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We shall say the sequence an(n = 1,2, •) is a p-sequence (1 ̂  p <
if there is a function / e Lp(0, π) such that

an = \*f(t)
Jo

cosnt dt n — 1, 2,

(i.e. the αw are Fourier cosine coefficients of an Lv function).
A famous theorem of Hardy [1] states that if an is a p-sequence

(1 ^ V < °°) and bn = —(αx + α2 + + αn), then 6W is also a p-sequence.

In this paper we shall prove the following generalization of Hardy's
theorem:

THEOREM 1. Let ψ(x) be of bounded variation on 0 ^ x rg 1, and
let 1 ^ p < CXD . Then, if an is a p-sequence and

7 1 Λ ( / m \
0w = —2-1 Ψ[

nm=i \ n

bn is also a p-sequence.
Hardy's theorem is the special case ψ(x) = 1 for 0 g x ^ 1.
If the conclusion of Theorem 1 holds for each of two functions ψ

it clearly holds for their difference. Hence it is sufficient to prove
Theorem 1 in the case where ψ(x) is non-decreasing for 0 ^ x ^ 1.
Further, since any non-decreasing function may be written as the dif-
ference of two non-negative non-decreasing functions (the second of
which is constant) to prove Theorem 1 it is sufficient to prove

THEOREM lA. Let ψ(x) be non-negative and non-decreasing on
0 ^ x ^ 1 and let 1 ^ p < oo. Then, if an is a p-sequence and

n

bn is also a p-sequence.
The proof of Theorem 1A will follow a sequence of lemmas.

ί x

cosytd(y — [y]). Then there is an M > 0
0
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such that

\Bt(x) \^M 0 ^ t ^ π ; 0 ^ x < o o .

The symbol [y] denotes the greatest integer not exceeding y.

Proof. Let n be any non-negative integer. Then for t > 0

sin nt5 n
cos yt dy =

o t

and

Hence

("coβ yt d[y] = Σ cos mt = s i n ^n +
Jo ro-i 2 sin t/2

sin (n , _1_
2

= sin

2 sin ί/2

λ-λCot~L) - c o s ^
t 2 21 2

and so

( 1 ) JL _ ±. cot —
ί 2 2 + 1 n = 0,1,2,

The right side of (1) is bounded for 0 < t ^ π. Thus for some M ^

Now take any x ^ 0 and let n = \x\. Then

Γx

5ί(x) = Bt(n) + \ cos τ/ί<x(τ/ — [yj)
Jn

so that from (2) we have for any x ^ 0

and the proof is complete since B0(x) • x — \x] ̂  1 ^ M.
(Henceforth we assume ψ(x) ^ 0 and ψ(x) non-decreasing for

0 ^ x £ 1.)

LEMMA 2. ΓΛere is cm Af > 0 such that

I Λ/Γ _ cos a ί d(x - [x]) ^ Λf
J Jo \nJ

^ t ^ π ; n = l , 2 ,

Proof. With as in Lemma 1 we have
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ψ(
o \n

[x]) = \nψ(—)dBt(x)
Jo \n/

= ψ(l)Bt(n) -
n

Thus with M as in Lemma 1

d(x - [x]) ^ Mψ(l) ~) ^ 2Jlfψ(l) ,
n

and the lemma is prove (with 2Mψ(l) instead of M).

LEMMA 3. Let f e L'(0, π) and let

dn = —\y(t)dt\"φ(—)coa xt d(x - [x])

^Jo Jo \n/
Then

(3) dn = θ(A
V n n

and hence dn is a p-sequence for every p Ξ> 1.

Proof, By Lemma 2 there is an M > 0 such that \dn\ ^ MS*\f(t) \dt
n j

from which (3) follows. From (3) it follows that Σn=ι\dn\
q < °°, for

every q > 1. By the Hausdorίf-Young theorem and the fact that
Lp gΞ Lpf if 1 <L pr <; p, this implies that c£w is a p-sequence for every
p^l. (See [2].)

From now on we shall write / ~ an as an abbreviation for
an = \ /(^)cos nt dt, n = 1, 2, .

Jo

MA 4 .

0(<e) =

Lei

J χ Z
) / (t)dt

α(?i)

π) and a\

•

n Jo \n

so that

Lei

Then geLp(0,π) and

= 1 f(t)cos xt dt
Jo

Proo/. Since [g(E)| ^

[1] that g e IΛ Also

it follows from the proof in
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g(x)cosnxdx = \ cos nxdx\ —ψ( — )f(t)dt
o Jo Jx t V t /

= \—f(t)dt\ψ(—\osnxdx = [* f(t)dt\ψ(x)cos nxt dt
Jot Jo V t / Jo Jo

n JO Jo \n/ n J o V / J

The changes in order of integration are valid since

(Note / e L'(0, π) since / e L29(0,7r).) Thus g ^ cny which is what
we wished to show.

We can now establish our principal result.

Proof of Theorem 1A. Let / 6 Lp(0, π) be such that f ~ an and let
a(x), g(x), cn be as in Lemma 4. Then

6. = - Σ ψ(—V« = - ( V ( -
^m=i \ n y n Jo \n

so that

cn-bn = ±\nψ(—)a(x)d(x - \x\) = L[n

n Jo V n / ^ Jo

= —[*/(*¥« \nψ(—)cos xt d(x - [x]) .
wJo Jo \n/

The last iterated integral clearly converges absolutely, justifying the
change in order of integration. By Lemma 3 cn — bn is a p-sequence.
Also cn is a ^-sequence since, by Lemma 4, geLp(0,π) and g ~ cn.
Hence bn — cn — (cw — 6W) is a ^-sequence and the theorem is proved.

REMARK. Note that except for the result of Lemma 1 the only
properties of the cosine function used were its boundedness and the fact

that θ(—j is a p-sequence for all p ^ 1.
\n J

J x

sin yt d(y — [y]). Then there is an M > 0
0

such that

I Ct(x) \^ M 0^t£π;0Sx<°°.

Proof. Let n be any non-negative integer. Then for t > 0
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r s i n — * c o s ^
Jo t t

and

Hence

"sin yt dM = Σ sm kt = COB t/2 - COB (n + l/2)t
o *-i 2sinί/2

C (n) = — — c o s n t — cos ^/2 — cos (n + 1/2)6
t t 2 sin 6/2

sin nt
- (1 - cos wt/— - — cot — ) - —

\t 2 2/

The remainder of the proof follows as in Lemma 1.
In view of Lemma 5 and the remark preceding it the exact analogue

of Theorem 1 for sine coefficients must hold. This we now state:

THEOREM 2. Fix p :> 1. //, for some f e Lp,

an = I /(ί)sin ntdt n — 1, 2, ,
Jo

1 n ί TYi \
and if bn = — Σ Ψl )αw where ψ(x) is of bounded variation on

n m=i V n /

0 ^ a? ^ 1 £Λe?ι ί/^ere exists g e Lp such that

bn = \ #(ί)sin nidi w = 1 2,
Jo
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