
SEMICHARACTERS OF THE CARTESIAN PRODUCT

OF TWO SEMIGROUPS

MARIO PETRICH

1. If S and T are semigroups, then by S x T we mean the semi-
group consisting of the Cartesian product S x T oί the sets S and T
with coordinate wise multiplication. The semigroup S x T is called the
Cartesian product of the seimgroups S and T. A complex-valued
multiplicative function on a semigroup S is called a semίcharacter of S
if it is different from 0 at some point and is bounded (1.3, [1]). The set
of all semicharacters of S is denoted by S.

We show that Sx T = {χ\χ(x, u) = ψ{x)ψ{u) for some φeS, ψe f}
(2.4). We obtain a similar result for continuous semicharacters of
topological semigroups (3.3). One of the most interesting consequences
of the above results is a theorem on prime ideals (2.6). A subset / of
a semigroup S is called a prime ideal of S if / is a proper (i.e., Φ S)
two-sided ideal of S whose complement in S is a semigroup. For con-
venience we also call the empty set a prime ideal (cf. Definitions 2, 2a,
[2]). We also prove a theorem concerning continuity of the semicharacters
of the Cartesian product S x T of two topological semigroups (3.4).

If A and B are sets, then A — B will denote the set of all elements
of A which are not contained in B. A semigroup will always be non-
empty. A nonempty subset I of S is said to be an (two-sided) ideal of
S if xy9 yxe I for all xe S,ye I.

All results in this paper are stated for the Cartesian product of two
semigroups. However, a simple inductive argument shows that all of
them generalize to the Cartesian product of any finite number of semi-
groups.

This paper is an excerpt from the author's doctoral dissertation.
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The writer also is indebted to Dr. K. A. Ross and Professor Edwin Hewitt
for useful suggestions. This research was supported by the Office of
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2» If S and T are semigroups with two-sided identities, then semi-
characters of S x T are obtained easily from the semicharacters of S
and T. (If e and / are identities of S and T, respectively, then each
element (x,u) of S x T can be written as (x,f)(e9u).) In 5, [3], St.
Schwarz considers this case for commutative semigroups. We first intro-
duce two definitions.
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2.1. DEFINITION. Let/and g be arbitrary complex-valued functions
defined on sets S and T, respectively. We define the function (/, g) on
S x Γ b y (/, g){x, u) = f(x)g(u) for all x e S, u e T.

2.2. DEFINITION. Let S and T be semigroups. We define Sot =
{χ\X = (Φ, Ψ) for some φeS,ψet}.

2.3. THEOREM. Let S and T be semigroups and let χeSxT.
Then χ can be written uniquely as {φ, ψ), where φe S and ψe t. If
(α, b) is any element ofSxT such that χ(α, b) Φ 0, then

φ{x) = %(ax> 6 ) for all xeS and

ψ(u) = l{βy bu^ for all ueT.
X(a, b)

Proof. Let (α, b) be any element of S x T such that χ(α, 6) Φ 0 and
let x and y be elements of S. Then χ(ax, b)χ{a, b)=χ(αίcα, &2)=χ(α, b)χ(xa, b)
and after dividing this identity by χ(α, 6), we obtain

(1) χ(ax, b) = χ{xa, b) for all x e S .

Let

φ(x) = %(ax> 6) for all a? e S .
Z(α» δ)

From (1) we obtain

χ(ax, b)χ(ay, b) = χ(ax, b)χ{ya, b) = χ(axya, b2) = χ(αα^, 6)χ(α, δ)

and consequently

ΆiψΆ ^ y 6 > for all χ,yeS.

We let

ψ(u) = χ ( α ' bu^ for all u e T .

Like φ, ψ is multiplicative. Let {x, u) be any element of S x T. By
(1), we have

χ(ax, b)χ(a, bu) = χ(α, bu)χ(ax, b) = χ(α, bu)χ(xa, b) = χ(αm, 6^6)

and thus
(X)Ψ(U) =

χ(a,b) χ(a,b) X(a,b)X(a,b)

Therefore
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( 2 ) X = (Φ,ψ)

Since χ(α, b) is a constant, φ is bounded, and since φ(a) Φ 0, we conclude
that φ e S. A similar argument shows that ψ e T.

It only remains to prove uniqueness of φ and ψ. Suppose now that
(φ9 ψ) = (φlf ft). Then φ(x)f(u) = φ1(x)f1(u) for all x e S, u e T. There
exists an element uoe T such that ψ(u0) Φ 0. Hence

φ(x) = t^sLφl{x) for all x e S .

Let i£ = ψi(uo)lψ(uo). If x0 is an element of S such that ^(x0) =£ 0, then
Φ(xl) = I>(O]2 = [^i(^o)]2 = ^[^i(^o)] = Kφ(xl) and thus if = 1 since
φ(x0) Φ 0. Therefore φ = ^ lβ One shows similarly that ^ = ψlm

2.4. COROLLARY. / / S and T are semigroups, then S x T=Sof.

Proof, lί φ e S and + e f , it is easy to show that (φ,ψ)eSx T.

Therefore S x T a Sof. The reverse inclusion follows from 2.3.
V

The following lemma has been proved by St. Schwarz for several
classes of semigroups (Lemma 3, [2] and Lemma 3.2, [3]).

2.5. LEMMA. Let S be a semigroup and let χ e S. Then the set
I = {x e SI χ(x) = 0} is a prime ideal of S. Conversely, if I is a prime
ideal of S, then there exists a semicharacter χ e S such that

I={xeS\χ(x) = 0}.

Proof. The proof of the first statement is routine and is omitted.
For the converse, let / be a prime ideal of S. Define the function χ
on S by

, x (1 if xeS-I

Then χ e S and I - {x eS\χ{x) = 0}.

2.6. THEOREM. Let S and T be semigroups. Then a set L is a
prime ideal of S x T if and only if L = (I x T) U (S x J) where I and
J are prime ideals of S and T, respectively.

Proof. Let L be a prime ideal of S x T. By the second part of

2.5, there is a semicharacter χe S x T vanishing exactly on L. From
2.4 it follows that χ = (Φ, ψ) for some φeS,ψef. Clearly χ(x, u) =
φ(x)ψ(u) — 0 if and only if either φ(x) = 0 or ψ(w) = 0. Hence L —
{(x, w) G S x Γ| χ(a?, w) - 0} = (/ x T) U (S x J), where I={xe S\φ(x) = 0}
and J — {ue T\ψ(u) = 0}. By the first part of 2.5, I and J are prime
ideals of S and T, respectively.

Conversely, let I and J be prime ideals of S an T, respectively. By



682 MARIO PETRICH

the second part of 2.5, there are semicharacters φ e S, ψ e f vanishing
exactly on I and J, respectively. From 2.4 it follows that (φ, ψ) = χ

for some χeS x T. Clearly χ(#, %) = φ(x)ψ(u) = 0 if and only if either
0(#) = 0 or ^r(tt) = 0, and this happens if and only if either x e I or u e J.
Thus L = (7x T) U (S x J) = {{x, u)eSx T\χ(x, u) = 0}, and hence by
the first part of 2.5, L is a prime ideal of S x T.

3. We next consider continuous semicharacters of topological semi-
groups.

3.1. DEFINITION. A semigroup S is called a topological semigroup
if S is also a topological space and the mapping of S x S into S defined
by 0&, y) -* #2/ is a continuous mapping oί S x S into S The set of all
continuous semicharacters of S will be denoted by Sc.

It is straightforward to prove that if S and T are topological semi-
groups, then S x T is a topological semigroup under the product topology.

3.2. DEFINITION. If S and Γ are topological semigroups, we define
Sc°?ΰ = {χ|χ = (0, ψ) for some 0 e Se, ψ e ΓJ.

3.3. THEOREM. // S αncZ T are topological semigroups, then

{&xT)e = §eof0.

Proof. If φ e Sΰ and ψ e fe, then (Φ,ψ)e S^T by 2.4. Hence to

show that (φ, ψ)e(Sx T)cy it suffices to show that (φ,ψ) is continuous
in both variables at an arbitrary point of S x T. Using the fact that
φ and ψ are bounded, the proof of this fact is a standard continuity

argument and is omitted. Therefore (S x T)c^Scofc. The reverse in-
clusion follows from 2.4 and the fact that joint continuity implies con-
tinuity in each variable.

3.4. THEOREM. Let S and T be topological semigroups and, let

χ e S x T. Then the following statements are true.

(a) Let φe S be such that (φ, ψ) — χ for some f e f . // there
exists (a,b)eS x T such that χ(α, b) Φ 0 and χ(y, b) is a continuous
function of y either in aS or in Sa, then φ e Sc.

(b) χ(x, d) is continuous in S for each de T if and only if for
some (a, b) e S x T such that χ(α, b) Φ 0 and χ(y, b) is continuous either
in aS or in Sa.

(c) χ€ (S x T)c if and only if for some (a,b)e S x T such that
χ(α, b) Φ 0, χ(y, b) is continuous either in aS or in Sa, and for some
(c,d)eSx T such that χ(c,d)Φθ, χ(c,v) is continuous either in dT
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or in Td.

Proof, (a) By 2.3, we have φ(x) = χ(ax, δ)/χ(α, b) for all x e S.
Since (α, b) is fixed, it suffices to show that χ(ax, b) is a continuous func-
tion of x in S. Suppose that χ(y, b) is continuous in aS. Let m(#) = ax
for all x e S and l(y) — X(y, b) for all y e aS. Then m is continuous by
continuity of multiplication and I is continuous by hypothesis. We have
lom(x) = χ(ax, b) for all xeS. Since Zom is continuous, χ(ax, b) is con-
tinuous in x. Hence φ e Sc.

Suppose now that χ(y, b) is continuous in Sa. By (1) of 2.3, we
have χ(ax, b) = χ(xa, b) and consequently φ(x) — χ(xa, b)lχ(a, b) for all
x e S. Defining m(x) — xa for all x e S, we show that φ e Sc in a similar
way as above.

(b) Necessity is obvious; we prove sufficiency. Let d be any ele-
ment of T. If χ(x, d) = 0 for all cc e S, then χ(x, d) is continuous in S.
Suppose that χ{c,d) Φ 0̂  for some ce S. Continuity of χ{y, b) in aS or
in Sa implies that φ e Sc, where φ(x) — χ{ax, &)/χ(α, b) for all x e S, by
part (a) of the present theorem and 2.3. By 2.3, φ is unique and thus
χ(ax, 6)/χ(α, b) - χ(cx, d)lχ(c, d) for all x e S. Consequently, χ(cx, d)lχ(c, d)
is continuous in x. We have

?, d) = χ{c"xy d*)
2, d)

_ χ(c, d)X(cx, d) „ χ(c2, d*)χ{cx, d)

X(c\ d) χ(c\ d)χ(c, d)

for all xeS. Since χ(c2, d2)lχ(c\ d) is a constant, χ(x, d) is continuous in
S.

(c) Necessity is obvious; we prove sufficiency. By 2.3, χ = {φ, ψ)
for some φe S, ψ e f, and by part (a) of the present theorem, φ e Sc and

similarly ψ e fc. From 3.3 it follows that χ = (φ, ψ) e (Sx^T)e.
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