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should be replaced by S, and Z should be replaced by Z. The symbols

SIm and %\ should be replaced throughout by Sίm and $L°mj respectively;

however, 3ίΛ and §ί° remain unchanged. The first equation of line 14

page 235 should be 4 , = K . "

Correction to

DUALITY AND TYPES OF COMPLETENESS
IN LOCALLY CONVEX SPACES

WILLIAM B. JONES

Volume 18 (1966), 525-544

Proposition 2.14 is an obvious consequence of Lemma 2.8.
p. 538, line 5: The second equality is false in general for all a

(see [4]).
Some misprints:

p. 526 §2 should start "(a, β) - •••"
line 3 of §2, " α " instead of " α "

p. 528 last line, remove final "}"
p. 532 line 14, second "ε" should be " e "
p. 535 line 2, should read

. . . rg ± ( r

r
p. 537 line 8, second " = " should be " - "
p. 541 line 9, "λ0" instead of " l 0 "

Correction to

UNIQUENESS AND EXISTENCE PROPERTIES OF
BOUNDED OBSERVABLES

S. P. GUDDER

Volume 19 (1966), 81-93

The author recently discovered that the proof of the corollary to
Theorem 4.5 is incorrect, thus invalidating Theorem 4.6. We show
now that Theorem 4.6 is still true for a class of observables with
infinite spectra and prove a generalization of Theorem 4.5.

An observable x is semi-bounded above (below) if there is a number
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< c < °° such that σ(x) c {λ : λ ^ c] (σ(x) c {λ : λ ^ c}). The

following not only generalizes Theorem 4.5 but gives a much simpler

proof.

THEOREM 1.1. Let x and y be observahles on a quite full logic
which are semi-bounded above and suppose that m(x) exists if and
only if m(y) exists and in that case m{x) = m(y). Then λ0 =
max {λ : λ e σ(x)} = max {λ : X e σ(y)} and x(X0) = y(XQ).

Proof. The first part of the conclusion follows just as in Theorem
4.5. Now suppose m[x(X0)] = 1, and m[y(X0)] Φ 1. Then there is a
number μ < λ0 such that m[y(— oo, μ)] > 0. Now since m(x) exists,
so does m(y) and we have

λ0 = m(x) = m(y) = \ Xm[y(dX)] = (\ +\ )xm[y(d\)]
J(_oo,λo] \J(_oo,μ) J[μ,λ0]/

-oo9 μ)] + XQm[y[μ, λ0)] < λ0 .

which is a contradiction. Thus m[y(XQ)] = 1 whenever m[x(XQ)] = 1
and hence x(X0) ^ 2/(λ0). By symmetry x(X0) = y(X0).

Of course the same result holds for observables which are semi-
bounded from below.

THEOREM 1.2. Let x and y be bounded observables on a quite
full logic and suppose the spectrum of x has at most one limit
point. If m(%) = m(y) for all me M then x = y.

Proof. The most general such x has a point λ0 e σ(x) which is
a limit point from both above and below of elements of σ(x). The
other cases will follow in a similar manner. We can assume without
loss of generality that λ0 = 0. Let the points of σ(x) be ordered
as follows: μ1 < μ> < < λ0 < < λ2 < λ1# Now by Theorem 1.1
max {λ : λ G σ(y)} = X, and y(\) = xiX,). Now let xί = x - \χλl(x) and
let y1 = y - \Xkj(y). Letting / be the identity function /(λ) = X we
have for EeB(R)

_ ( x ( E ) A x ( X i Y i f O έ E

" \ x ( E ) V x ( X 1 ) i f OeE

It is now easy to see that

σ(x,) = σ(x) Π {\Y; ^(λ,) = xxj, i = 2, 3, . .

and

), i = 1,2, . . . .
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Now

mix,) = m(x) - X.mlxiX,)] = m(y) - \mlyiX,)] = m(y,) .

Applying Theorem 1.1, X> = max{λ:λe σ(yλ)} and y1(X2) = Xi(X2) = x(X2)
It now follows by applying (1) to y1 and y that λ2 is the second largest
number in σ(y) and y(Xz) = y^X,) = x(X2). Continuing this process with
the λ/s and also the μ^s we have {Xi9 μ{\ i = 1, 2, •} (zσ(y) and
y(χ.) = χ(Xi)9 y(μι) — x(μi), i = 1, 2, . Since λ0 is a limit point of
the λ/s it follows that λ0 e σ(?/), {λί? ^ : i = 1, 2, •} = σ(τ/) and

= 2/({λίf ^ 4 : i = 1, 2,

Hence y = x.
A similar technique may be used to prove:

COROLLARY 1.3. Let x and y be observables on a quite full logic
which are semi-bounded from above (below) and suppose the spectrum
of x has no finite limit point (this includes the possibility of a
limit point at — oo(+oo)). Suppose m(y) exists if and only if m(x)
exists and in that case m(y) = m(x). Then x = y.

We close with a slightly strengthened form of Lemma 6.2 [1].

LEMMA 1.4. / / L is quite full and has Property Έ, then L is
a lattice and m(a) = m(b) = 1 implies m(a A b) = 1.

Proof. That L is a lattice follows from Lemma 6.2 [1], If

m(a) = m(b) = 1, then m(xa + xb) = m(a) + m(b) = 2 and hence
1 = m[(xa + xb){2}] - m(a A b).

This last lemma is of interest since it rules out the counter-
example of Section 5 [1] and is thus a possible sufficient condition for
Property E.




