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1. Introduction. Let V(G) denote the set of all functions having

finite variation on G. Set G — ( — oo, oo) = G, and let Ko(G) be the

Banach space of all functions in V(G) which vanish at infinity. If

/ 6 VJfi), then there exists a bounded linear operator (tpf) on LV(G)

such that

(i0) (Fourier transform of (tpf)x) = (Fourier transform of x) /

for all x in LV(G). This will be shown in 7.2. In the terminology of
Hille [3, p. 566], functions / having property (i0) are called ' 'factor
functions for Fourier transforms of type (LP,LP)".

Suppose 1 < p < oo. When / e L\G) Π V{G)c V^G), then (tpf) is a
singular integral operator: for all x in LP(G) it is found that (tpf)x has
the form

M ~ F [ θ χ U (λ e G) ,
θ — λ

where the integral is taken in the Cauchy principal value sense.

In 6.2 will be defined a set A(LP(G)) which contains all factor
functions for Fourier transforms of type (LP9 Lp); the set A(LP(G)) is a
slight extension of what Mihlin [6] calls "multipliers of Fourier inte-
grals " . We will find a number Np such that

( i ) if f e V4G) then f e A(L*(G)) and \\(tpf)\\ ^ Np . \\f\\v ,

where | | / | | υ denotes the total variation on G of the function /. Let F*
be the mapping {x -> x * F}, where x * F is the convolution of the func-
tions x and F;

[x * F]λ = f" x(θ) * F ( Θ - X)dθ (λ 6 G).

Let (Yf) denote the Fourier transform of the function / :

(ii) if f 6 L\G)Γ[ V(G), then the transformation (Yf)* is a

densely defined bounded operator, and (tpf) is its continuous linear

extension to the whole space LV(G).

Let us for a moment call G = {0, ± 1 , ±2, •} and G = [0,1]. In
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a sense, the following relations are duals of (i) and (ii), respectively:

(i') if Fe V(G) then (ΫF) e A(L»(G)) and \\tp(YF)\\ ^ kp \\F\\υ

(ii') if Fe V(G) then F* = tp(YF) is a bounded operator on Lι\G).

When G = [0,1] these properties are easily verified (see 8.1). We will
not1 prove (i')-(ϋ') for other choices of G.

When G = [0,1], then (ii) is seen to be a theorem due to Steckin
[10]; by means of appropriate definitions, it could be shown that (i) also
holds for this particular choice of G.

2. Applications, If / belongs to the class S of members of
L\G)f)V(G) such that (Yf)eL\G), then (Yf)* = (tpf) is a bounded
operator defined on all of LP(G); it is interesting to compare this result
with the conclusion F* — tp(YF) of (ii'). All the classical convolution
operators (Poisson, Picard, Weierstrass, Stieltjes, Dirichlet, Fejer,..etc.
[7]) are of the form (tpf), where f e S. See § 8.

3. Preliminaries. We assume 1 < p < oo throughout, and write
G = ( — oo, oo). Denote by L° the set of step functions with compact
support. Let V be the set of all functions a defined on G and such
that | |α | | υ Φ oo, where Hall,, denotes the total variation on G.

3.1 DEFINITIONS. Let V*, be the set of all functions a in V such
that limα(0) = 0 whenever |0 | -> oo. We will write Lp instead of LP(G).
If t = 0,1 and / e L\ then the Fourier transforms [tYf] are the func-
tions gL defined by

(1) LYf], = flf.(λ) = j%xp(2πiλ(-l)^)./(β)d6f (λ e G) .

To lighten the notation, we will write Yf for [XY/] and Ψf for [0Y/].

3.2 LEMMA. If a e DΓiV, then α e 7 M and

( 2 ) ί~ e-2«ίθtda(t) = 2πiθ.[Ya]θ (θeG) .

Proof. Since ae V, the limits α( ± oo) = lim a(θ) (when θ —• ± oo)
exist. Since \\a\h < oo we have

( 3 ) lim Γ + 1 |α | - 0 .
θ-*±oo Jθ

The eventuality α(±oo) Φ 0 implies a contradiction of (3). Therefore
1 It would be of interest to determine the validity of (i)-(ii) and (i')-(ii') in the general

case where G is a connected locally compact abelian group with dual group G. It us mainly

in order to suggest such an investigation that (i')-(ur) are mentioned here.
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α(±oo) = 0, which permits the integration of (1) by parts to obtain (2).

3.3 DEFINITIONS. Let δ* = ( — oo, — δ]u[δ, °°) and let (T8a)x be the
function defined by

( 4 ) ί(T8a)χ-]λ =

for all λ in G. We denote by Vλ the set of all members a of F such
that, for all x in L°, the limit

[(Γα)x]λ = Km [(T,a)x]λ
δ->o +

exists almost-everywhere on G. Let Ύa be the operator {x-+(Ta)x}
defined on L°.

3.4 LEMMA. If h(θ) = iθ/\θ\, then heV1 and Th is the restriction
to L° of the Hilbert transformation. Moreover \\(T8h)x\\p ^ cp ||ccl|p,
where cp is the norm of Th.

Proof. This follows from the statement in [8, p. 241] that
\\(Tεh)x\\p ^ \\(Th)x\\p. Theorem G in [1, p. 251] yields a less precise
result.

3.5. LEMMA. // a e LιΠ V then aeVx and x * [Ya] = (Ta)x whenever
xeL°.

Proof. Suppose δ > 0. By definition

(x * [Ya])λ = Γ dθ-x(X - θ)-[Yd\θ = E*(X) + G\X) ,

where

Gδ(λ) = ( dθ x(x - θ) [Yά\β (λeG),

while £7δ(λ) is the same integral over the interval ( —δ, δ). It is clear
that \imE\X) = 0 when δ - > 0 + . On the other hand, G8 = (jΓδα)ίr fol-
lows immediately from (2) and (4). This concludes the proof.

3.6 LEMMA. Suppose aeVΛ and x e L°. // there exists a number
Jcp such that \\(T8a)x\\p ^ kp for all δ > 0, then \\(Ta)x\\p g kp.

Proof. Set q = p/(p - 1). Observe first that

( 5 ) llffll, = sup \\\g.φ :φeL< and
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Next, we infer from a theorem of F. Riesz ([8], p. 227 footnote 10)
that the uniform boundedness of | |(Γδα)x| |p implies that, for all φ in Lq

with

( 6 ) \l(Ta)x] ψ = lim \[Tsa)x\ ψ .

By (5) we have

\l(Ta)x].

^ kp; this enables us to use (6) to deduce

φ ^ kp. The conclusion is reached by another application of (5).

3.7 LEMMA. // a e Lι n V and x e L°, then

\\(Ta)x\\p^2-%\\a\\υ\\x\\p

Proof. Suppose δ > 0. Apply Fubini's theorem to (4):

js* 2τrί^

Set xt(β) = x(β) exp(2πitβ). Keeping both (4) and 3.4 in mind, we can
therefore write

( 7 ) l(T8a)x]λ =

This implies

( 8 )

The derivation of (8) from (7) is obtained by a standard procedure (e.g.
as in [3, Lemma 21.2.1]); it rests upon (5) and requires a single appli-
cation of the Fubini theorem. On the other hand, 3.4 implies that

In view of (8) therefore: \\(T8a)x\\p ^ 2~1c,p\\a\\υ\\x\\p. Use now 3.6 to
reach the conclusion.

4. The Banach space F^. Let Vs denote the set of all functions
in V which have compact support. The norm {α-> | |α |U makes the set
{aeV: α( — c») = 0} into a Banach space Vo. Note that F S C F ^ C F Q .

Henceforth V^ will be given the topology of Vo. We will write | |α |U =
sup{|α(0)|: θeG}; it is easily checked that

( 9 ) I k l U ^ H α l L (when aeV0).

Let χn denote the characteristic function of the interval (—n,n), and
set an = χn . a.
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4.1 LEMMA. If ae Foo, then lim \\a — an\\v = 0.

Proof. Suppose f e V. Using the notation δ* of 3.3, we have

(in)

where v(f; I) denotes the total variation over I. Set δ = n and hn =
a - an; therefore v(hn; [-δ, δ]) = \a(-8)\ + \a(8)\ and v(few; δ*) = v(a; δ*).
From (iii) therefore \\hn\\υ — \a( — δ)| + |α(δ)| + v(α; δ*), and the conclu-
sion follows by letting δ -> co.

4.2 REMARK. The set F s is dense in F^ (since 4.1 and the fact
that ane Vs).

4.3 THEOREM. The set F«, is a Banach space.

Proof. Since F*. is a metric subspace of the Banach space Fo, it
will suffice to show that Ko is complete. To that effect, consider a
Cauchy sequence {gk} in F^; since {gk} is also in Fo, it will converge
to some function / in Fo; therefore / ( - c o ) = 0 and we need only estab-
lish that /(oo) = 0. From (9) we see that

\f(β)-gk(θ)\i£\\f-gk\l (θeG).

In view of gk(oo) = 0, the conclusion is obtained by letting θ -> co and
A; -> oo.

5. The bilinear operator Bp. From 3.2 results that F- CL 1 Γi F c Foo;
it follows from 4.2 that Z^ΠF is dense in VΌo. Consider the bilinear
operator B= {(x,a)-+(Ta)x} which maps L° x (U Π F) into ZΛ From
3.7 we see that B is a continuous bilinear mapping of L° x (Z/Π F) into
Lp. Since L° and L ! n F are dense in Lp and F*,, respectively, it fol-
lows that 5 has a (unique) continuous extension Bp to Lp x F^. Ac-
cordingly, if α 6 Foo, then

(10) \\Bp(x,a)\\p ^ 2-1c1,||α|U|a?||p (if x e Lp)

If aeUftV, then (from 3.5)

(11) Bp(x, a) = x*Ya (if x e L°) .

5.1 NOTATION. We henceforth identify functions equal almost-every-
where on G. If the sequence {/„} converges in the mean of order p
(i.e., in the topology of Lp), then its limit will be denoted (Lp)\imfn.

5.2 LEMMA, Let χn be the function defined by
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χn(θ) = (sin 2πnθ)lπθ (θeG) .

If f e Lp, then f = (L") lim/ * χn as n -> CXD .

Proof. Observe that Dunford's proof [2, p. 51, Lemma 3] for the
case p = 2 holds without alteration whenever 1 < p < ©o.

6. The main result. Suppose c — 0, 1. When / is a locally inte-
grable function, we set

(12) [(T,)/] = ( ^
W->oo

As in 3.1, we lighten the notation by writing Ypf = [dYp)f] and

6.1 REMARK. If f e L1 then [(LYP)fl = LYfl The following de-
finition is an extension of the one used by Mihlin ("Multipliers of Fourier
integrals " 2 ) .

6.2 DEFINITION. A locally integrable function a is called a "mul-
tiplier of type Lp" if both the following conditions hold:

(the transform Yp(a [Ψx]) exists and belongs to Lp whenever xeL°

1 co Φ axιv{\\Yp(a [Ψx])\\p . ^ L ° a n d | | a ? [ | p ^ l } .

Let A(LP) denote the set of all multipliers of type Lp. When αe A(LP),
then (tpa) is defined as the continuous extension to all of Lp of the
transformation {x -• Yp(a-[Ψx])} defined on L°.

6.3 THEOREM. // α e F . , ί/̂ β̂  αeA(L p ) αncZ (ίpα)ίc = -Bp(ίc, α) /or

Proof. Note first that αTO = (χw α)6L1Π F. Suppose xeL\ From
(11) we see that

[Bp(x, α n ) ] λ = ( d ί . a ? ( ί ) ( d ί . e - 2 i r l ( λ - β ) ί α n ( ί ) ( w h e n λ e G ) .

B y F u b i n i ' s t h e o r e m

[Bp(x,an)]λ = [dt-an{t)er^m\Ψx\t (for all λ in G) .

Or, equivalently

2 See [6|; in that article, Mihlin gives a condition which ensures that a differentiable
function be in
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From (10) and 4.1 we can now infer that

Bp(x, a) = (Lp) lim Y(χn- {a-[Φx\}) .
7l->oo

From the definition (12) now results that Bp(x, a) = Yp(a [Ψx]) for all
x in L°. This completes the proof, in view of (10) and 6.2.

7. Hille's definition. Set q = p/(p — 1). The following definition
is found in [3, p. 566]: a function a is said to be a factor function for
Fourier transforms of type (Lp, Lp) if and only if

α.[iP>] € {Ψqz:z e L*}

wherever x e Lp. This definition seems to require the restriction p ^ 2,
since [^x] need not exist otherwise.

7.1 THEOREM. Suppose 1 < p ^ 2. If a is a factor function for
Fourier transforms of type (Lp, Lp), then ae A(LP).

Proof. If a is such a factor function, there exists a bounded linear
mapping (tpa) of LP(G) into itself (see [3, Theorem 21.2.1]); this operator
is defined by

a-[Ψqx] = Ψq((t'pa)x) for all a? in Lp .

In view of [11, 5.17], this implies

(13) Yp{a-\Ψqx\) = (*»» for all % m L* .

The conclusion follows from 6.1 and 6.2.

7.2 THEOREM. Suppose 1 < p <£ 2 αmZ αe Foo. TΛe^ a is a factor
function for Fourier transforms of type (Lp, Lp); moreover,

(14) Ψq(Bp(x, a)) = a [Ψqx] (when x e I/) .

Proof. Since Bp(x,a)e Lp when x e l / (see §4), it will suffice to
prove (14). Consider first the case (x,a)eL° x Vs. From (12) we see
that

(15) Ψq(B9(x,a)) = (L*)\imgn,

where ^ - Ψ[χn-Bp(x, a)]. From (11):

flfn(λ) = Γ d β . e ^ d n j a ί ^ t Y α J ^ (when λ e G ) .

A repeated application of the Fubini theorem yields
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gn(χ) = [dt-a{t)\Ψx]X dθ-e**"-™ (when λ e G ) .

In the notation of 5.2 we accordingly have

gn = {a [Ψx]} * χ w .

Since α [Ψx] is in LQ, it can be inferred from 5.2 and (15) that

Ψq(Bp(x, a)) = (L«) lim ({α [^]} * χn) = α-JΓa] .
W->oo

Keeping ^cc = ^ gx in mind (see 6.1), it is clear that (14) is now proved
in the case (x, α) e L° x Vs. Consider the bilinear operator R — {(x, a) ->
a Ψqx] defined on Lp x V^; since \\Ψqz\\q £ \\z\\p, it follows that
\\R(x, a)\\q ^ ll^lU|α|L, and from (9) results that R is a bounded bilinear
mapping of Lp x Foo into ZΛ In view of (10), this remark also shows
that the bilinear operator J = {(x, a) -> Ψq(Bp(x, a))} is a bounded bilin-
ear mapping of Lp x T^ into IΛ

Having shown that R(x, a) = J(x, α) whenever (#, a)eL° x F s, the
desired conclusion R ~ J can now be inferred from the denseness of L°
and F.s in L29 and Foo, respectively (see 4.2).

8. Concluding remarks* From 6.3, 3.2 and 3.5 follows that, if
fe UΓ) V and xeL\ then (ίp/)a? = Bp(x,f) = Tf; hence, if F is the
Fourier-Stieltjes transform of /, we have (from 3.3) the relation

V(tJ)x\k = - M ~ x(θ)F<f-χ)dθ (λ e G)

which was announced in the introduction. Property (ii) of the introduc-
tion follows from (11) and 6.3. If Ae L1 we denote by A*p the bounded
operator {x -> x * A} defined on Lp. Let S be the set of all a in L1 Π F
such that YαeL 1, and observe that (Ya)*p = (tpa) when α e S . Again
if a € S, then A = Fα e L1 and α = ΨA; from [4] it is seen that the
spectrum of (tpa) is the closure of the range of α.

8.1 REMARK. Set G = [0,1] and G = {0, ± 1 , ±2, ..•}. We will

now sketch a proof of the properties (i')-(ϋ') described in §1. Denote

by H Al|υ the total variation of A on G, and suppose ||AHy Φ oo. Observe

that, since A e L^G), we may borrow from [5, p. 10] the following con-

clusion: a = YAe A(LV(G)) and tp(YA) = A* is a bounded linear operator

on LP(G).

This is all of (i')-(ii') except for the inequality. The main result of
[5] can be stated as follows3:

The definition of Vσ(a) is given in [5, p, 8].
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(16)

Note also that |[YΆ]J ^ i2τrn|~1||A||υ when neG (this is obtained by
integrating by parts, as in 3.2); consequently Vσ(a) = Vσ(YA) ^ m^HAH,,.
In view of (16), the proof of the inequality in (i') is completed.
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