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should be replaced by 2, and Z should be replaced by Z. The symbols
9%, and 90 should be replaced throughout by énlm and 512,,, respectively;
however, 9, and 9° remain unchanged. The first equation of line 14
page 235 should be ’E’U’In )

Correction to

DUALITY AND TYPES OF COMPLETENESS
IN LOCALLY CONVEX SPACES

WiLLiaM B. JONES

Volume 18 (1966), 525-544

Proposition 2.14 is an obvious consequence of Lemma 2.8.
p. 538, line 5: The second equality is false in general for all o

(see [4]).
Some misprints:
p. 526 § 2 should start “(a,8) — .-
line 3 of §2, “a” instead of “a”

p. 528 last line, remove final “}”
p. 532 line 14, second “c” should be “¢”
p. 535 line 2, should read

- < £ (r—---

7

p. 537 line 8, second “=” should be “—”
p. 541 line 9, “\;” instead of “1,”

Correction to

UNIQUENESS AND EXISTENCE PROPERTIES OF
BOUNDED OBSERVABLES

S. P. GUDDER

Volume 19 (1966), 81-93

The author recently discovered that the proof of the corollary to
Theorem 4,5 is incorrect, thus invalidating Theorem 4.6, We show
now that Theorem 4.6 is still true for a class of observables with
infinite spectra and prove a generalization of Theorem 4.5.

An observable x is semi-bounded above (below) if there is a number
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—oo << oo such that o@)c{M:Av=Z¢} (g@)c{v:n=¢c}). The
following not only generalizes Theorem 4.5 but gives a much simpler
proof.

THEOREM 1.1. Let x and y be observables on a quite full logic
which are semi-bounded above and suppose that m(x) exists tf and
only if m(y) exists and in that case m(x) = m(y). Then X\, =
max (A : v eo(x)) = max {N: hea(y)} and x(N) = y(\o).

Proof. The first part of the conclusion follows just as in Theorem
4.5. Now suppose m[z(\,)] = 1, and m[y(\)] # 1. Then there is a
number ¢ <X, such that m[y(—-eco, )] > 0. Now since m(x) exists,
so does m(y) and we have

M]Nm[y(dx)] - <S<—eo,m + Smu\ol)km[y(dk)]
= #m[y(— Ea) #)] + xom[y[p, >‘Jo)] < .

N = (@) = m(y) = S(

—oco

which is a contradiction. Thus m[y(\,)] =1 whenever m[z(\,)] =1
and hence 7(\) = y(\). By symmetry x(\,) = y(\o).

Of course the same result holds for observables which are semi-
bounded from below.

THEOREM 1.2, Let x and y be bounded observables on a quite
full logic and suppose the spectrum of & has at most ome limait
point. Lf m(x) = m(y) for all me M then x = y.

Proof. The most general such # has a point \,e0(x) which is
a limit point from both above and below of elements of o(x). The
other cases will follow in a similar manner. We can assume without
loss of generality that ), = 0. Let the points of o(x) be ordered
as follows: 2 < p, <o <N <+++ <\, <A. Now by Theorem 1.1
max (M : vea(y)} = N and y(\) = x(\). Now let @, = o — N, (x) and
let y, = ¥y — MY (y). Letting f be the identity function f(A) =\ we
- have for Ec B(R)
a(E) = (f — M) @) (E) = a[(f — M) T (E)]
— () N a(\) if 0e K
(B Vi) if 0cE

It is now easy to see that
O-(xl) = U(x) N {Nl},; x1(>\'i) = '.”C?\;i), 1= 2, 3, cee
and
xl(#i) = x(#z)y 1= 17 2’ Tt .
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Now
m(x;) = m(x) — Mm[z(\)] = m(y) — am[y(\)] = m(y,) .

Applying Theorem 1.1, )\, = max {}A: 1€ o(y,)} and y,(\,) = 2,(\,) = ().
It now follows by applying (1) to %, and y that ), is the second largest
number in o(y) and y(\,) = y,(\.) = 2(\,). Continuing this process with
the \;s and also the p’s we have {\;, p;:7=1,2 ---}Co(y) and
yv) = o\, y(ps) = (), © = 1,2, ---.  Since ), is a limit point of
the \;’s it follows that \,e a(y), {\;, ti:2 =1,2, ---} = o(y) and

yNo) = y({n, pr v = 1,2, ---}) = [Zy(\) + Sy(ea)]
= [Ja(\;) + Ja(n)] = 2(\) .

Hence y = «.
A similar technique may be used to prove:

COROLLARY 1.8, Let x and y be observables on a quite full logic
which are semi-bounded from above (below) and suppose the spectrum
of © has mo finite limit point (this includes the possibility of a
limit point at — co(+o0)). Suppose m(y) exists if and only if m(x)
exists and in that case m(y) = m(x). Then x = y.

We close with a slightly strengthened form of Lemma 6.2 [1].

Lemma 1.4, If L is quite full and has Property E, then L is
a lattice and m(a) = m((b) = 1 implies m(a A b) = 1.

Proof. That L is a lattice follows from Lemma 6.2 [1]. If
m(a) = m(b) =1, then m(x, + x,) = m(a) + m() =2 and hence
1 =m[(x, + z,){2}] = m(a A\ D).

This last lemma is of interest since it rules out the counter-
example of Section 5 [1] and is thus a possible sufficient condition for
Property E.





