — x and pn—y. By the form of the
definition, d is a pseudometric. To see that d is uniformly continuous
on μXxμX, it suffices to observe that unxun is a uniform covering on
each element of which d varies no more than 2ι~n. Finally, suppose
Σι9(Pi> Pi+i)^l> Pi=x, Pn—y- If we pick p and q respectively so that

(1) p is the last p% such that g(p19 p2)+ +g(Vi-\> P*)^l/2, and
(2) q is the last p5 such that g(pif pi+1)H [-#(^-1,^)^1/2, then

computation shows that also g(pjf pj+ι)-\ Yg{pn-i, 2V)^l/2. If x and y
are not both in some element of uι, then one of the pairs (x, p), (p, q),
(q, y)j fails to be contained in any element of ιι\ Then induction leads
to a contradiction which completes the proof.

A family of functions fΛ all defined on one uniform space μX into
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one uniform space vY is equiuniformly continuous if for each uniform
covering v of vY there is a uniform covering u of μX which is at once
a refinement of all fa~\v). We wish to regard the nerve of a covering,
or any simplicial complex, as a uniform space in the structure in which
a mapping / into the complex is uniformly continuous if and only
if the functions fΛ, into the real line, which are the barycentric
coordinates of /, form an equiuniformly continuous family. This dictates
the following definition. A uniform complex μX is a simplicial complex
X consisting of points x with bary centric coordinates xΛ, provided with
the distance function d(x, y) = ma,x\xΛ —ya\, and the uniformity μ induced
by d.

In this paper the nerve N(u) of a covering u is always regarded as
a uniform complex. The general vertex of the nerve of {UΛ} is called
a. The star of a vertex ct0 is the union of the incident simplexes, that
is, the set of all points q in N({Ua}) with nonzero aoth coordinate. Note
that the stars of vertices always form an open covering {St(a)}f but this
covering is uniform if and only if the complex is finite-dimensional. For
any function h with values in a uniform complex, the coordinate func-
tions hΛ constitute a partition of unity. If {hΛ} is a partition of unity
subordinated to the covering {C7Λ}, this means precisely that for all a,
h'Ί(St(a))czUΛ. In the finite-dimensional case we may summarise as
follows. A covering w is realized by a mapping into a uniform space
if it is refined by the inverse image of some uniform covering. We
have

1.1. An equiuniformly continuous partition of unity subordinated to
a finite-dimensional uniform covering of a uniform space determines a
realization of the covering by a uniformly continuous mapping into its
nerve.

It should be noted that for infinite-dimensional complexes it might
well be desirable to employ a different uniformity, and perhaps even a
different topology. In this paper we shall be concerned only with finite-
dimensional complexes, and the choice of definitions is partially justified
by

1.2. THEOREM. TO every finite-dimensional uniform covering of a
uniform space there is subordinated an equiuniformly continuous parti-
tion of unity.

Proof. For every uniform covering u of μX there is a uniformly
continuous pseudometric cZ, as given by 1.0, such that each point x is
in at least one Uaeu which contains the sphere of <i-radius 1 about
x. If u is finite-dimensional, so that each x is in at most n sets UΛ,
consider the functions dΛ(x) — d(x, Y — Ua). For each x, ΣdΛ(x) is a
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finite sum and hence a definite real number e(x)*zl. Let fω{x)=dx{x)
!e(x). The functions fa form a partition of unity subordinated to u.
For any ε>0, the covering of X consisting of all apheres of d-radius e
is uniform and on such a sphere no fΛ varies more than Anε (by a com-
putation). Thus {fa,} is equiuniformly continuous.

It follows, of course, that a uniform covering can be realized by a
mapping into a Euclidean space if its nerve is uniformly equivalent to
a subspace of a Euclidean space. Let us call such a uniform complex
a Euclidean complex, and such a covering a Euclidean covering.

Smirnov has defined [9] a " uniform complex" as a geometric com-
plex if in a Euclidean space En such that the diameters of the simplexes
of K are bounded above and the distances between pairs of disjoint
simplexes of K are bounded away from zero. Because of the overlap-
ping terminology, it should be observed that an abstract complex K is
Euclidean, as defined above, if and only if it can be embedded in some En

as a uniform complex in the sense of Smirnov. The proof of " i f " is
trivial the converse is an exercise which we may omit, since it will
follow from 1.8.

A covering u is star-bounded, of density at most n, if each element
of u meets at most n other elements of u. (The term " star-bounded "
is due to Mostow [8], " d e n s i t y " to Boltyanski [1].) Obviously a star-
bounded covering is star-finite and finite-dimensional, but not conversely.
A collection v of sets is said to be discrete relative to a covering u if
no element of u meets two different elements of v. (Note that a subs-
pace of μX is discrete in the induced uniformity if and only if it is a
discrete collection of points relative to some covering in μ.) A covering
u may be a finite union of collections, u1, u2, , each of which is dis-
crete relative to u. Clearly such a covering is starbounded conversely.

1.3. Every star-bounded covering u is the union of finitely many
subcollections each of which is discrete relative to u.

Proof. In u={UΛ} let {U\} be a maximal subset such that no set
Ua meets more than one Uβ. Evidently {G]

β} is discrete relative to u.
Now in {£/*}, for each UQ, there are at most m sets UΛ meeting Uo,
and each of these meets at most m — 1 more sets Uy let this family of
l + m + ( m 2 — m ) or fewer sets be called Fo. Each Fa meets {Uβ}, since
otherwise Ua could be added to the supposedly maximal family. Having
u1— {Uβ},u\ ••• ,uk, let uk+ι be a maximal subset of {Ua} disjoint from
u1, • ••,%*, and such that no element of {Ua} meets more than one ele-
ment of nk+1. For each Ua which is not in u\ ---,uk, necessarily uk+1

meets FΛ (as above). Therefore if UΛ is not in u1, , u™\ then F# is
exhausted and TJΛ is in um*+1.
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REMARK. The properties just shown to be equivalent are graph-
theoretic, that is, they depend only on the 1-skeleton of the nerve of
the covering.

Tukey has defined a star-finite collection of coverings as a collection,
the union of any two of whose members is star-finite [9]. He proved
(though he states less) that a uniform star-finite covering has a uniform
star-refinement such that the union of the two coverings is star-finite,
and hence by induction one has a normal sequence which is a star-finite
collection [10, pp. 49-50]. Similarly we define a star-bounded collection
of coverings as a collection, the union of any two of whose members is
star-bounded the corresponding result is given below (1.6).

A Euclidean covering is star-bounded, and more. Let us say that
the covering u is of polynomial growth if there is a real polynomial P
such that, for each Ueu, for all natural numbers k, the number of
elements V of u such that there is a chain U=U0, Uu •••, Uk=V, all
Ui in u, UtnUi+1 nonempty for all i, is bounded by P(k).

1.4. Every Euclidean covering is of polynomial growth.

Proof Suppose the nerve N(u) is embedded in En by a uniform
equivalence. Let d be the distance function in N(u) and e(x, y) the
Euclidean distance between the images of x and y. There is ε>0 such
that d(x, y)^l implies e(x,y)^ε; and there is <5>0 such that d(x,y)^δ
implies e(x, y)^l. If x and y are vertices of N(u) corresponding to
members of u which are joined by a chain of length k, then e(x, y)^kjδ.
Then for each vertex x, the set of all such y is a set of points whose
mutual e-distances are all at least e, packed in a Euclidean sphere of
radius kfδ hence their number is bounded by a polynomial in k.

Call a covering linear if its nerve is uniformly equivalent to a sub-
space of the real line R.

1.5. A covering u is linear if and only if it can be indexed with
integers, %={Z74}, so that Um meets Un only if \n—m\^l. This is equi-
valent to the conditions that u is,

(a) countable,
(b) one-dimensional,
(c) acyclic,
(d) atriodic, that is, of density 2 or less, and
(e): ( i ) the nerve of u does not contain three disjoint half-lines

( i i ) if the nerve contains a whole line then it is connected
(iii) if the nerve contains two disjoint half-lines then it has only

finitely many components.
The proof is omitted. Note that connectedness implies (e).



72 J. R. ISBELL

By a standard argument (cf. 1.1 of [4]) we obtain

1.6. Let the covering v be a star-refinement of u, that is, v<*u.
If u is

(a) star-bounded, or.
(b) of polynomial growth, or.
(c) linear, then there exists a covering w which also satisfies (a),

(b), or (c) such that v<w*<u. Further, u^w is star-bounded) thus if u
is a uniform star-bounded covering of a uniform space then there is a
star-bounded normal sequence of uniform coverings un such that uλ—u.

Proof. Let C be the set of all subsets γ of u such that there is at
least one point common to all the members of γ. For each ordered pair
(γ, δ) of elements of C, let Wy3 be the union of all Vev such that the
set of all elements of u which contain V is precisely γ, and the set of
all elements of u which contain St(V, v) is precisely δ. Let w={Wy8}.

Clearly v<w. For any nonempty Wyδ, δ is nonempty, and any V
which meets Wy8 is contained in every member of δ. Thus St( Wy8, w)a U
for any member U of δ, and w<*u.

If u is star-bounded of density m, then for each Wy8 choose Ue δ.
No Waβ can meet Wy8 unless every element of a and of β meets U;
therefore there are at most 22m such WΛβ, and w is star-bounded. Clearly
uυw is star-bounded, and the last statement of the theorem follows by
induction.

If the growth of u is bounded by a polynomial P{n), then u is star-
bounded of density m^P(l), and the growth of w is bounded by 22mp. It
may be of interest to note that this is a polynomial of the same degree
as P.

Now suppose u is linear. We must modify the above covering
{Wy5}. Observe that if WyB is not empty then each of γ and δ consists
of one or two elements. If u is indexed as in 1.5, u — {Un}, then
there are four possibilities :

(a) γ = δ={n}, for some n;
(b) r = - K n + l], δ=n
(c) γ = δ={n, n + 1}
(d) γ—{n, n + 1}, δ={n + l}. For each n, replace the two sets des-

cribed under (b) and (c) with their union. One readily verifies that the
modified w is a linear covering satisfying v<w<*u.

From 1.6 we may deduce that, for any uniformity μ, the set of all
star-bounded coverings in μ forms a basis for a uniformity, say bμ.
The axioms on coarsening ( i ) , intersection (ii), and interiors (iv) are
obvious star-refinement (iii) follows from 1.6, and the neighborhood
basis axiom (v) from the fact that every finite covering is star-bounded.
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Since the inverse image of a star-bounded covering, under any function,
is star-bounded, therefore when / : μX->γY is uniformly continuous,
/ : bμX-^bγY is also uniformly continuous. We summarize this (as in
[4]) in the slightly elliptical statement that 6 is a functor. All this
is true also for coverings of polynomial growth. However, linear cover-
ings do not in general suffice, for the set of all linear coverings in μ is
not closed under finite intersection. The finite intersections of linear
coverings in μ do form a basis for a uniformity, which is the familiar
uniformity cμ induced by real-valued uniformly continuous functions. To
see this it suffices to observe that, by 1.2 and 1.1, to every linear uni-
form covering u one may asssciate a mapping into N(u)aR which rea-
lizes u.

1.7. For any uniform space μX, the star-bounded coverings in μ, as
well as those of polynomial growth, form a basis for a uniformity con-
sistent with the topology. Both of these transformations are functors.
The weak uniformity cμ induced by the real-valued uniformly continuous
functions on μX has a basis consisting of all the Euclidean coverings in μ,
and a sub-basis consisting of all the linear coverings in μ.

The proof that Euclidean coverings from a basis for cμ is again by
1.2 and 1.1. Whether any purely combinatorial result sudh as 1.6 is
valid for Euclidean coverings is not known. (Of course 1.6 applies if
it is true that every countable covering of polynomial growth is Eucli-
dean.)

Let mEn denote Euclidean ^-space, mR the line, in the usual uni-
formity. Note that mEn is the product of n copies of mR. Beyond
this we may omit the " m" for the present, since no other uniformities
on these spaces are being considered.

1.8. THEOREM. A necessary and sufficient condition that a uniform
complex X be Euclidean is that the vertices of X may be identified with
a set of points in some En, any two of which are at distance greater than
1, so that the distances between pairs of vertices which are joined by an
edge (1—simplex) of X are bounded. In fact, this is the necessary and
sufficient condition that there exist a uniform equivalence φ of X into the
product of En and a cell of some dimension and φ may be taken to be
semilinear.

Proof. The necessity (both statements) is evident. Suppose con-
versely that / maps the vertices a of X into En, with the distance
from f(a) to f(β) greater than 1 for all aΦβ, and less than M when a
and β are joined by an edge. For any x = (xΛ) in X, define (φλ(x)9•••,

g(x) = nΣiXΛf(ά)e En. Evidently g is uniformly continuous.



74 J. R. ISBELL

Let CΛ be the sphere of radius 2M+1 about g(a) let KΛ be the
least subcomplex of X which contains g~\Ca). The vertices of KΛ are
mapped by / into points of distance 1 or more from each other in a
sphere of radius 3M+1, and hence their number has a bound q+1.
Then each KΛ may be embedded by an isometry ka in the abstract q-
dimensional simplex embedding the simplex in a cell in Eq, we obtain
mappings hΛ : KΛ->Eq which are semilinear uniform equivalences, having
a common modulus of continuity, and such that the mappings ha,'1 have
a common modulus of continuity. Define an extension ia of ha over X
as follows : every x in X can be expressed uniquely as a convex com-
bination ty+(l — i)z, where y is in the subcomplex KΛ and z has coor-
dinate £β = 0 for all β in KΛ let ia(x) = thoύ(y). Then {i*} is an equiuni-
formly continuous family of semilinear mappings. Further, there is a
cell in Eq which contains all their ranges.

Finally, {g(KΛ)} is a star-bounded covering of g(X)9 and thus, by
1.3, it is a union of subcollections vι, ", v8, each discrete relative to
the whole covering. For i = l , « ,s, let d3= ^[ialgiK^ev1]. Observe
that on each star St(β) in X, d3 coincides with one iΛ (that is, at most
one fails to vanish; for St(β)aKβ, and g(Kβ) meets at most one g{KΛ)
in vj). Therefore d3: X-^Eq is uniformly continuous. The definition of
φ : X-+En+qs is completed by putting (φk(x))f n + (j—l)q+l ^ k <Ln+ jq,
equal to the vector dό{x), for each j=l, « ,s.

We have a uniformly continuous semilinear mapping <p of X into
the product of En and a gs-dimensional cell. Uniform continuity of ψ~x

means that for each ε>0 there is £>0 such that two points at distance
>ε in X are mapped by φ into points at distance >d. For any two
points, x,y, in X, either g maps them into points at distance > 1 (and
so does <p), or they lie in a common KΛ. But then some d5 coincides on
KΛ with the embedding ha. Thus φ is a uniform equivalence.

1.9. COROLLARY. // the 1-skelton of a uniform complex X is Eu-
clidean then X is Euclidean.

1.10. THEOREM. The following conditions on a uniform complex X
are equivalent.

(a) X is a countable, star-finite, finite-dimensional complex.
(b) X is a locally compact, σ -compact, finite-dimensional space.
(c) X is homeomorphic with a closed subset of a Euclidean space.
(d) There is a distance-increasing homeomorphism of X into a Eu-

clidean space.
(e) There is a uniformly continuous homeomorphism of X upon a

closed subset of a Euclidean space.
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Proof. The implications (e)=Φ(c), (d)=Φ(c), and (c)=φ(b)=^(a), are evi-
dent. From the hypothesis (a) that X is a countable star-finite uniform
complex of dimension n, we shall construct the mappings of X into
E2n+3 required for (d) and (e). Clearly it suffices to construct such a
mapping into E2n+2 for each component of X. Let Y be a component
of X, and let φ be a one-to-one semilinear mapping of Y into E2n+1.
(To construct φ it suffices to map the vertices of Y upon a set of points
in general position in E2n+1.) Since Y is star-finite, φ is continuous.

Choose a vertex Yo of the complex Y and let f0 be a one-to-one
semilinear mapping of Y into E2n+2 which sends Yo to the origin and all
of Y into the hyperplane ^ = 0. Let Yx be the subcomplex which is the
closure of the star of Yo inductively let Yk+ι be the subcomplex span-
ned by Yk and the vertices which are joined to Yk by 1-cells of Y.
Since Y is star-finite, each Yk is a finite complex and since Y is con-
nected, the union of all Yk is Y. Let Zk be the span of the vertices
not in Yk. For each k, each point p of Y can be written uniquely (in
barycentric coordinates) as λp1+(\ — λ)p29 with λ and 1 — λ nonnegative,
pτ in Yk9 p.λ in Zk% Inductively, let fk be a piecewise linear one-to-one
mapping of Y into E2n+2, sending Y into the half space x^ck and Zk.x

into the hyperplane xλ — ck and increasing distances in Yk. Write fk(p)
=9(P) + HP)> where g(p) is the projection of fk(p) on the #L-axis, h(p)
the projection on a?1 = 0. For p in ZΛ, fk+ι(p) is to be <xg(p)+βh(p), where
α and /9 are large constants to be determined. For p in Yk,fk+ι(p)
=fk(p)'> a n d f ° r general ? 9 = ^ + (1 — )̂̂ 2 (as above), fk+ι(p) must be
/̂fc+i(Pi) + (l~~^)/fc+ife) On Zjct 9 ίs constant, and Λ is one-to-one, piece-

wise linear, and continuous. The common part of Zk and Yk+ι is a
finite complex, and hence there exists β so large that βh increases dis-
tances on this complex. Similarly, if a and β are large enough, fk+1

will increase distances on Yk+1, and the induction runs. Finally we have
a sequence (fk) of continuous mappings of Y into E2n+2, converging locally
uniformly to a limit ψ. Then ψ is continuous and ψ increases distances,
which implies that φ"1 is continuous. Thus (a) implies (d).

Since each Yk is compact, one can go back and modify the constants
a and β at each step so as to end with a uniformly continuous homeo-
morphism g upon an image which is not necessarily a closed set. De-
fine a real-valued function h on Γ a s follows. For the distinguished
vertex Yo, h(Y0) = 0. For any other point y there is just one k such that
y is in Yk+ι but not in yk and there is a unique relation y = λpι + (l — λ)p2y

pιeYk1p2eZk. Let h(y) = k+l — λ. Evidently h is uniformly continuous.
Let h'{y) be the point in E2n+2 whose first coordinate is h(y), with all
other coordinates zero then g + h' is a uniformly continuous homeomor-
phism upon a closed set. This completes the proof.

The complexes satisfying (d) (in slightly different words) are called
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Lebesgue complexes by Smirnov. [9] Evidently in any fixed En, (d) and
(e) are not equivalent (if n>l).

2. Bases. This section is primarily a discussion of the subspaces
of the line mR, including a characterization it concludes with a formu-
lation of the same approach to subspaces of mEn.

Let us first suppose given the topological space R, and characterize
m among its uniformities. Evidently m is

(a) metric, that is, it has a countable basis of coverings. It has
(b) a star-bounded basis, and it is
(c) uniformly locally connected, that is, there is a basis of cover-

ings whose elements are connected sets. We shall see that these pro-
perties are shared by m only with the uniformities induced by metrizing
R as (0,1) or as a half-infinite interval thus m can be characterized
by adding the condition (d): the space is complete.

These are evidently not the conditions to apply to subspaces of mR,
(c) being invalid. We shall have to replace (c) with some sort of con-
ditions on the nerves of the coverings. It is not enough to say (c')
there is a basis of linear coverings, even on the topological space R.
This is shown by the following subspace of πiE2. Take the half-line
consisting of all points (%, 0), x<3, and for % = 3, 4, •••, take the four
line segments running successively from (n,0) to (n+l — 3ln,l) to (n
+ 1—2/rc, 0) to (rc + l-l/w, 1) to (rc + 1, 0). A sketch shows that this
metric space satisfies conditions (a), (b), (c')> and (d), but not (c) it is
homeomorphic but not uniformly equivalent to mR.

We have indicated some uniformities on R satisfying (a), (b), and
(c), but not (d). For (a), (c), and (d), consider the following distance
function/. For notational convenience let e indicate e(x,y)—\x—y\;
let min (x1y) — m. If β^l, or if m^gl, then f(x,y) = e; otherwise f(x,
y) — eι/m. Finally, to construct a nonmetric uniformity on R satisfying
(b), (c), and (d), let (an) designate a (variable) sequence of positive num-
bers coverging to zero. For each natural number m, define the covering
n{m, (an)) to consist of the following intervals.

( 1 ) For every integer t such that neither t — l,t, nor ί + 1 is a
positive integral multiple of m, the interval (t~ 1/m, ί + l/m).

(2) For each positive integer n, the intervals (n+an, n + 2lm) and
(n — 2/m, n—an).

( 3 ) For —πi^t^πiy and for all n, the intervals (n+(t — ljm)an, n
+ (ί + l/m)αn). Consider the collection of all u(m, (an)) such that m^4
and an<llm+l for all n. One readily verifies that this collection is a
basis of a uniformity having the required properties. One may note
also that all the above examples have bases consisting of linear coverings.
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2.1. Every uniformly locally connected metric space which is homeo-
morphic to the real line R and has a star-bounded basis of uniform cover-
ings is uniformly equivalent either to mR or to an open interval of mR.

Proof. We may call the space μR it is required to construct a
uniform equivalence of μR into mR. We are given a countable basis
{un\ for μ, a star-bounded basis {v*}, and also a basis consisting of
coverings with connected elements. The interiors of these connected
sets are open intervals, still forming uniform coverings, which still con-
stitute a basis {w3}. If for each n we choose wn refining un, we have
a countable basis of coverings with open intervals. Evidently we may
suppose each wn+1 is a star-refinement of vf (since some wn+k is), and
we may suppose wι<vct> for some a. Next we interpolate linear cover-
ings zn consisting of open intervals, wn+1<zn<wn, as follows. Choose
a point p and let Zo

n be St(p, wn+1). Evidently Zo

n is an open interval
(pL, (ft). Having points pk and qk, define Zl as St(qk, wn+ι) and Z71^ as
St(pk, wn+1). At some stage an improper interval may be obtained, so
that pk or qk does not exist in that case omit so much of the construc-
tion as involves the missing points. Evidently the union of all zϊ* n

fixed, k = 0, ± 1 , ••• , is a nonempty open and closed subset of R, hence
all of R. Since every intervel in wn+

τ contains at most one of the
points p, pk, qky wn+1<zn={Zt} and since wn+λ<*wn, hence zn<wn.
Clearly zn is linear.

To see that {zn} is a star-bounded family, consider any m<n. Each
element of zn meets at most two other elements of zn and at most three
elements of zm. Thus if zmuzn is not star-bounded then there exist sets
Z in zm meeting arbitrarily many elements of zn. A fortiori there exist
sets V in va meeting arbitrarily many elements of zn. Since zn is linear,
one can find for each positive integer r a set Vev" countaining r points,
no two of which lie in a common element of zn. But there is a cover-
ing vβ<zn such that v*uvβ is star-bounded, since the v's form a star-
bounded basis. The contradiction establishes that zmuzn is star-bounded
and the family {zn} is a countable star-bounded basis consisting of linear
coverings each of which consists of open intervals.

Now index the elements of zn with rational numbers s, zn—{Zn

s}, as
follows. For n — 1, the values of s are the integers k assigned above;
thus Zn

s does not meet Zn

t if \s — t\>l. Having indexed zn, consider each
Zf. There is a next rational number t>s such that some element of zn

is called Zn

t, except possibly for one (greatest) value of s if there is
such en exceptional s, assign to it the value t=s + 2~n. There are fini-
tely many elements Z of zn+1 such that s is the least index such that
ZaZn

&\ and the number of them, h(s) is a bounded function of s (n
fixed). Furthermore, exactly one of them meets an element of zn+1
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which is contained in the next Z\ before Zn

s (with a possible exception
if there is no such q) and exactly one meets an element of zn+1 which
is contained in Zf but not in Z™. Index these elements of zn+1 in order
from Zn

q toward Zn

t as Z?+1, for i=s, s+(t-s,lh(s)), . ,t-(t~s)/h(s) (equal
steps). This completes the indexing. Then routine computation shows
that for each point x in μR, the numbers gn(%) = max [s\xeZ™] converge
to a limit g(x), and that g is a uniformly continuous function realizing
all of the coverings zn. Since {zn} is a basis, g is one-to-one and g is a
uniform equivalence.

If one tries to carry out the construction of 2.1 on the example
given previously of a complete metric space homeomorphic to R having
a star-bounded basis of linear uniform coverings, it breaks down because
ultimately zn+1 must be " crooked " in zn. It is not crooked in the strong
sense familiar from the construction of the pseudo-arc indeed, with a
suitable choice, one can arrange that near any point in the space almost
all zn+1 are " s t ra ight " in zn. Up to some critical value N the chains
zn follow an approximating smooth path then zN+1 and all subsequent
zn follow the kinds in the curve. This means that we must impose a
very strong straightness condition in order to characterize the subspaces
of mR. Let us use the term chain in u for a subset of a covering u
whose elements correspond to the vertices of a chain of edges in N(u).

2.2. The following conditions on a uniform space μX are necessary
and sufficient in order that μX should be uniformly equivalent to a sub-
space of mR.

(a) μ has a basis which is a countable sequence of linear coverings
un, with un+1<un, such that (1) if (U19 , Up) is a chain in un+1, with
U1 and Up both contained in one element U of un, then all Ut are contained
in U and (2) if (Uly , Up) and (Vi, , Vq) are two chains in un+1

having no common elements, some element U of un contains both Uι and
V19 and some element V of un contains both Up and Vq, then U meets V.

(b) μ has a star-bounded basis.
The necessity of the conditions is obvious, and the proof of suffi-

ciency is an easy modification of 2.1. However, the proof as given
above does not look ready to be generalized to En. We conclude this
section with some easily proved remarks outlining another version which
might have brighter prospects.

First, it suffices to work with the completion. Second, if a complete
uniform space has a countable basis consisting of finite-dimensional
coverings, (a) there is a natural inverse system of semilinear mappings
on the nerves of these coverings, and (b) the space is the inverse limit
of this system. I have in mind the mappings defined, for a sequence
{un}, un+1<*un, as follows. Since un is finite-dimensional, each element
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UΛ of un+1 is contained in only finitely many elements of un, and the
corresponding vertices in N(un) span a simplex the vertex a of N(un+1)
can be taken to the center of gravity of that simplex, in a uniformly
continuous semilinear mapping. Third, if all the nerves can be em-
bedded in one complete space in such a way that the mappings
N(un+ι)-^N(un) move no point more than en, where en-^0, then of course
the inverse limit space is embedded in the same containing space. This
is clearly possible under the hypotheses of 2.2.

3. The weak derivative. In this section we describe an operation
on uniformities which generalizes the passage from the usual uniformity
m on a Euclidean space to the finest uniformity a. It is not known
whether this operation is applicable to general uniformities1 the main
results of this section apply only to weak uniformities induced by fami-
lies of real-valued functions.

For any weak uniformity //ona space X, we define the weak de-
rivative wμ of μ as the family of all coverings of X which have a
refinement of the form {U*Γ\V?}, where {£/*} is a covering in μ and
the families F"={F?}, for each α, are finite coverings in μ of bounded
dimension. (This is a modification of an operation called the derivative in
[4]. We might as well have required v* only to cover the subspace
UΛ the equivalence follows from the simple proposition 3.6 below.) If
we recall that since μ is a weak uniformity, the covering {UΛ} may be
supposed Euclidean, we see that the typical covering {UΛ{λV°ί} is (1)
uniformly locally uniform (on μX), (2) uniformly locally finite, and (3)
finite-dimensional.

The proof that wμ is a uniformity will be a demonstration that wμ
is the weak uniformity induced by a certain family of functions. Let
C(μX) denote the family of all real-valued uniformly continuous functions
on μX (uniformly continuous into wfi). The term composition will be
used with the specific meaning of a functional composition #C/i ,jQ,
where f19 , fnj are in C(μX) and g is any continuous real-valued func-
tion on En. In particular, the family of all such functions on X to R
is the closure, under composition, of C(μX). (Cf. [5].)

3.1. For each Euclidean space En, the weak derivative of the usual
metric uniformity, m, is the finest uniformity consistent with the topology

1. Specifically, applying the definition of wμ in the next paragraph to a general

uniformity μ, it is not known wheter wμ is always a uniformity in the present sense.

The referee points out that it is certainly a regular uniformity in the sense of Morita and

[7]; and there is a non-trivial theory of such structures. In that theory, the referee

observes, 3.5 is valid without restriction on μ.
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that is, the uniformity a defined by all open coverings.

Proof Evidently any covering in wm has an open refinement.
Conversely, for any open covering { Wy} of En, consider a uniform cover-
ing {Uro} consisting of closed metric spheres. Since each Ua is a com-
pact space, there is a finite uniform covering {G"\ of UΛ refining the
open covering {UaΠ TΓ7|all γ). We may take {Gf} ^-dimensional. Let
pa be the center of the sphere UΛ, and for each Gf meeting the bound-
ary B of Ua, let V* consist of G? together with all points q outside Ua

such that the intersection of the segment pq with B is a point of G?
otherwise let Vf — Gf. Evidently {V*} is a uniform finite ^-dimensional
covering of mEn, and {UaΓ\ V*} is a refinement of {Wy}. Thus wmEn

3.2. For any open covering u of a Euclidean space En, there is a
homeomorphism of En onto itself which takes u onto a uniform covering
of mEn.

This is obvious.

3.3. THEOREM. The weak derivative of a weak uniformity is a weak
uniformity. Specifically, if μ is weak, then wμ is the weak uniformity
induced by the closure under composition of C(μX).

Proof. If f19 •••,/„, are in C(μX)y g : En-*R is continuous, and u
is any uniform (even any open) covering of R, then the inverse image
of u under g is uniform in aEn — wmEn and hence the inverse image of
u under g(f19 ffn) is in the family of coverings wμ' Evidently wμ is
closed under intersection therefore wμ contains the weak uniformity
induced by the closure under composition of C(μX).

Conversely, since μ is weak, each covering {Z7ΛΠ V"} in wμ may be
refined by a covering {U3Γ\ V{} so that the following is true. There is
a uniformly continuous function / : μX-+mEn realizing {U3}. Each vj

= {V{} is finite and at most fc-dimensional and is realized by a bounded
uniformly continuous function gό\ μX->mEq (here q = 2h+l). Also, {U3}
is star-bounded and can be written as the union of p relatively discrete
subcollections ur and finally, {Uj} is countable. We shall construct a
mapping h of μX into (n+pq) — space.

Choose positive numbers c3 such that Cj\gj(x)\<2~j for all x. For
each j , let dό be a uniformly continuous real-valued function on μX with
values in [0, c j , vanishing outside the star of Uj and having the constant
value Cj on U5. For each x, define the first n coordinates of h(x) to be
the coordinates of f(x). Let the q coordinates of h(x) from the (n + q(r — l)
+ l)th through the (n + qr)th be JL\dj{x)gj{x)\Ujenr'\.
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Since the series Σ ^ I I Λ I I converges (absolutely), h: μX-+mEs(s=n
+pq) is uniformly continuous. It is clear from the construction that h :
X->aEs realizes {UjΠ V{}=z, that is, z is refined by the inverse image
of some open covering. By 3.2, there is a continuous function T: ES->ES

such that T(h): X->mEs realizes z. But each coordinate of T(h) is a
composition of a continuous coordinate projection of T with the uni-
formly continuous coordinates of h, and the proof is complete.

From an approximation theorem proved in [5, Theorem 1.7] we have

3.4. COROLLARY. C(wμX) contains all the compositions g(f, ,/ w ),
g continuous and ft in C(μX), and consists of all uniform limits of such
compositions.

In [5] there is an example of a family of functions A such that the
uniform closure of the closure under composition of A is not itself closed
under composition. That example A is not C(μX) for any μ, but this
is inessential. We describe an example of a uniform space μX such that
μ is weak and w(wμ)Φwμ, omitting the details of the verification.

Example. Let X be the set of all ordered triples (i, j, k) of posi-
tive integers, with the discrete topology. Let μ be the set of all cover-
ings u of X such that (1) for some n', for each n>nf, there is an
element Un of u which contains all (n,j,k); and (2) for each n (tin'),
for some m\ for each m>mf there is an element Unm of u which con-
tains all (n, m, k,). Observe that μ has a basis consisting of discrete
coverings thus μ is weak, and wμ and wwμ can be computed without
worrying about dimension. One may verify that a covering u is in wμ
if and only if (a) for each n there is m!—m!(n) such that for each m
>m' there are finitely many elements of u whose union contains all (n,
m, k), and (b) for some n\ for each n>n\ ( i ) there are finitely many
elements of u whose union contains all (n, j, k), and (ii) for each m
>m\ri) all points (n, m, k) are in one element of u. Then wwμ is deter-
mined by the conditions (a) and (b), ( i ) ; in particular, wwμΦwμ.

Powers of w are defined by w^^ — ww0" for limit ordinals ayw
Λμ is

the union of the increasing sequence of families of coverings wβμ, β<a.
Since the uniformities wΛμ are successively finer, there must be an a
such that wΛ+1μ = w*μ. (By 3.4, the first uncountable ordinal is such
an a.)

3.5. Applied to uniform spaces with weak uniformities, the weak
derivative and all its powers are functors commuting with completion.

Proof If / : μX->vY is uniformly continuous then, since f~λ pre-
serves finiteness and dimension of coverings, / : wμX-^wvY is uniformly
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continuous thus w is a functor. If F is a Cauchy filter in μX and
{UaPi Vϊ} a typical covering in wμ, then JP7 contains some Ua and, for
that a, some V? being a filter, i'1 contains Z7β n V*. Thus the same
filters are Cauchy in μ and in wμ, and the completions πμX and πwμX
have the same points. Obviously every covering in wπμ is in πwμ the
converse is a routine application of Morita's demonstration [7 Lemma
7, Th. 3, Th. 9] that every uniform covering {Vβ} of μX can be ex-
tended to a uniform covering {Vβ} of πμX such that F β = F | i l l and
the correspondence Fβ<—>Vβ preserves the nerve. Thus πw = WTΓ.
Therefore if w* is a functor commuting with π, so is w*+1. The proof
is completed by the observation that every covering inw*, for a a limit
ordinal, is already in some wβ for β<a.

The next four propositions amount to a closer analysis of the theo-
rem of [5] that if C(μX) is closed under composition then for any sub-
space Y of X, in the induced uniformity μ%, C(μ*Y) contains only the
restrictions of function in C(μX).

3.6. Let μ*Y be a subspace of μX, and {Ϊ7J a finite uniform cover-
ing of μ*Y of dimension k. There is a finite uniform covering {Vό} of
μX, of dimension 2&+1 or less, such that {VόΓ\Y} is a refinement of

{£>,}.

3.7. The weak derivative preserves subspaces that is, if μ*Y is a
subspace of μX (and μ is weak) then the uniformity induced on Y by wμ
is wμ%.

3.8. If f is a real-valued function on Xy μ a iveak uniformity on
X, and {Ua} a uniform covering of μX such that on each UΛ, f is bounded
and uniformly continuous, then f is uniformly continuous on wμX.

3.9. If μ*Y is a subspace of μX (μ a weak uniformity) and f a uni-
formly continuous real-valued function on μ* Y, then f has an extension
in C(wμX).

Proof of 3.6. This is a corollary of a theorem of Katetov [6]:
every bounded real-valued uniformly continuous function on a subspace
of any uniform space has a bounded uniformly continuous extension over
the whole space. If {Z7J is a finite ^-dimensional covering of μ*YaμX,
then {Ut} cen be realized by a mapping into a compact subset of E''k+1

each coordinate can be extended, by Katetov's theorem, and the con-
clusion follows.

Proof of 3.7. If μ*Y is a subspace of μX and {UaΠ Vf} a typical
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covering in wμ, then {UΛΓ\Y} is in μ*9 the coverings y*={VϊΓ\Y} are
finite coverings in /** of bounded dimension, and hence {Uaf)VΐΓ[Y} is
in wμ*. The converse is clear in the light of 3.6.

Proof of 3.8. If / is bounded and uniformly continuous on each
element of the uniform covering {[7a,}, then the inverse image of any
uniform covering of mR is refined by a covering {Z7αn F?}, where for
each a9 {Vf} is a uniform finite 1-dimensional covering of the subspace
UΛ. By 3.6, each {Vf} may be extended to a uniform finite 3-dimen-
sional covering of μX, and hence / is uniformly continuous on wμX.
(Actually, by the method of 3.6, these coverings {Ff} maybe extended
so as to remain 1-dimensional.)

We may note that the hypothesis that μ is weak was not needed
for these proofs thus if w can be satisfactorily interpreted for more
general spaces, 3.7 and 3.8 will carry over. (Cf. the footnote.1) The
hypothesis will be used for 3.9, though one could avoid it by a use of
results of [4]. It should be noted that the proof of 3.9 is almost the
same as the proof of a similar extension theorem in [4].

Proof of 3.9. Note first (*) that a function h which is defined on
a uniform space pA into a uniform space σB, and uniformly continuous
on each of a finite family of subspaces of pA which make up a uniform
covering, is uniformly continuous on pA. Now consider the given hypo-
thesis, / : μ*Y-+mR uniformly continuous, μ*Y a subspace of μX. Let
Vn=f-1((n-l,n + l)) in Y, and let Un= Vnυ(X~ Y). Since {Vn} is in
μ*, therefore {Un} is in μ. Since μ is weak, {Un} has a countable uni-
form star-refinement {Wι}=w.

The function / is defined, in particular, on the subspace YnSt(W19

w) of the space St(Wl9w)n(YuW^). On that subspace / is uniformly
continuous and, since St(Wl9w)czUn for some n, f is bounded there.
By Katetov's theorem [6] there is a bounded uniformly continuous func-
tion gλ on St(W19 w)n(YuW1) to mR, such that g1 and / agree on their
common domain YnSt(Wl9 w). Therefore, by (*), the function f on
YuWi whose values are those of / and of gx is uniformity induced by

μ)
Having extended / to fn, defined on the union of Y and Wlf •••,

Wn, uniformly continuous there, and bounded on each Wni1 one con-
structs by the same argument an extension fn+1 which is defined on
Wn+1 also. By induction one has a well-defined function / extending /
over all of X. On each Wi9 f agrees with ft and thus is bounded and
uniformly continuous. By 3.8, / is uniformly continuous on wμX.

The next result is also based on a similar theorem in [4]. Let us
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quote a lemma [4, proposition 2.3]: every uniform space which is not
precompact has an infinite uniformly discrete subspace.

3.10. For a metric space μX, μ can be finer than the weak deriva-
tive of some weak uniformity v on X only if ( 1 ) the set C of all non-
isolated points of X forms a precompact subspace of μX, and ( 2) for any
complete subset S of X—C, the distances of different points of S are
bounded away from zero. Unless X has uncountably many isolated points,
these conditions imply that μ is a weak uniformity and μ—wμ.

Proof First suppose that μX satisfies ( 1 ) and ( 2 ) and has only
countably many isolated points. Then every uniform covering has a
uniform refinement which consists of a finite covering of an ε-neighbor-
hood of C and a countable discrete covering of the rest of X; thus μ
is a weak uniformity. Consider the completion πμX of μX. If πμ is
not the finest uniformity consistent with the topology, then there is a
non-uniform open covering {Ua}. This means that there is a sequence
of points zn such that for each n, no Ua contains the sphere of radius
2~n about zn. Since X is a dense subspace, we may choose xn in X
within distance 2rn of zΛ, so that no Ua contains the 21~w-sphere about
xn. Since {Ua} is an open covering, the sequence (xn) can have no ac-
cumulation point in πμX. Since C is precompact, it is not possible that
infinitely many xn are in C. Then we may choose a subsequence—to
simplify notation, suppose it is the whole sequence—so that {xn} is an
infinite subset of X— C, which is closed in πμX and thus complete, but
such that no Ua contains the 21~w-sphere about xn. This means that we
can choose yn in X within distance 2}~n of xn, so that no UΛ contains
the 22~w-sphere about yn. It is therefore impossible (as before) that in-
finitely many yn are in C. But now we have a complete subset of X
— C, consisting of all the xn and all but finitely many yn, in which dis-
tances are not bounded from zero. The contradiction proves the unte-
nability of the hypothesis that πμ is not the finest uniformity consistent
with the topology of πμX. It follows that wπμ—πμ, and since w preser-
ves subspaces, wμ — μ.

Suppose next that μ is finer than wv for some v, but C is not pre-
compact in the uniformity induced by μ. Since w preserves subspaces,
it is clear that C is not precompact in vX either. Therefore C has an
infinite uniformly discrete (in vX) subspace, by the proposition 2.3 of
[4] which was pointed out above. This means there are an infinite sub-
set {Xi} of C and a covering u in v such that the sets St(xi9 u) are
disjoint. Choose v<*u in v, so that the sets St = St(xifv) form a uni-
formly discrete collection. Choose points zt in Sif z%Φxu such that for
some metric d inducing the uniformity μ, d(zίy #$) converges to zero. For
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each i9 there is a bounded uniformly continuous real-valued function f
on vX such that/ ΐ(a? ΐ) = 0>/*(2Jί) = l> a n d on X~Sίyft is identically 1. De-
fine the real-valued function g on X as follows : if x is in some Si9 g(x)
=ft(x); if x is in no Sl9 g(x) = l. Then on every element of v, g coin-
cides with some ft therefore by 3.8, g is uniformly continuous on wvX.
Supposedly wv is coarser than the metric uniformity μ but since (dzu

xt) converges to zero while g{zi)—g{xi) — l, this is absurd. There re-
mains the possibility that μ~Dwv and X contains a complete set of iso-
lated points S which contains a sequence of pairs (xit yt) such that d(xi9

2/ί) converges to zero but evidently the above argument can be repeated
in the set consisting of all x% and yi9 to lead to the same contradiction.

A corollary of 3.10 is that in the sequence of uniformities μ9 wμ9

w2μ, •••, at most two can be metric, the first and the last.

3.11. // / : μX->mEn is a uniformly continuous homeomorphism
upon a closed set, and μ is weak, then f: ιvμX->aEn is a uniform equi-
valence.

Proof We have that / : ιvμX->aEn is uniformly continuous. Let
v7 be the image of X, regarded as a subspace of aEn. Since / is a
homeomorphism, every open covering of X is the inverse image of an
open covering of Y; since Y is closed in En, every open covering of Y
is in v. Therefore every open covering of X (a fortiori, every uniform
covering of wμX) is realized by / : wμX—>vY. Thus / is a uniform
equivalence.

3.12. THEOREM. A uniform space μX is uniformly equivalent to a
[closed] subspace of aEn, for some n, if and only if ( 1 ) μ is a weak uni-
formity, ( 2 ) μ — wμ, and ( 3 ) μX has a uniform covering whose elements
are precompact [compact] metric speces which have finite-dimensional com-
pletions of bounded dimension.

Proof. Since w preserves subspaces, the necessity of the conditions
is evident. Since w commutes with completion, it suffices to prove the
sufficiency in case μX is complete and by 3.11, it suffices to construct
a uniformly continuous homeomorphism upon a closed set. We may
replace the covering given by ( 3 ) with a Euclidean refinement u={Ut}9

realized by a uniformly continuous mapping / : μX-*mEn, and parti-
tioned into p discrete subcollections ur. Each Ut is a compact ά-dimen-
sional metric space and hence is homeomorphic to a bounded subset of
Eq,q = 2k+1. It remains to build a mapping into (n+pq) — space, as in
3.3.

Let ei be a homeomorphism of Ui into Eq

9 gh a bounded uniformly
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continuous extension of e% over μX. Let d% be a uniformly continuous
function on μX with values in [0,1], vanishing outside the star of Uί

and identically 1 on f/j. For each x, let the first n coordinates of h(x)
be those of f{x) let the (n + q(i—l) + l)th through (n + qr)th coordinates
form the vector 'Σldi(x)gί(x)\Uίeur]. On each Ui9 h is a finite sum and
thus is uniformly continuous therefore by 3.8, h is uniformly continu-
ous on μX. On each Uif hence on X, h is a homeomorphism. Finally,
since / realizes u, the sets h(Ui) form a locally finite collection of com-
pact sets, and therefore their union is closed. By 3.11, the proof is
complete.
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