
UNIFORM CONTINUITY OF CONTINUOUS FUNCTIONS

OF METRIC SPACES

MASAHIKO ATSUJI

In this paper we intend to find equivalent conditions under which
continuous functions of a metric space are always uniformly continuous.
Isiwata has attempted to prove a theorem in a recently published paper
[3] by a method that has a close relation with ours. Unfortunately he
does not accomplish his purpose, so we shall give a correct theorem
(Theorem 3) in the last part of this paper and, for this purpose, give
a condition for the existence of a uniformly continuous unbounded
function in a metric space (Theorem 2).

In this paper the space S, unless otherwise specified, is the metric
space with a distance function d(x, y), and, for a positive number a,
the α-sphere about a subset A {x d(A, x)<a} is denoted by S(A, a)
the function is the real valued continuous mapping.

DEFINITION 1. Let us consider a family of neighborhoods Un of xn

such that {xn} is a sequence of distinct points and UmΓ\ Un — φ ( = empty)
for mφn. Let fn(x) be a function such that fn(xn)—n a n d fn{%) — 0 for
xφUn. Then a mapping constructed from the family is a mapping f(x)
defined by f{x)—fn{x) for x belonging to some Un and f(x) = 0 for the
other x.

LEMMA. Consider a family of neighborhoods Un of xn satisfying the
following conditions :

( 1 ) {xn}, which consists of distinct points, has no accumulation point,
( 2 ) UmCiUn=φ, mφn (U a closure of U), and Un c S(xn, ljn),
( 3 ) there is a sequence of points yn such that distances of xn and yn

converge to 0 and yn does not belong to any Um then the mapping
constructed from the family is continuous and not uniformly continuous.
When {xn} is a sequence containing infinitely many distinct points and
has no accumulation point, there is a family of neighborhoods of xn

satisfying (2) if {xn} further contains infinitely many distinct
accumulation points, then the family besides satisfies (3).

Proof. The continuity of the mapping constructed from the family
follows from U Un. — U Un. for any subsequence {nt} of indices the
mapping is not uniformly continuous by (3). Suppose {xn} consists of
distinct accumulation points and has no accumulation point, then, by
an inductive process, we have neighborhood Vn of xn such that Vn

aS(xn, IIn) and VmΓ\ Vn — Φ, and have yn and a neighborhood Un of xn
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such that Unφyne Vn, UnaVn.

DEFINITION 2. Let x be isolated in a metric space, then we write
I(x) for a supremum of positive numbers a such that S(x, a) consists
of x alone.

THEOREM 1. The following conditions on a metric space S are
equivalent

(1) // {xn} is a sequence of points without accumulation point,
then all but finitely many members of xn are isolated and inf I(xn) for
the isolated points is positive.

( 2 ) If a subset A of S has no accumulation point then all but finitely
many points of A are isolated and inf I(x) for all the isolated points of
A is positive.

(3) The set A of all accumulation points in S is compact and inf
I(xn) is positive for any sequence {xn} in S-A which has no accumulation
point (Isiwataj2], Theorem 2).

(4) AΠB—φ implies S(A, a)P[S(B, a) — φ for some a (Nagata [4],
Lemma 1).

oo oo

( 5 ) Π An—φ implies ΓΊ S(An, a) — φ for some a.
n=l n=l

(6) For any function f{x), there is a positive integer n such that
every point of A—{x \f(x)\ ^n} is isolated and inf^^ I(x) is positive.

( 7 ) All functions of S are uniformly continuous.
(8) All continuous mappings of S into an arbitrary uniform space

S' are uniformly continuous.

Proof. Since the equivalence of (1) and (3) is simple, we shall show
(lM8M7)->(6)-(5)-(4)->(2)-(l).
(l)->(8): If a continuous mapping f(x) of S is not uniformly continuous,
there is an "entourage" V (in the sense of Bourbaki) of S' such that
d{xn, yn)<Vn and (f(xn), f(yn)) 0 V for any positive integer n and for
some xn and yn. {xn} contains infinitely many distinct points. If {xn}
has an accumulation point x, there are subsequences {xn. } and {yUi} of
{xn} and {yn} converging to x, and, since f(x) is continuous, (f(x),

f{xn.)) e W and (j\x), f(yn.)) e W for W satisfying TF Wd V (we may
assume W~τ= W) and for all sufficiently large i. Hence we have (f(xn. )>
AVnt)) e V, which is excluded. Consequently {xn} hes no accmulation
point and inf I(χn)—ry0 for all sufficiently large n, which contradicts
the first inequality of / for n satisfying r>ljn.
(8)~>(7) is obvious.
(7)->(6): If, for some function f{x) and every n, there is an accumulation
point xn such that \f{xn)\}>n, {xn} contains infinitely many distinct
elements and has no accumulation point, then, by the Lemma, we have



UNIFORM CONTINUITY OF CONTINUOUS FUNCTIONS OF METRIC SPACES 13

a function which is not uniformly continuous. Suppose that every
point of A—{x\ \j\x)\}>n} is isolated and inf I(x) = 0. Then there is a
sequence {xn} in A such that inf 4 = 0, /„=/(#„)• {xn} has no
accumulation point, and we may assume In<ljn. If distances of distinct
points of {xn} are greater than a positive number β, then, for all n
satisfying e>4In, xn and yn {φxn, e S(xn, 2In)) satisfy the conditions
of the Lemma. In the other case, there are arbitrarily large m and n
satisfying d(xm, xn)<e for any positive number e, and we have, by an
inductive process, a subsequence {yt} of {wn} satisfying d(y2i^, y2i)<lli.
Then yn-1 and yit satisfy the conditions of the Lemma.
(6)->(5): Let Π S(An, l\m)Φφ for every m in spite of Π An=φ. We

n n

have a point x± contained in Π S(An, 1) and a point yx distinct from
n

xι satisfying d(xlf 2/1)<1. Suppose Bt={x19 f a?J consists of distinct

points such t h a t x3e Π S(An, 1/i), x5 and y3 are distinct and d(x3, y5)
n

<l/i, i = l, , i. Since, for any points, D S(An, 1/m) does not contain
n

x for a sufficiently large ra, Π S(An, l/(ΐ + l)) contains a point xi+1 being
not contained in Biy and some 4̂W contains yi+1 distinct from xi+1 satisfy-
ing d(xi+1, 2/i+1)<l/(i + l). Thus we have a sequence {#w} of distinct
points and \yn} such that xm e n S(AΛ, 1/m), ^w and 2/n are distinct,

and (Z(α;TC, yn)<l[n. {xn} has no accumulation point because of (Ί An~φ.
The function obtained from the Lemma does not satisfy the condition
(6) whether all but finitely many members of xn are isolated or not.
(5)->(4) is obvious.

(4)->(2): Suppose A has infinitely many accumulation points xn, n =
1, 2, ••• . Since B—{xn] has no accumulation point, there is a sequence
C={yn} having no accumulation point such that d(xn9 2/n)<l/w, Bf)C=φ.
'BC\C^BC]C=φy and S(S, ^ Π ^ C , α) = φ for no α. If every point of
A is isolated and inf /(#) = 0, we have a sequence {xn} such that lim
I(xn) = 0, and have a sequence -f̂ } with the same properties as the
above.
( 2)-»(1) is obvious.

Recently Isiwata has stated a theorem ([3], Theorem 4) which is
related to our Theorem 1. However the first step in his proof is wrong.
We shall give a correct form of the theorem in Theorem 3. Let us
first give a counterexample for the statement "In a connected metric
space which is not totally bounded, there exists a sequence {xn} and a
uniformly continuous function /such that f[xn) — n7\

EXAMPLE. Denoting the points of the plane by polar-coordinate,
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we consider the following subsets of the plane:

Am={{r, θ); Orgr^l , β=n\m),

S=UAm.

We define the distance of the points of S by

d((r, θ), (r\ θ'))=\r-r'\ as θ = θ' or rr' = 0 ,

=r+r' as θφθ' ,

then S is obviously a connected metric space which is not totally
bounded. When j\x), xeS, is a uniformly continuous function of S,
there is a positive integer n such t h a t d(x9 y) <l/n implies \f(x)—Λv)\
< 1 . If a? is contained in Am9 there are points ?/0 = 0=pole , 2/1, ••• , 2/r

, of Am such t h a t d{y^l9 y^)<\\n9 i = l, ••• , r .

namely f(x) is bounded.

DEFINITION 3. Let e be a positive number, then the finite sequence
of points xQ, X19 ••• , a?m satisfying d{x^ιy Xi)<e, i = l, , m, is said
to be an e-chain with length m. If, for any positive number β, there
are finitely many points plf , pi and a positive integer m such that
any point of the space can be bound with some pj9 l^j^iy by an
e-chain with length m, then the space is said to be finitely chainable.

THEOREM 2. A metric space S admits a uniformly continuous
unbounded function if and only if S is not finitely chainable.

Proof. Verification of "only if" part is analogous to that stated
in the above example, hence is passed over. Let S be not finitely
chainable, then there is a positive number e such that, for any finitely
many points and a positive integer n9 there is a point which cannot be
bound with any one of points selected above by an β-chain with length
n. We denote by A% the set of all points which can be bound with a
fixed x0 by an β-chain with length n.

( 1 ) When AoφA%+1 for every n, we put

for x belonging to A" and not to AJ"1, and f{x)—Q for xφA0— uA%(f(x)
n

—d{xQ, x) for xeAl). Since S(A0, e)—A0, f(x) is uniformly continuous
on S if it is so on Ao. Let Aj 9 x 0 A?"1 and d(x, y)<e'<e, then
A?+1 9 y $ AΓ2. (i) When y is in A\~\ then
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and d{x, AΓ 1)<β /, d(y, An

0~
2)<e, hence f(y)^f(x). If d(y, An

0-
2)<e-e',

then d(y, y')<e—e' for some y' of An

0~
2 and d(x, y')^d(x, y)+d(y, yf)<e,

so that x is in AS"1, which is excluded. Therefore d{y> Ao~2)2^e—e' and

(ii) When y is in A% and not in AT1, then

and we have

y)<e

(cf. the proof of Prop. 3 of §2, [1]). (iii) The remaining case for y is
similar to (i). Consequently f(x) is uniformly continuous on Ao.

( 2 ) When An

0=An

0

+ι for some n, then A?=AJ for every m^n, and,
in the similar way to (1), Ax— (jA? is obtained from a point of S—Ao.
If we can make an unbounded function which is uniformly continuous
on Alf our proof will be complete.

( 3 ) When we cannot, for every m(O^m^n), construct a desired
function on Am obtained in the same way as (2), Ao, , An cannot
cover the space, because the space is not finitely chainable namely
we have a sequence of infinitely many subsets Ao, Alf when our
proof is not complete in the similar way to (2). Then we put f(x)=n
for x of An and f(x) = 0 for x which is not in any An. Then, since
S(Am, e)Γ)An=φ for any mψn and S(LJAW, e)={jAn, f(x) is uniformly
continuous.

THEOREM 3. If S is a connected metric space which is not finitely
chainable, then the set of all uniformly continuous functions of S does
not form a ring.

Proof. The following verification is essentially due to Isiwata [3].
There is, by Theorem 2, a uniformly continuous unbounded function
f(x) of the space, and we have a sequence A={xn; n — l} 2, •••} such
that f{xn)—an, an+1—an^l, a ^ l A has no accumulation point. For
some positive number a, d(x, y)<a imlies \f(x)~f(y)\ <l/3, and so S(xm,
a)Γ[S(xn, α)=φ for mφn. We put

h(x) — l~d(A, x)ίa and G={jS(xnf a)
n

and
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for xe

for xύ

G ,

G .

h(x) is uniformly continuous on the space, because d(A, x) is so (cf.
Prop. 3 of §2, [1]). h(x)>0 and k(y)^0 for x of G and y of S-G
respectively, so we have

\h(x)-h(y)\ =h(x)-h(y)^h(x) = \f'(x)-f(y)\ .

Hence f(x) is uniformly continuous on the space. g(x) =f{x)f{x) is not
uniformly continuous. In fact, if it is uniformly continuous, d(xy y)<β
implies

(*) \g{χ)-g{y)\<ι and IΛ»)-Λ»)I<1

for some β (^α). We select a positive integer n such that an is greater
than l+4α//5, and take a point ?/ such that βl2^d(xn, y)<β (it is possible
to take such a point because of the connectedness of the space). Then,
by (*), we have \an—f(y)\<\, f(y)>an — 1^0, and

= \an-f(y)+d(xn, y)f(y)la\

^\d(xn, y)f(y)la\-\an-f(y)\>d(xn, y)f{y)ja-l

which contradicts (*).
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