UNIFORM CONTINUITY OF CONTINUOUS FUNCTIONS
OF METRIC SPACES

MASAHIKO ATSUJI

In this paper we intend to find equivalent conditions under which
continuous functions of a metric space are always uniformly continuous.
Isiwata has attempted to prove a theorem in a recently published paper
[3] by a method that has a close relation with ours. Unfortunately he
does not accomplish his purpose, so we shall give a correct theorem
(Theorem 3) in the last part of this paper and, for this purpose, give
a condition for the existence of a wuniformly continuous unbounded
function in a metric space (Theorem 2).

In this paper the space S, unless otherwise specified, is the metric
space with a distance function d(x, y), and, for a positive number «,
the a-sphere about a subset A {z; d(4, x)<«} is denoted by S(4, «) ;
the function is the real valued continuous mapping.

DEFINITION 1. Let us consider a family of neighborhoods U, of =z,
such that {«,} is a sequence of distinct points and U,,NU,=¢ (=empty)
for m#n. Let f,(x) be a function such that f,(x,)=n» and f,(x)=0 for
x¢ U,. Then a mapping constructed from the family is a mapping f(x)
defined by fle)=f,(x) for & belonging to some U, and f(x)=0 for the
other «.

LEmMMA. Consider a family of neighborhoods U, of x, satisfying the
Sfollowing conditions :

(1) {a.}, which consists of distinct points, has no accumulation point,

(2) U,NU,=¢, m#n (U a closure of U), and U, < S(x,, 1/n),

(8) there is a sequence of points y. such that distances of x, and Yy,
converge to 0 and y, does not belong to any U, ; then the mapping
constructed from the family is continuous and not uniformly continuous.
When {x,} is a sequence containing infinitely many distinct points and
has mo accumulation point, there is a family of mneighborhoods of x,
satisfying (2); if {w.} JSurther -contains infinitely many distinct
accumulation points, then the family besides satisfies (3).

Proof. The continuity of the mapping constructed from the family
follows from TU,,;:UUM for any subsequence {»;} of indices; the
mapping is not uniformly continuous by (3). Suppose {z,} consists of
distinet accumulation points and has no accumulation point, then, by
an inductive process, we have neighborhood V, of =z, such that V,
cS(zx,, 1/n) and V,,n V,=¢, and have y, and a neighborhood U, of z,
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such that U, 3%vy,¢V,, U,CV,.

DEFINITION 2. Let 2 be isolated in a metric space, then we write
I(x) for a supremum of positive numbers « such that S(x, a) consists
of « alone.

THEOREM 1. The following conditions on a metric space S are
equivalent

(1) If {x.} is a sequence of points without accumulation point,
then all but finitely many members of x, are isolated and inf I(x,) for
the isolated points is positive.

(2) If asubset A of S has no accumulation point then all but finitely
many points of A are isolated and inf I(x) for all the isolated points of
A 1s positive.

(8) The set A of all accumulation points in S is compact and inf
I(z,) is positive for any sequence {x,} in S-A which has no accumulation
point (Isiwata [2], Theorem 2).

(4) ANB=¢ implies S(4, )NS(B, a)=¢ for some «a (Nagata [4],
Lemma 1).

(5) 6 A.=¢ implies Fj S(A,, a)=¢ for some «.

(6) For any function f(x), there is a positive integer n such that
every point of A={x; |flx)|=n} is isolated and inf,., I(x) is positive.

(7) All functions of S are uniformly continuous.

(8) All continuous mappings of S into an arbitrary uniform space
S’ are uniformly continuous.

Proof. Since the equivalence of (1) and (3) is simple, we shall show
(1)>(8)—>(7)—(6)—(5)—>(4)—(2)—(1).
(1)—(8): If a continuous mapping f{x) of S is not uniformly continuous,
there is an ‘‘entourage’ V (in the sense of Bourbaki) of S’ such that
d(x,, ¥,)<1l/n and (Ax,), f(¥.) €V for any positive integer n and for
some @, and y,. {x,} contains infinitely many distinct points. If {x,}
has an accumulation point x, there are subsequences {w, } and {yni} of
{#,} and {y,} converging to =, and, since f(x) is continuous, (f(x),
A, )) € W and (f(z), fy,,)) € W for W satisfying W-WcCV (we may
assume W~'=MW) and for all sufficiently large 7. Hence we have (f(x,,i ),
., )) €V, which is excluded. Consequently {w,} hes no accmulation
point and inf I(z,)=7r>0 for all sufficiently large =, which contradicts
the first inequality of f for n satisfying »>1/n.
(8)—(7) is obvious.
(7)—(6): If, for some function f{z) and every n, there is an accumulation
point x, such that |f(z,)|=n, {«,} contains infinitely many distinct
elements and has no accumulation point, then, by the Lemma, we have
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a function which is not uniformly continuous. Suppose that every
point of A={x; [flw)|=n} is isolated and inf I(x)=0. Then there is a
sequence {x,} in A such that inf I,=0, [,=I=,). {x,} has no
accumulation point, and we may assume I,<1/n. If distances of distinct
points of {wx,} are greater than a positive number e, then, for all »
satisfying e>4l,, z, and y, (#@., €S(x,, 2I,)) satisfy the conditions
of the Lemma. In the other case, there are arbitrarily large m and n
satisfying d(«,, ®.)<e for any positive number ¢, and we have, by an
inductive process, a subsequence {y;,} of {&,} satisfying d(y._1, y.)<1/7.
Then #,,_, and y,; satisfy the conditions of the Lemma.

(6)—(5): Let Q S(A,, 1/m)+¢ for every m in spite of Q Zn:qs. We
have a point «, contained in N S(A4,, 1) and a point y, distinct from

x, satisfying d(z;, )<1l. Suppose B,={w,---, x;} consists of distinct
points such that x;€ N S(A, 1/j), #; and y, are distinct and d(x;, v,)

<1/j, j=1,---, 4. Since, for any point &, N S(4,, 1/m) does not contain
x for a sufficiently large m, N S(4,, 1/(¢+1)) contains a point z;., being

not contained in B,;, and some A, contains y,., distinct from x,., satisfy-
ing d(®;+y, Yir1)<1/(t+1). Thus we have a sequence {w,} of distinct
points and {y.} such that x, € N S(4,, 1/m), x, and y, are distinct,

and d(x,, ¥.)<1l/n. {x,} has no accumulation point because of N A,=d¢.
The function obtained from the Lemma does not satisfy the condition
(6) whether all but finitely many members of z, are isolated or not.
(5)—(4) is obvious.

(4)—(2): Suppose A has infinitely many accumulation points z,, n=
1, 2, ---. Since B={®,} has no accumulation point, there is a sequence
C={y,} having no accumulation point such that d(x,, ¥.)<1l/n, BNC=¢.
BNC=BNC=¢, and S(B, a)NS(C, a)=¢ for no a. If every point of
A is isolated and inf I(x)=0, we have a sequence {w,} such that lim
I(x,)=0, and have a sequence {y,} with the same properties as the
above.

(2)—(1) is obvious.

Recently Isiwata has stated a theorem ([3], Theorem 4) which is
related to our Theorem 1. However the first step in his proof is wrong.
We shall give a correct form of the theorem in Theorem 3. Let us
first give a counterexample for the statement ‘‘In a connected metric
space which is not totally bounded, there exists a sequence {z,} and a
uniformly continuous function f such that flz.)=»"".

ExaMPLE. Denoting the points of the plane by polar-coordinate,
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we consider the following subsets of the plane:
A, =1{(r, 0); 0=r<1, 0=n/m},

S=UA4, .

m=

We define the distance of the points of S by
d((?‘, 0), (r’, 0’)):!7"-—7"[ as =46 or rr'=0 ,
=pr+9 as 0+0 y

then S is obviously a connected metric space which is not totally
bounded. When flz), x€ S, is a uniformly continuous function of S,
there is a positive integer n such that d(z, y) <1/n implies |f(x)—f(y)|
<1. If z is contained in 4,, there are points y,=0=pole, ¥, ***, Y,
=z, r=n+1, of A, such that d(y;-,, v;)<1l/n, 1=1, «--, 7.

LA0)—A)| < |A0)—Ay)l + + -+ + [fy-) @) =n+1;
namely f(z) is bounded.

DEFINITION 3. Let ¢ be a positive number, then the finite sequence
of points ), x;, ---, z, satisfying d(z,_,, x,)<e, i=1, ---, m, is said
to be an e-chain with length m. If, for any positive number e, there
are finitely many points p,, ---, p, and a positive integer m such that
any point of the space can be bound with some p,, 1<j<4, by an
e-chain with length m, then the space is said to be finitely chainable.

THEOREM 2. A metric space S admits a uniformly continuous
unbounded function if and only if S is not finitely chainable.

Proof. Verification of ‘‘only if’’ part is analogous to that stated
in the above example, hence is passed over. Let S be not finitely
chainable, then there is a positive number e such that, for any finitely
many points and a positive integer n, there is a point which cannot be
bound with any one of points selected above by an e-chain with length
n. We denote by A? the set of all points which can be bound with a
fixed x, by an e-chain with length =.

(1) When Ar+A7+ for every n, we put

fl@)=(n—1e+d(x, AT™)
for = belonging to A7 and not to A%, and fla)=0 for x¢ A,= U A7 (f(x)

=d(x,, ®) for xe A;). Since S(4,, ¢)=A4,, f(z) is uniformly continuous
on Sif it is so on A4, Let Aras xz ¢ Ay' and d(w, y)<é'<e, then
At oyé A7%. (i) When y is in 4%, then
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Sy)=(n—2)e+d(y, Ai™?)

and d(x, 477" <é/, d(y, A;™*)<e, hence f(y)<flx). If d(y, Ay H)<e—¢,
then d(y, y')<e—e' for some y’ of A;~* and d(z, ¥ )<d(z, y)+d(y, ¥)<e,
so that « is in A§~', which is excluded. Therefore d(y, A7 ?)=e—e and

1f@) =) =) —fy)=e+d(@, A;™")—d(y, A1)
<e+e —(e—e)=2¢ .

(ii) When y is in Af and not in A}, then
f(y):(n—l)e+d(y, Ag—l)’

and we have

@) —f)l = ld@, Ai™)—d(y, As™) =d(z, y)<e

(cf. the proof of Prop. 3 of §2, [1]). (iii) The remaining case for y is
similar to (i). Consequently f(x) is uniformly continuous on A,.

(2) When A;=Ar*' for some %, then Ayr=A} for every m=n, and,
in the similar way to (1), A,= UA} is obtained from a point of S—A,.
If we can make an unbounded function which is uniformly continuous
on A,, our proof will be complete.

(3) When we cannot, for every m(0<m=<n), construct a desired
function on A, obtained in the same way as (2), A4, ---, 4, cannot
cover the space, because the space is not finitely chainable; namely
we have a sequence of infinitely many subsets 4, A,, --- when our
proof is not complete in the similar way to (2). Then we put fle)=n
for @ of A, and flx)=0 for  which is not in any A,. Then, since
S(4,.,, e)NA,=¢ for any m=#n and S(UA., €)= UA,, flx) is uniformly
continuous.

THEOREM 3. If S is a connected metric space which is mot finitely
chainable, then the set of all uniformly continuous functions of S does
not form a ring.

Proof. The following verification is essentially due to Isiwata [3].
There is, by Theorem 2, a uniformly continuous unbounded function
flz) of the space, and we have a sequence A={=x,; n=1, 2, ---} such
that flan)=0¢n, @ne—a,=1, 2,=1; A has no accumulation point. For
some positive number «, d(z, y)<a imlies |f(x)—Sf(y)| <1/3, and so S(«,,
a)NS(xn, a)=¢ for m#=n. We put

Me)=1—d(4, o)/« and G=US(xs «)

and
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[ ) for xe G,
Sfl(@)=

1 0 for a¢ G .
(x) is uniformly continuous on the space, because d(A4, x) is so (cf.
Prop. 3 of §2, [1]). Mx)>0 and A(y)<0 for  of G and y of S—G
respectively, so we have

|f@) — 1(y)| = (@) — (y) 2 @) = |f (@) = ()] -

Hence f(x) is uniformly continuous on the space. g(z)=f(x)f'(x) is not
uniformly continuous. In fact, if it is uniformly continuous, d(z, y)<pB
implies

() lg@)—gy)| <1  and  |Ax)—Aw)l<1

for some B (Z«a). We select a positive integer n such that a, is greater
than 1+4«/p, and take a point y such that f/2<d(x., y)<B (it is possible
to take such a point because of the connectedness of the space). Then,
by (*), we have |a.—f(y)| <1, fly)>a.—1=0, and

l9(@n)—g(W)| = |an—(1—d(A, »)|a)AY)| =|an—TY)+d(xn, YY)l
= |d(@n, W) ] — lan—fY)| >d(@n, YY)a—1
> B(a,—1)/2a—1>p(1+4a/f—1)2a—1=1,

which contradicts ().
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