MARKOV PROCESSES WITH STATIONARY MEASURE

S. R. FOGUEL

In [1] we studied Markov processes with a finite positive stationary measure. Here the process is assumed to have a positive stationary measure which might be infinite. Most of the results proved in [1] remain true also in this case. Some proofs that remain valid in this case will be replaced here by simpler proofs.

The main problem studied here, and in [1], is the behaviour at ∞ of $\mu(x_n \in A \cap x_0 \in B)$ where μ is the stationary measure and x_n is the Markov process.

In addition we study the quantities

$$\mu(x_n \in A \text{ for some } n \cap x_0 \in B)$$
, $\mu((x_n \in A \text{ infinitely often}) \cap x_0 \in B)$.

For Markov chains the results given here are well known even without the assumption of the existence of a stationary measure.

DEFINITIONS AND NOTATION. The notation here will be the same as in [1]. Let (Ω, Σ, μ) be a measure space where $\mu \ge 0$ but is not necessarily finite.

Let $x_n(\omega)$ be a sequence of measurable real functions defined on Ω . Let the measure $\mu(x_0^{-1}(\))$, on the real line, be σ finite.

Assumption 1. The process is stationary:

 $\mu(x_{n+k} \in A \cap x_{m+k} \in B) = \mu(x_n \in A \cap x_m \in B) .$

ASSUMPTION 2. If i < j < k let A be a Borel set on the line such that $\mu(x_k \in A) < \infty$ then:

The conditional probability that $x_k \in A$, given x_j and x_i , is equal to the conditional probability that $x_k \in A$ given x_j .

 $L_2 = L_2(\Omega, \Sigma, \mu)$ will be the space of real square integrable function. Let B_n be the subspace of L_2 generated by functions of the form

$$I(x_n^{-1}(A))$$
 where $\mu(x_n^{-1}(A)) < \infty$.

By $I(\sigma)$ we denote the characteristic function of σ . Let E_n be the self adjoint projection on B_n . It was shown in [1] that Assumption 2 implies

1. $E_i E_j E_k = E_i E_k$ i < j < k .

Received May 31, 1961. This work was supported by an air force contract no. AF 61(052)-187

Finally let T(n) be the transformation from B_0 to B_n defined by

 $T(n)I(x_0 \in A) = I(x_n \in A)$.

It is easily seen that $x \in B_n$ if and only if $x(\omega) = f(x_n(\omega))$ a.e. and $f(x_n(\omega))$ is square integrable.

Thus

$$T(n) f(x_0(\omega)) = f(x_n(\omega))$$

 \mathbf{and}

2. a.
$$||T(n)x|| = ||x||$$

b. $T(n)B_0 = B_n$
c. $(T(n + k)x, T(m + k)y) = (T(n)x, T(m)y)$.
See [1] Lemma 2.4.

1. Behaviour at ∞ . Following [1] let us define

Theorems 3.6 and 3.7 of [1] hold here thus:

If $x \perp H$ then weak $\lim_{n \to \infty} T(n)x = 0$.

Also by Theorem 3.9 of [1] H is invariant under T(n), and $T(n) = T^n$ is a unitary operator on H.

LEMMA 1. The subspace H is generated by characteristic functions of a Boolean ring.

Proof. It is enough to show that if $x \in H$ then $I(x^{-1}(A)) \in H$ and if $I(\sigma_1), I(\sigma_2) \in H$ then $I(\sigma_1 \cap \sigma_2) \in H$.

If $x \in H$ then $x \in B_n$ so $I(x^{-1}(A)) \in B_n$. Also $x = T(n)y_n$ where $y_n \in C_0$. Now

$$y_n(\omega) = f_n(x_0(\omega)) \quad ext{for } y_n \in B_0$$
 .

Also $I(y_n^{-1}(A)) \in B_m$ for all m and n. Thus

$$x(\omega) = T(n)y_n(\omega) = f_n(x_n(\omega))$$

 $x^{-1}(A) = x_n^{-1}(f_n^{-1}(A))$

and

$$I(x^{-1}(A)) = T(n)I(x_0^{-1}(f_n^{-1}(A)))$$

506

where

$$I(x_0^{-1}(f_n^{-1}(A)) = I(y_n^{-1}(A)) \in B_m \text{ for all } m$$

Thus

 $I(x^{-1}(A)) \in H$.

Finally if
$$I(\sigma_1) \in H$$
 and $I(\sigma_2) \in H$ then $I(\sigma_1 \cap \sigma_2) \in B_n$ for all n . Also

$$\sigma_1 = x_n^{-1}(A_n) \qquad \sigma_2 = x_n^{-1}(B_n)$$

where

$$I(x_0^{-1}(A_n)) \in C_0$$
 $I(x_0^{-1}(B_n)) \in C_n$.

Thus

$$I(\sigma_1 \cap \sigma_2) = I(x_n^{-1}(A_n \cap B_n))$$

where

 $I(x_0^{-1}(A_n \cap B_n)) \in C_0$.

In the rest of the paper it is assumed that if $I(\sigma) \in H$ then $I(\sigma)$ contains an atom in H. This is equivalent to assuming that H is generated by $I(\sigma_i)$ where σ_i are disjoint measurable sets.

Notice that H may be empty.

The above assumption holds if x_0 has a countable range or if a "Doeblin Condition" holds:

There exists a measure η on Borel sets on the line and an $\varepsilon > 0$ suct that:

1. If $\mu(x_0^{-1}(A)) < \infty$ then $\eta(A) < \infty$.

2. If $\eta(A) < \varepsilon$ then $T(n)I(x_0^{-1}(A)) \notin B_0$ for some n.

This condition is enough for if $I(x_0^{-1}(A)) \in H$ then $\eta(A)$ is finite and by 2 contains only finitely many sets in H.

For every set $\sigma_i T(n)I(\sigma_i)$ is in *H* hence is either $I(\sigma_i)$ or is disjoint to $I(\sigma_i)$.

Ler Ω_1 be the union of all the σ_i for which

$$T(n)I(\sigma_i) = I(\sigma_i)$$
 for some n .

Let Ω_2 be the union of all the sets σ_i such that

$$(T(n)I(\sigma_i), I(\sigma_i)) = 0$$
 for all n .

In this case

$$(T(n)I(\sigma_i), T(m)I(\sigma_i)) = 0$$
 if $n \neq m$,

by 2.c.

Let Ω_3 be the complement set of $\Omega_1 \cup \Omega_2$. If μ is finite then $\Omega_1 = \Omega$.

THEOREM 1. Let A be a Borel set on the line such that $x_0^{-1}(A) \subset \sigma_i$ for some *i*.

If $\sigma_i \subset \Omega_1$ and n is the smallest integer such that $T(n)I(\sigma_i) = I(\sigma_i)$ then

weak $\lim_{k \to \infty} T(kn + d)I(x_0^{-1}(A)) = \mu(\sigma_i)^{-1} \mu(x_0^{-1}(A))T(d)I(\sigma_i)$.

If $\sigma_i \subset \Omega_2$ then

weak
$$\lim_{n\to\infty} T(n)I(x_0^{-1}(A)) = 0$$
.

Proof. If $T(n)I(\sigma_i) = I(\sigma_i)$ define

$$g(\omega) = I(x_0^{-1}(A)) - \mu(\sigma_i)^{-1}\mu(x_0^{-1}(A))I(\sigma_i)$$
.

Now $g(\omega) \perp H$ hence

$$T(kn + d)g(\omega) = T(kn + d)I(x_0^{-1}(A)) - \mu(\sigma_i)^{-1}\mu(x_0^{-1}(A))T(d)I(\sigma_i)$$

and this expression tends weakly to zero when $k \to \infty$. If $x_0^{-1}(A) \subset \sigma_i$ where $\sigma_i \subset \Omega_2$ then the functions $T(n)I(x_0^{-1}(A))$ are disjoints.

THEOREM 2. If $x_0^{-1}(A) \subset \Omega_3$ then

weak
$$\lim_{n\to\infty} T(n)I(x_0^{-1}(A)) = 0$$
.

Proof. It is enough to note that $I(x_0^{-1}(A)) \perp H$, for $\Omega_1 \cup \Omega_2$ contains all the sets σ_i .

 \mathbf{Let}

$$egin{aligned} U(n,\,A) &= I(igcup_{m=n}^{\omega} x_m \in A) \ U(A) &= \lim_{n o \infty} U(n,\,A) \ . \end{aligned}$$

Thus

$$(U(0, A), I(x_0^{-1}(B))) = \mu((x_n \in A \text{ for some } n) \cap x_0 \in B)$$

 $(U(A), I(x_0^{-1}(B))) = \mu((x_n \in A \text{ infinitely often}) \cap x_0 \in B).$

THEOREM 3. Let A be a Borel set such that $x_0^{-1}(A) \subset \sigma_i$ for some *i*. If $\sigma_i \subset \Omega_1$ and $T(n)I(\sigma_i) = I(\sigma_i)$ then

$$U(m, A) = U(A) = \sum_{d=0}^{n-1} T(d)I(\sigma_i)$$
.

508

If $\sigma_i \subset \Omega_2$ then U(A) = 0

Proof. If $T(n)I(\sigma_i) = I(\sigma_i)$ then

$$U(A) \leq U(0, A) \leq \sum_{d=0}^{n-1} T(d)I(\sigma_i)$$
.

On the other hand if $I(\sigma) \leq T(d)I(\sigma_i)$ then

$$egin{aligned} &(\mathit{U}(A),\,\mathit{I}(\sigma)) \geqq \lim_{k o \infty} \,(\mathit{T}(kn\,+\,d)\mathit{I}(x_{\scriptscriptstyle 0}^{_{-1}}\!(A)),\,\mathit{I}(\sigma)) \ &= \mu(\sigma_i)^{_{-1}}\,\mu(x_{\scriptscriptstyle 0}^{_{-1}}\!(A))\,\mu(\sigma) > 0 \,\,. \end{aligned}$$

But U(A) is a characteristic function therefore the above equation implies that $U(A) \ge T(d)I(\sigma_i)$. Thus

$$U(A) = \sum\limits_{d=0}^{n-l} T(d) I(\sigma_i)$$
 .

If $(T(n)I(\sigma_i), I(\sigma_i)) = 0$ for all n, then U(n, A) is disjoint to $T(m)I(x_0^{-1}(A))$ m < n. Thus U(A) is disjoint to $T(m)I(x_0^{-1}(A))$ for all m and therefore U(A) = 0.

COROLLARY. In the first case studied above

$$\mu((x_n \in A \text{ for some } n) \cap x_0 \in B)$$

= $\mu((x_n \in A \text{ infinitely often}) \cap x_0 \in B)$.

In the second case

$$\mu((x_n \in A \text{ infinitely often}) \cap x_0 \in B) = 0$$
.

REMARKS. Let a Markov chain be defined by the matrix $(P_{i,j})$ $P_{i,i+1} = 1$ $P_{i,j} = 0$ if $j \neq i+1$, $-\infty < i, j < \infty$. Then if $\mu(x_n = i) = 1$ Ω can be chosen as the union of countably many atoms. In this case $H = L_2(\Omega)$ and $\Omega = \Omega_2$. Let (P_{ij}) be the matrix of a free random walk (See K. L. Chung Markov Chains p. 23) and again $\mu(x_n = i) = 1$ $-\infty < i < \infty$. In this case for every *i* and *j* there is a sufficiently large *n* such that $\mu(x_n = i \cap x_0 = j) = P_{ij}^{(n)} > 0$. Thus each set $x_0 = i$ is neither in Ω_1 nor in Ω_2 and $\Omega = \Omega_3$.

Let P(x, A) be a transition function of a Markov process with the real numbers as state space. Let μ be a stationary measure that is not finite. One can construct a measure space Ω and the sequence $x_n(\omega)$ with

$$\mu(x_n \in A \ \cap \ x_0 \in B) = \int_{x \in B} P^n(x, A) \ \mu(dx) \ .$$

Notice that we use alternatively $\mu(B)$ or $\mu(x_0 \in B)$ to mean the same thing. This construction is well known.

Let $\mu(x_0 = 1) > 0$ and let the set $\bigcap_{n=0}^{\infty} \{x \mid P^n(x, 1) = 0\}$ be empty. Then if $\mu(x_0 \in A) > 0$

(*) $\sup \mu(x_n = 1 \cap x_0 \in A) > 0$.

Otherwise $P^n(x, 1) = 0$ $x \in A$ except on a set of measure zero. We will prove that in this case H = 0 hence $\Omega = \Omega_2$

and

$$\lim_{n\to\infty}\mu(x_n\in A\ \cap\ x_0\in B)=0\;.$$

If H contained any characteristic function of a set $\{\omega | x_0 \in A\}$ (always $H \subset B_0$) then this set intersects the set $\{\omega | x_n(\omega) = 1\}$ for some n. But $H \subset B_n$ and this set is an atom in B_n . Therefore $\{\omega | x_0 \in A\}$ contains the set $\{\omega | x_n(\omega) = 1\}$. There exists an atom in H that contains this set. This proves that H is generated by atoms. Let H be generated by σ_i where $\sigma_1 \supset \{\omega | x_n(\omega) = 1\}$. Now

$$\sup_{m} \left(I(\sigma_i), \ T(m)I(\sigma_1) \right) \geq \sup_{m} \mu(\sigma_i \cap x_{n+m} = 1) \ .$$

But $\sigma_i = \{\omega | x_n(\omega) \subset A_i\}$ for $I(\sigma_i) \in B_n$. Hence

$$egin{aligned} &\sup_m \left(I(\sigma_i), \ T(m)I(\sigma_1) \geq \sup_m \mu(x_n \in A_i \ \cap \ x_{n+m} = 1) \ &= \sup_m x_0 \in A_i \ \cap \ x_m = 1) > 0 \end{aligned}$$

By (*).

Thus for some $m I(\sigma_i) = T(m)I(\sigma_1)$. Now

 $\sup_m \mu(\sigma_1 \cap \sigma_i) = \sup_m \left(I(\sigma_1), \ T(m)I(\sigma_i)\right) \ge \sup_m \mu(x_n = 1 \ \cap \ x_{n+m} = 1) > 0 \ .$

They can not be disjoint: for some m,

$$T(m)I(\sigma_1) = I(\sigma_1)$$
.

Now

$$\bigcup_{i=1}^{\infty}\sigma_i=\bigcup_{k=0}^{m-1}T(k)I(\sigma_1)$$

and this is a set of finite measure. But Ω had infinite measure. Since $\cup \sigma_i \subset B_0$ there is a set in B_0 disjoint to $\cup \sigma_i$ which contradicts (*).

REFERENCE

1. S. R. Foguel, Weak and strong convergence for Markov processes, Pacific J. Math., **10** (1960), 1221-1234.

JERUSALEM, ISRAEL.

510