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l Introduction and results* In the first two sections of this paper
A will be assumed to be an irreducible nonnegative ^-square matrix;
A Ξg 0. Let sk = sfc(A) denote the sum of the entries in the matrix Afc,
where k is a positive integer. The problem considered in the first section
is the convergence of the ratio sjs^ as k —> oo. In § 3 we obtain an
inequality relating the sk for various k in the case A is a Hermitian
matrix and in § 4 we discuss convexity properties of s2/s1#

Let λi be the dominant positive characteristic root of A which can
be taken as 1 for the purposes of our subsequent arguments. If h is the
number of charcteristic roots of A of modulus 1, then they are the roots
of \h - 1 = 0 and are all simple [3]. Let ε = e2πίlh so that 1, ε, ε2, ,
ε7*"1 are the roots of modulus 1. Choose permutation matrices P and Q
so that

(1)

and

(2)

PAPT =

QATQT =

Ό A,

0 A2

0 Bx

0

[Bh

0

0

where the zero blocks down the main diagonal in both (1) and (2) are
square. We shall asume henceforth that A is in this Frobenius normal
form. In other words we assume A is already in the form given on
the right in (1). Let ulf •• ,uh and vu , vh be the characteristic
vectors of A and Aτ corresponding to 1, ε, •• ,εΛ~1 respectively. We
write for the maximal characteristic vector

(ό) M i = Zl ϊ - "t- Zft ,
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•

where + indicates direct sum and the partitioning in (3) is conformal
to the partitioning into main diagonal blocks in (1). That is, if the
square blocks down the main diagonal in (1) are of sizes nl9 , wA then
zt has coordinates numbered nt-± + 1, , nt(n0 = 0) all positive, the
rest zero. Thus no two of the zt have positive coordinates in the same
position and the direct sum notation is appropriate.

Since Qvx is the maximal characteristic vector of QATQT we can
partition Qvλ into a direct sum exactly as was done with ux\ Qvλ =

•
m1+ ••• + mh. Then v1 = Qτm1 + + Qτmh and we set Qτmt = wtJ

t — 1, , h, to obtain

•
(4) vλ = wx + + wh .
Let r = r(A) and c = c(A) be the ^-tuples of row and column sums of
A respectively. Partition r and c conformally with vλ and ux respectively
as in (4) and (3):

•
r = rλ + + rh

C = Ci + + Ch .

The notations (zi9 ĉ ) and (wif r j will be used for the ordinary euclidean
inner product.

Our main result is in terms of these inner products.

THEOREM 1. lim^oo Sfc/ŝ -i exists and is equal to the dominant
characteristic root if and only if the numbers

h

(5) ΣA*i, Ci)(wΛ_ί+1, r*_ i + 1)
t = l

are all equal for a = 1, , h.
We remark that the indices in (5) are to be reduced modulo h.
In case A is symmetric then the roots of modulus 1 can be only 1

or —1. Thus h = 1 or 2. In case h = 1 (A is primitive) then Theorem
1 automatically holds since there is only one item (5). In case h = 2
we have.

THEOREM 2. If

is irreducible and has maximal characteristic vector

•
ux = z λ + z 2 = ( a l 9 , a p ) + (&χ, •••,&*)
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then a necessary and sufficient condition that lim^oo sA./sfc_1 exist and
equal the dominant characteristic root is that

(6)

In certain cases more can be said about the convergence of

THEOREM 3. If A is a positive semi-definite symmetric irreducible
nonnegative matrix then s j s ^ approaches the dominant positive char-
acteristic root of A. Moreover,

(7) =

with equality if and only if r(A{ΊC~1)l2) and r(Au + 1 ) / 2) are linearly de-
pendent.

An immediate consequence of the above results is the

COROLLARY. If A is a nonnegative symmetric matrix and A2 is
irreducible then "l/s2A./s2A._2 converges to the dominant characteristic root
monotonically.

In general lim^oo s j s ^ may exist without the convergence being

monotone, e.g. 4̂. = Γ̂  * Ί . Then A2 = 2A + 31,

and hence β* = (9/4)3* - (l/4)(-l)\

which converges to 3 but not monotonically.

(-I)*) ,

(8)

2. Proofs. Choose S to bring A to Jordan normal form

1 0
ε

A = S°

0

Let Ei} be the ^-square matrix whose single nonzero entry is a 1 in
position (i, j) and set J = ΣnjEij Then
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(9) 8h = tr(JAk) =

Since | Xt | < 1 for t ^ h + 1 we conclude that lim^*, Sk = 0. If x is
an ^-vector it will be convenient to denote by σ(x) the sum of the co-
ordinates of x. Moreover, St and Sfi will designate the ίth row and column
of the ^-square matrix S respectively. Let ft = (S~1JS)tt, t = 1, , h
and note that

(10) sk-δk =
t=l

and

(11)

From (8) we have

= ε c"1S ί , t = 1,

and since the dimension of the null space of A — ε*"1/ is^l for t = 1,
• , fc we conclude that

(12) S ί = c ί ^ ί , t = l, . . . ,Λ

for appropriate nonzero scalars c*. Similarly

(13) Sτ1 = dtvt9 t]=il,--.,h.

From (11), (12) and (13) we have, for e the w-tuple all of whose coordi-
nates is 1,

(14) ft - σ(Snσ(St) = dtctσ(vt)σ(^t)

= dtct{vu e)(utf e)

- dtct{Aτ{vtlε^\ e)(A{uJe*-*)t e)

= dtctε™-t\vt, Ae)(ut, Aτe)

= dtct?™(vt, r)(ut, c) .

The vectors ut and vt, t — 2, •• , h, have explicit representations in
terms of ulf v1 and ε as follows:
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vt = w1 + ε ( ί - 1 ) w 2 + + e 1 1 - 1 ' " - 1 ' ^ ^ t = 2 , ' , h .

L e t kt — dtctε
Hί~t) Φ 0, ξt — (zu c{), rji = {wit r { ) , i = •• ,h a n d w e c o m p u t e

from (14) and the fact that ε"-1"1 = 1 that

(15) μt = kt(vt, r)(ut, c)

ί—l)(α—1)

%Ξι \ΪΞι J ϊ )

where the subscripts are always reduced modulo h.

LEMMA 1. μ2 = = μh = 0 if and only if the sums Σt i fφ- i+i
are all equal for a = 1, , h.

Proof. Set fΛ = ΣJi=iζίV<*-ί+i and from (15) the conditions μt = 0,
t = 2, , h are equivalent to the system of linear equations

h

(ID) 2-ιJ(*& — U ^ — Z , • • • , / ? / .
α=l

Since Σ^i ε ( a J ~ 1 ) ( ί " υ = 0 (1 ̂  ί - 1 < h), each of the equations (16) has
the solution fλ = ••• = / A . On the other hand, the (/& — l)-square sub-
matrix of coefficients in (16) obtained by deleting the first column in
the coefficient matrix has as its determinant the Vandermonde of ε, ε2,
-• ,εh~2 to within a nonzero constant multiple. Thus the system (16)
has rank h — 1 and fλ — = fh is the only solution of (16). The
proof of Theorem 1 will then be complete if we establish

LEMMA 2. lim^oo s j s ^ exists if and only if μ2 — = μh = 0.
If it exists it has value 1.

Proof. From (10) we have

and since lim/c_oo δfc = 0, lim^oo sfc/sfc_! exists if and only if

h I h

t=l I ί = l

approaches a limit. Note that mk is periodic of period h. Also μ1 =
Cidiσζu^σiVi) Φ 0 follows from (3) and (4) and so the condition is clearly
sufficient. Since gk takes on only a finite number of values it follows
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that if gk approaches a limit I then gk = I for all k. Moreover if gk

exists,

gk = m
λ+1

and thus I — 1. But then mk = mk_x and we conclude that

(17) Σμt(l - ε { 1- ί ))ε ( ί-1 ) f c - 0 .
ί = 2

Letting k = 0, , h — 2 successively in (17) and noting that
Πosi<jsft-2(ε* — ε 0 ^ 0 we conclude that μt(l — ε1"*) = 0, t = 2, — ,h, and
hence that μ2 = = jMA = 0.

To proceed to the proof of Theorem 2 note that the maximal char-
acteristic vectors of A and Aτ = A are given by

u1 = v1 = z1 + z2 = (alf ...fap) + (bl9 , bq) .

Ci = {σ(Cd, ---,σ(Cp))

c^iσiC^- -.σiC*)), and

T\ r r : Ci, 7*2 = C2 .

The condition that the items (5) be equal for a = 1,2 becomes, in
succession,

(Zlf cOte, C2) + («2, C2)(Z19 Cx) = («!, Cx)
2 + («2, C2)

2 ,

(18)

Now Cb = <z, Cτa = b and hence a — Σ?=:AC\ b — Σ?=i#iC^. We then
have from (18) that σ(a) = σφ) is equivalent to (5) in the case A sym-
metric and h = 2.

The convergence of Sj.ls,,^ in Theorem 3 is clear since h — 1. If A
is posititive semi-definite and a ^ 0 let A" be the unique positive semi-
definite determination. Then if p and q are nonnegative,

\-L&) "(p+g)/2 — V-̂ 1- ^j *v

g, e)
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with equality if and only if APl2e and Aql2e are linearly dependent. Set
p — k — 1 and q = k + 1 to finish the argument.

The Corollary follows from Theorem 3.

3. The Hermitian case. In this section A is assumed to be an
^-square Hermitian matrix with characteristic roots Xu « ,λw. We
have

THEOREM 4. Let p, q,m,t be nonnegatίve integers and assume that
t = min (p, q, m, t) is even and p + q = m + tis even. Then

(20) spsq ^ smst .

Proof. Let D = diag (λl9 , λn) and choose a unitary matrix U
such that U*AU= D. Then

s(A) - (lln)tr(JAJ) = {lln)tr(JUDU* J) .

It is not difficult to compute that each main diagonal element of
JUDU*J is Σ?=Λi I o{Uι) |2. Let w, = \ a{Ul) |2 and then

(21) 8(A) =

Replacing A by Ap in (21) yields

and (20) is equivalent to

(22) ΣKwiΣλlWi - ΣMWiΣMwt ^ 0 .
ΐ = l ΐ = l t = l i = l

The left side of (22) becomes, after symmetrizing the sums,

Since ί and p -{- q — 2t are even and moreover p — £Ξ>0, g — ί ^
it follows that (XiXjyxF9'2'^!^)*'* ~ l)((λ i/λ i)^ ί - 1) ̂  0 for all i, j .

Setting t = 0 in Theorem 4 yields the

COROLLARY. 1/ p (md g are nonnegatίve integers and p + q is
even then



634 MARVIN MARCUS AND MORRIS NEWMAN

(23) spsq ^ nsp+q .

we remark that formula (21) doesn't yield s0 — Σ/l=iwi — n unless
A is nonsingular. But the singular case follows from the nonsingular
one by the standard continuity argument.

In case A has nonnegative entries then a specialization of an in-
equality in [1] implies that n\ Ξ> s1# We conjecture that ns3 ^ s±s2 in
analogy with (23).

4» Some remarks on S2/Si

Let f(t) =/( ί l f ••-,«.) = Σis*<isΛίi/Σ?«A and note that

b)-f(a)-f(b)

It follows that if Σ<=i«i > ° a n d Σ<=i&» > 0 then f(a + 6) ̂  /(α) + /(6)
with equality if and only if the sets (alf , an) and (bly , bn) are
proportional. Define the functions

g(t) = tt\/±u,

ΐ=l / i=ι

W = (hi + Σ My)

and observe that

Σ«* ~ 2/(t) ,

Σί* - /(«)

Then if Σΐ-iα* > 0, Σΐ=i^ > 0,

(24) flr(α + b) = ±a, + ±b, - 2/(α + 6)

^ Σ«i - 2/(α) + Σδ, - 2/(6)
ΐ=i i=i

= ί/(α) + 9(b) ,

and similarly Λ(α + b) ̂  fe(α) +
Equality holds in the preceding two inequalities if and only if the
sets a and b are proportional. From the inequality (24) we can then prove

THEOREM 5. If A and B are symmetric n-square matrices satis-
fying Σnij=iaij > 0, Σΐ.i=Λi > 0

(25) s2(A + BJ/s^A + B) ^ 8a(A)/βl(A) + s2(B)lSl(B)
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with equality if and only if r(A) and r(B) are proportional.

Proof. From the formula

s2(A)K(A) = tσiAdήtσiA,) = g(r(A))
ί=l I i=l

we compute that

s2(A + B)lSl(A + B) = g(r(A + B)) = g(r(A) + r(B))

^ 9(r(A)) + g{r{B))

s2(B)lSl(B) .

A similar result can be formulated for the function h. It might
be conjectured that a convexity result like (25) is true for the functions
sr(A)/sr_!(A), r > 2. This is not the case: take

0i = i , α2 = = α n - i = 0, α n = 1, &! = = δw_j = 0,

bn = 1 and observe that

whereas

J ^ / J X " 1 + Σ&ί/Σ&Γ1 = (3^ + l)(3-(r-1} + 1) + 1

and it is simple to check that

for r ^ 3.
The referee suggests that the arguments of the paper could be

rephrased in terms of the vector e, where eτ = (1,1, •••, 1). Thus sk

— eτARe, J — eeτ, σ{x) = eτxJ etc. He also notes that e could be re-
placed by any other positive vector with conclusions similar to those
obtained in the paper. We have not thought it advisable to pursue the
matter further.
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