NORMAL SUBGROUPS OF MONOMIAL GROUPS

Allan B. Gray, Jr.

1. Introduction. Let U be the set consisting of $x_{1}, x_{2}, x_{3}, \cdots x_{n}$. Let H be a fixed group. A monomial substitution of U over H is a transformation of the form,

$$
y=\binom{x_{1}, x_{2}, x_{3}, \cdots, x_{n}}{h_{1} x_{j_{1}}, h_{2} x_{i_{2}}, h_{3} x_{i_{3}}, \cdots, h_{n} x_{i_{n}}} \begin{gathered}
x_{j} \in U \\
h_{i} \in H
\end{gathered}
$$

where the mapping of the x 's is one-to-one. The h_{j} are called the factors" of y.

$$
y_{1}=\binom{x_{1}, x_{2}, \quad x_{3}, \cdots, x_{n}}{k_{1} x_{j_{1}}, k_{2} x_{j_{2}}, k_{3} x_{j_{3}}, \cdots, k_{n} x_{j_{n}}}
$$

then

$$
y y_{1}=\left(\begin{array}{cccc}
x_{1}, & x_{2}, & x_{3}, & \cdots, \\
h_{1} k_{i_{1}} x_{i_{i_{1}}}, & x_{2} k_{i_{2}} x_{i_{i_{2}}}, h_{3} k_{i_{3}} x_{j_{i}}, & \cdots, & h_{n} k_{i_{n}} x_{j_{i_{n}}}
\end{array}\right) .
$$

By this definition of multiplication the set of all substitutions form a group $\Sigma_{n}(H)$. Denote by V the set of all substitutions of the form

$$
y=\left(\begin{array}{cc}
x_{1}, & x_{2}, \\
h_{1} x_{1}, & h_{2} x_{2}, h_{3} x_{3}, \cdots, \\
, \cdots, & h_{n} x_{n}
\end{array}\right)=\left[h_{1}, h_{2}, h_{3}, \cdots, h_{n}\right] .
$$

Then V, called the basis group, is a normal subgroup of $\Sigma_{n}(H)$. A permutation is an element of the form

$$
\binom{x_{1}, x_{2}, \cdots, x_{n}}{e x_{i_{1}}, e x_{i_{2}}, \cdots, e x_{i_{n}}}=\binom{1,2, \cdots, n}{i_{1}, i_{2}, \cdots, i_{n}} .
$$

where e is the identity of H. Cyclic representation will also be used for elements of this type. The set S_{n} of all such elements is a subgroup of $\Sigma_{n}(H)$. Furthermore $\Sigma_{n}(H)=V \cup S, V \cap S=E$ where E is the identity of $\Sigma_{n}(H)$. Any element y of $\Sigma_{n}(H)$ can be written as $y=$ $v s$ where $v \in V$ and $s \in S$. Ore [1] has studied this group for finite U and some of his results have been extended in [2] and [3].

The normal subgroups of $\Sigma_{n}(H)=\Sigma_{n}$ for U a finite set have been determined in [1]. The normal subgroups for $o(U)=B=\boldsymbol{K}_{u}, u \geqq 0$, where $o(U)$ means the number of elements of U, have been determined for rather general cases in [2] and [3]. The subset $\Sigma_{A, n}(H)=\Sigma_{A, n}$ of elements of the form $y=v s$ with s in the alternating group A_{n} is a
subgroup of Σ_{n}. The normal subgroups of $\Sigma_{A . n}$ are known for all n except 3 and 4 [2]. This paper determines the normal subgroups of $\Sigma_{A, n}$ for $n=3,4$ that are not contained in the basis group, thus filling a gap in the theory.
2. The normal subgroups of $\Sigma_{A .3}$ not contained in the basis group V. We shall consider first the normal subgroups M that contain pure permutations.

Theorem 1. Let M be normal in $\Sigma_{A, 3}, A_{3} \subset M$. Then $N=M \cap V$ is a normal subgroup of $\Sigma_{A, 3}$. The subgroup $M=N \cup A_{3}$. There exists a normal subgroup S_{1} of H such that H / S_{1} is Abelian and such that N consists of all elements $v=\left[h_{1}, h_{2}, h_{3}\right]$ for which $h_{1} h_{2} h_{3} \in S_{1}$.

Proof. The intersection of two normal subgroups is again normal so N is normal in $\Sigma_{A, 3}$.

Clearly $M \supset\left(N \cup A_{3}\right)$. Let $y=v s$ be arbitrary in M. Then $y s^{-1}=$ v belongs to $M \cap V=N$ so $M \subset\left(N \cup A_{3}\right)$.

Let $v=\left[h_{1}, h_{2}, h_{3}\right]$ be arbitrary in N. Form $y=v(1,2,3)$, which is in M. All of the elements $y_{1}=v_{1} y v_{1}^{-1}$, where v_{1} is arbitrary in V are in M by M normal in $\Sigma_{A, 3}$. For a proper choice of $v_{1}, y_{1}=\left[h_{1} h_{2} h_{3}, e, e\right]$ (1, 2, 3). Therefore N contains $\left[h_{1} h_{2} h_{3}, e, e\right]$. Now consider the set $N_{1} \cup N$ of all elements of the form $[h, e, e]$. This is a normal subgroup of N. The elements of H that occur as the first factors of multiplications of N_{1} form a normal subgroup S_{1} of H. We have established that if $v \in N$ the product of the factors is in S_{1}. If k_{1}, k_{2}, k_{3} are any elements of H satisfying $k_{1} k_{2} k_{3}=k$ where k is in S_{1} then $[k, e, e]$ is in N. Furthermore $[k, e, e](1,2,3)$ is in M and by a proper conjugation with a multiplication $\left[k_{1}, k_{2}, k_{3}\right](1,2,3)$ is in M. Hence $\left[k_{1}, k_{2}, k_{3}\right]$ is in N.

Since $\left[r_{1}, r_{2}, r_{2}^{-1} r_{1}^{-1}\right]$ is in N for arbitrary r_{1}, r_{2} of H, its inverse [$r_{1}^{-1}, r_{2}^{-1}, r_{1} r_{2}$] is also in N. Therefore $r_{1}^{-1} r_{2}^{-1} r_{1} r_{2}$ is in S_{1}. This shows $r_{1} r_{2} \equiv r_{2} r_{1} \bmod S_{1}$ and H / S_{1} is Abelian.

Theorem 2. Let N be as described in the last sentence of Theorem 1. Then $N \cup A_{3}=M$ is normal in $\Sigma_{A, 3}$.

Proof. Ore [1, p. 37] has shown M is normal in Σ_{3} so it is normal in $\Sigma_{A, 3}$.

We shall now describe those normal subgrous which do not contain a pure permutation.

Theorem 3. Let $S_{1} \subset S_{2}$ be normal subgroups of H satisfying the conditions H / S_{1} is Abelian and S_{2} / S_{1} is isomorphic, by θ say, to A_{3}.

Let M consist of the sets $T_{i}=\left\{v s / s=(1,2,3)^{i}\right\}, i=0$ or 1 or 2 , where the factors of substitutions of T_{i} run through H subject to the conditions that their product, k say, is in S_{2} and the coset $k S_{1}$ maps onto $(1,2,3)^{i}$. Then M is a normal subgroup of $\Sigma_{A, 3}$. Conversely if $M \notin V$ and $A_{3} \notin M$, then M has the above form.

Proof. We shall establish first that M is a group. Let $y_{1}=$ $\left[h_{1}, h_{2}, h_{3}\right] s_{1}$ and $y_{2}=\left[k_{1}, k_{2}, k_{3}\right] s_{2}$ be arbitrary elements in M. We know then that $h_{1} h_{2} h_{3} S_{1} \theta=s_{1}$ and $k_{1} k_{2} k_{3} S_{1} \theta=s_{2}$. Consider the product $y_{1} y_{2}=$ [$\left.h_{1} k_{i_{1}}, h_{2} k_{i_{2}}, h_{3} k_{i_{3}}\right] s_{1} s_{2}$. Since H / S_{2} is Abelian and θ is an isomorphism $h_{1} k_{i_{1}} h_{2} k_{i_{2}} h_{3} k_{i_{3}} S_{1} \theta=h_{1} h_{2} h_{3} k_{1} k_{2} k_{3} S_{1} \theta=h_{1} h_{2} h_{3} \theta k_{1} k_{2} k_{3} \theta=s_{1} s_{2}$. This shows that if $y_{1} y_{2}$ belongs to T_{i} then the coset of the product of the factors maps onto $(1,2,3)^{i}$. We show now that when y_{1} as above is in M that its inverse is also in M. The inverse of y_{1} is $y_{1}^{-1}=\left[h_{i_{1}}^{-1}, h_{i_{2}}^{-1}, h_{i_{3}}^{-1}\right] s_{1}^{-1}$. We must show $h_{i_{1}}^{-1} h_{i_{2}}^{-1} h_{i_{3}}^{-1}$ belongs to S_{2} and $h_{i_{1}}^{-1} h_{i_{2}}^{-1} h_{i_{3}}^{-1} S_{1} \theta=s_{1}^{-1}$. The first of these follows from $h_{1} h_{2} h_{3}$ in S_{2} and H / S_{2} Abelian. The second follows from the observation that $h_{3}^{-1} h_{2}^{-1} h_{1}^{-1} S_{1} \theta=s_{1}^{-1}$ and H / S_{1} is Abelian.

It remains to show that M is normal in $\Sigma_{A, 3}$. Let $y_{1}=\left[h_{1}, h_{2}, h_{3}\right] s_{1}$ and $y_{3}=\left[g_{1}, g_{2}, g_{3}\right] s$ be arbitrary elements of M and $\Sigma_{A, 3}$ respectively. We must show that the product

$$
y_{3} y_{1} y_{3}^{-1}=\left[g_{1} h_{i_{1}} g_{j_{1}}^{-1}, g_{2} h_{i_{2}} g_{j_{2}}^{-1}, g_{3} h_{i_{3}} g_{j_{3}}^{-1}\right] s s_{1} s^{-1}=v s_{1}
$$

is in M. The product of the factors is in S_{2} since H / S_{2} is Abelian and $h_{1} h_{2} h_{3}$ is in S_{2}. Finally

$$
g_{1} h_{i_{1}} g_{j_{1}}^{-1} g_{2} h_{i_{2}} g_{j_{2}}^{-1} g_{3} h_{i_{3}} g_{j_{3}}^{-1} S_{1} \theta=h_{1} h_{2} h_{3} S_{1} \theta=s_{1}
$$

We now give the proof of the converse. Two elements $v s$ and $v_{1} s_{1}$ of M are defined to be equivalent if $s=s_{1}$. This is an equivalence relation and induces the partition $T_{0}=\{v s / s=E\}, T_{1}=\{v s / s=(1,2,3)\}$, $T_{2}=\{v s / s=(1,3,2)\}$ on M. We note that one of the sets T_{1} or T_{2} is nonempty since $M \notin V$. In fact, since at least one of them is not empty, they are each nonempty.

If an arbitrary element $y=v s=\left[h_{1}, h_{2}, h_{3}\right](1,2,3)$ of T_{1} is conjugated by $\left[h_{3}, h_{2}^{-1}, e\right]$ the resulting elements $\left[h_{3} h_{1} h_{2}, e, e\right](1,2,3)$ is also in T_{1}. Since $s_{1} y s_{1}^{-1}=s_{1} v s_{1}^{-1} s_{1} s s_{1}^{-1}=v_{1} s$ is in M for all s_{1} of A_{3} we can show that $\left[h_{1} h_{2} h_{3}, e, e\right](1,2,3)$ and $\left[h_{2} h_{3} h_{1}, e, e\right](1,2,3)$ also belong to T_{1}. When $y_{1}=[a, e, e](1,2,3)$ is in T_{1} then $(1,2,3) y_{1}(1,3,2)=[e, e, a](1,2,3)$ and $(1,3,2) y_{1}(1,2,3)=[e, a, e](1,2,3)$ are also in T_{1}.

Similarly it can be shown that T_{2} contains elements of the form $[b, e, e],(1,3,2)$ and with every such element $[e, b, e](1,3,2),[e, e, b](1,3,2)$. In particular $\left[h_{2} h_{1} h_{3}, e, e\right](1,3,2)$ is in T_{2} where $\left[h_{1}, h_{1}, h_{3}\right](1,3,2)$ is arbitrary in T_{2}. When $[a, e, e]$ is in T_{0}, then $[e, a, e]$ and $[e, e, a]$ are also in T_{0}.

Now denote by R the set of elements of the form [a,e,e]s. Let S_{2} be the set of elements of H that occur as first factors of elements of R. We shall show that S_{2} is a normal subgroup of H. Choose arbitrary elements $m_{1}=\left[a_{1}, e, e\right] s_{1}$ and $m_{2}=\left[a_{2}, e, e\right] s_{2}$ of R. If $s_{1}=E$ then $m_{1} m_{2}=\left[a_{1} a_{2}, e, e\right] s_{2}$ is again in R and $\alpha_{1} a_{2}$ belongs to S_{2}. If $s_{1}=(1,2,3)$ we work with $m_{3}=\left[e, a_{2}, e\right] s_{2}$ and form $m_{1} m_{3}=\left[a_{1} a_{2}, e, e\right](1,2,3) s_{2}$. Again we have shown $a_{1} a_{2} \in S_{2}$. Finally if $s_{1}=(1,3,2)$ we let $m_{4}=\left[e, e, a_{2}\right] s_{2}$ and consider $m_{1} m_{4}=\left[a_{1} a_{2}, e, e\right](1,3,2) s_{2}$. In any case we see that S_{2} is closed. When $m_{1} \in R$ then m_{1}^{-1} which is $\left[a_{1}^{-1}, e, e\right],\left[e, a_{1}^{-1}, e\right] s_{1}^{-1}$, or $\left[e, e, a_{1}^{-1}\right] s_{1}^{-1}$ also belongs to M. By the earlier argument we see that R must contain $\left[a_{1}^{-1}, e, e\right] s_{1}^{-1}$. This shows $a_{1}^{-1} \in S_{2}$. Let $a \in S_{2}$ and $h \in H$. Then, by the definition of $\Sigma_{A .3}$ and $S_{2},[a, e, e] s \in M$ and $[h, h, h] \in \Sigma_{A, 3}$. Now since M is normal in $\Sigma_{4,3},[h, h, h][a, e, e] s\left[h^{-1}, h^{-1}, h^{-1}\right]=\left[h a h^{-1}, e, e\right] s \in$ M. Therefore, $h a h^{-1}$ is in S_{2}. We have just shown S_{2} is normal in H.

Substitutions in $R \cap V=N_{1}$ are of the form [$\left.a, e, e\right]$. The first factors form a subgroup, S_{1}, of H. That S_{1} is normal in H follows from M normal in $\Sigma_{4,3}$. By the definition of the two groups S_{1} is a subgroup of S_{2}.

To show that H / S_{1} is Abelian we let h_{1}, h_{2} be arbitrary elements of H and show $h_{1} h_{2} h_{1}^{-1} h_{2}^{-1}$ is in S_{1}. Choose an element $\left[b_{1}, b_{2}, b_{3}\right](1,2,3)$ from T_{1} and conjugate it by each of the three elements [$e, h_{2} h_{1} b_{1} ; h_{1} b_{1} b_{2}$], [$e, b_{1}, b_{1} b_{2}$], and $\left[e, h_{2}^{-1} h_{1}^{-1} b_{1}, h_{1}^{-1} b_{1} b_{2}\right.$]. The resulting elements, which must be in M, are $y_{1}=\left[h_{1}^{-1} h_{2}^{-1}, h_{2}, h_{1} b_{1} b_{2} b_{3}\right](1,2,3), y_{2}=\left[e, e, b_{1} b_{2} b_{3}\right](1,2,3)$, and $y_{3}=\left[h_{1} h_{2}, h_{2}^{-1}, h_{1}^{-1} b_{1} b_{2} b_{3}\right](1,2,3)$. The product $y_{4}=y_{2} y_{1}^{-1}=\left[h_{2} h_{1}, h_{2}^{-1}, h_{1}^{-1}\right]$ is also in M. Now form $y_{5}=y_{2} y_{3}^{-1}=\left[h_{2}^{-1} h_{1}^{-1}, h_{2}, h_{1}\right]$. Finally consider $y_{4} y_{5}=$ [$h_{2} h_{1} h_{2}^{-1} h_{1}^{-1}, e, e$] which is in M. Therefore, $h_{2} h_{1} h_{2}^{-1} h_{1}^{-1}$ is in S_{1}. In addition this also establishes that H / S_{2} is Abelian. Earlier we had $\left[h_{2} h_{1} h_{3}, e, e\right.$] $(1,3,2)$ in T_{2}. By H / S_{2} Abelian $h_{1} h_{2} h_{3} \in S_{2}$ also.

We now define a mapping from S_{2} onto A_{3} as follows. For an element a of S_{2} which occurs as a first factor of a substitution $y=[a, e, e] s$ we let $a \theta=s$. Certainly by this definition every element of S_{2} will be mapped. If any element of S_{2} is assumed to be mapped onto two different elements of A_{3} a computation, using the properties already stated for R and M, will show that M contains a pure permutation contrary to the case we are currently investigating. For example, suppose $a \theta=$ $(1,2,3)$ and $a \theta=(1,3,2)$. Then $y_{1}=[a, e, e](1,3,2), y_{2}=[a, e, e](1,2,3)$, $y_{1}^{-1}=\left[e, e, a^{-1}\right](1,2,3)$, and $y_{3}=\left[e, a^{-1}, e\right](1,2,3)$ all belong to M. So $[a, e, e](1,2,3)\left[e, a^{-1} e\right](1,2,3)=(1,3,2)$ belongs to M. This mapping also preserves multiplication. For let $a_{1} \theta=s_{1}, a_{2} \theta=s_{2}$. This means that R contains the elements $\left[a_{1}, e, e\right] s_{1},\left[a_{2}, e, e\right] s_{2}$. But M also contains $v s_{2}$ where v has two factors of e and a_{2} a factor in the position that s_{1} sends x_{1} into. Therefore, $\left[a_{1} a_{2}, e, e\right] s_{1} s_{2}$ belongs to R and $a_{1} a_{2} \theta=s_{1} s_{2}=$ $a_{1} \theta a_{2} \theta$. The definition of the mapping makes it clear that the kernel
of the homomorphism is precisely S_{1}. Therefore, $S_{2} / S_{1} \cong A_{3}$.
It has already been pointed out that if $y=v s$ is an element of T_{1} or T_{2} then the product of the factors $h_{1} h_{2} h_{3}$ of v is in S_{2}. If $\left[a_{1}, a_{2}, a_{3}\right.$] is in $M \cap V$ then since $y_{5}=\left[h_{2}^{-1} h_{1}^{-1}, h_{2}, h_{1}\right]$ is also in M for arbitrary h_{1}, h_{2} of H it follows that $\left[a_{1}, a_{2}, a_{3}\right]\left[a_{2} a_{3}, a_{2}^{-1}, a_{3}^{-1}\right]=\left[a_{1} a_{2} a_{3}, e, e\right]$ is in M. This shows that the product of factors of elements in T_{0} is in S_{1}. Now let us assume that b_{1}, b_{2}, b_{3} are elements of H whose product is in S_{2}. Then $\left(b_{1} b_{2} b_{3}\right) \theta=(1,2,3)^{i}$ for $i=0$, or 1 , or 2 . We will show that there is an element $y=v s$ of T_{1} whose factors are b_{1}, b_{2}, and b_{3}. In the case where $i=0$ we know that M contains an element $\left[b_{1} b_{2} b_{3}, e, e\right]$. The element $y_{4}=\left[h_{2} h_{1}, h_{2}^{-1}, h_{1}^{-1}\right]$ and its inverse $y_{4}^{-1}=\left[h_{1}^{-1} h_{2}^{-1}, h_{2}, h_{1}\right]$ are also in M for all h_{1}, h_{2} of H so choose $h_{2}=b_{2}, h_{1}=b_{3}$. Then the product $\left[b_{1} b_{2} b_{3}, e, e\right]\left[b_{3}^{-1} b_{2}^{-1}, b_{2}, b_{3}\right]=\left[b_{1}, b_{2}, b_{3}\right]$ is in M. When $i=1$ we have $\left[b_{1} b_{2} b_{3}, e, e\right](1,2,3)$ in M and by choosing $h_{2}=b_{3}^{-1} b_{2}^{-1}, h_{1}=b_{2}$ and computing $\left[b_{1} b_{2} b_{3}, e, e\right](1,2,3)\left[b_{3}, b_{b}^{-1} b_{2}^{-1}, b_{2}\right]=\left[b_{1}, b_{2}, b_{3}\right](1,2,3)$. Finally if $i=2$ we have $\left[b_{1} b_{2} b_{3}, e, e\right](1,3,2)$ in M and by choosing $h_{2}=b_{3}, h_{1}=b_{3}^{-1} b_{2}^{-1}$ and computing we have $\left[b_{1}, b_{2}, b_{3}\right](1,3,2)$ in T_{2}.
3. The normal subgroups of $\Sigma_{4,4}$ not contained in the basis group V. All proofs in this section except for the proof of Lemma 1 are similar to the corresponding proofs for $\Sigma_{A, 3}$ so will be omitted.

Lemma 1. Let M be normal in $\Sigma_{\text {A, }}, M \not \subset V$.
Then the Klein group is contained in M.

Proof. We will first show that M contains elements of the form $y=v s$ where $s \neq E$ is in the Klein group. Hereafter K will mean the Klein group.

There is at least one element in M of the form $y=v s s \neq E, s \in A_{4}$. If s is not in K then s is a three cycle, and we assume without loss of generality that $s=(1,3,4)$. If y is conjugated by $(1,4)(2,3)$ the resulting element $y_{1}=v_{1}(1,4,2)$ and its inverse are also in M. Therefore, $y y_{1}^{-1}=v_{2}(1,3)(2,4)$ is in M. We have just shown that M has an element of the form $y=v s$ where s is in K and $s \neq E$. We assume without loss of generality that $s=(1,2)(3,4)$ and $v=\left[a_{1}, a_{2}, a_{3}, a_{4}\right]$. Form the elements

$$
\begin{aligned}
y_{1} & =v_{1} y v_{1}^{-1}=\left[e, a_{2}^{-1}, e, a_{3}\right]\left[a_{1}, a_{2}, a_{3}, a_{4}\right](1,2)(3,4)\left[e, a_{2} e, a_{3}^{-1}\right] \\
& =\left[a_{1} a_{2}, e, e, a_{3} a_{4}\right](1,2)(3,4) \text { and } y_{2}=y_{3} y y_{3}^{-1} \\
& =\left[e, a_{2}^{-1}, a_{4}^{-1}, e\right](1,3,4)\left[a_{1}, a_{2}, a_{3}, a_{4}\right](1,2)(3,4)\left[e, a_{2}, e, a_{4}\right](1,4,3) \\
& =\left[a_{3} a_{4}, e, e, a_{1}, a_{2}\right](1,3)(2,4) .
\end{aligned}
$$

Since M is normal in $\Sigma_{4,4}, y_{1}$ and y_{2} are in M. Therefore $y_{1} y_{2}^{-1}=$
$(1,4)(2,3)$ is in M. This shows $S=M \cap A_{4} \neq E$. But M is normal in $\Sigma_{4,4}$ so S is normal in A_{4}. This means S is K or A_{4}.

We shall now describe the normal subgroups N which is the intersection of M and the basis group V.

Theorem 1. Let M be normal in $\Sigma_{4,4}, M \not \subset V, A_{4} \subset M$. Then $N=$ $M \cap V$ is a normal subgroup of $\Sigma_{A, 4}, M=N \cup A_{4}$. There exists a normal subgroup S_{1} of H such that H / S_{1} is Abelian and such that N consists of all elements $v=\left[h_{1}, h_{2}, h_{3}, h_{4}\right]$ for which $h_{1} h_{2} h_{3} h_{4} \in S_{1}$.

Theorem 2. Let N be as described in the last sentence of Theorem 1. Then $N \cup A_{4}=M$ is normal in $\Sigma_{4,4}$.

We shall now describe those normal subgroups which contain no elements of the form $y=v s$ where s is a three cycle.

Theorem 3. Let M be normal in $\Sigma_{4.4}, M \not \subset V, M$ contains no elements of the form $y=v s$ where s is a three cycle, $M \cap V=N$. Then $M=N \cup K$. Furthermore if N_{1} is as described in the last sentence of Theorem 1 then $N_{1} \cup K$ is normal in $\Sigma_{4,4}$.

We shall now describe those normal subgroups which contain elements of the form $y=v s$, where s is a three cycle, but which do not contain a pure three cycle.

Theorem 4. Let $S_{1} \subset S_{2}$ be normal subgroups of H satisfying the conditions H / S_{1} is Abelian and S_{2} / S_{1} is isomorphic to A_{3}. Let M consist of the sets

$$
T_{i}=\left\{v s / s=(1,2,3)_{i}^{\prime} \bmod K\right\}, \quad i=0,1,2,
$$

where the factors of substitutions of T_{i} run through H subject to the condition that their product, k say, is in S_{2} and $k S_{1}$ maps onto $(1,2,3)^{i}$. Then M is a normal subgroup of $\Sigma_{A, 4}$. Conversely, if M is normal subgroup of $\Sigma_{A, 4}$ such that $M \not \subset V$ and $A_{4} \not \subset M, M$ contains elements of the form $y=v s$ where s is a three cycle, then M has the above form.

Bibliography

1. R. Baer, Die kompositionsreihe der Gruppe aller eineindeutigen abbildungen einer unendlichen Reihe auf sich, Studia Mathematica, 5 (1934), 15-17.
2. R. Crouch, Monomial groups, Trans. Amer. Math. Soc., 80 (1955), 187-215.
3. R. Crouch and W. R. Scott, Normal subgroups of monomial groups, Proc. Amer. Math. Soc., 8 (1957), 931-936.
4. O. Ore. Theory of monomial groups, Trans. Amer. Math. Soc., 51 (1942), 15-64.

New Mexico State University

