should be replaced by \check{Z}, and \widetilde{Z} should be replaced by \mathscr{Z}. The symbols $\tilde{\mathfrak{A}}_{m}$ and $\tilde{\mathfrak{A}}_{m}^{0}$ should be replaced throughout by $\mathscr{\mathfrak { A }}_{m}$ and $\mathfrak{U n}_{m}^{0}$, respectively; however, $\widetilde{\mathfrak{N}}_{n}$ and $\widetilde{\mathfrak{}}_{n}^{0}$ remain unchanged. The first equation of line 14 page 235 should be ${ }^{\prime} \mathfrak{A}_{n}=\tilde{\mathfrak{A}}_{n}^{\prime}$."

Correction to

DUALITY AND TYPES OF COMPLETENESS IN LOCALLY CONVEX SPACES

William B. Jones
Volume 18 (1966), 525-544
Proposition 2.14 is an obvious consequence of Lemma 2.8.
p. 538, line 5: The second equality is false in general for all α (see [4]).

Some misprints:
p. $526 \S 2$ should start " $(\alpha, \beta)-\ldots$ "
line 3 of $\S 2$, " α " instead of " α "
p. 528 last line, remove final "\}"
p. 532 line 14 , second " ε " should be " \in "
p. 535 line 2, should read

$$
\cdots \leqq \frac{\varepsilon}{r}(r-\cdots
$$

p. 537 line 8 , second "=" should be "-"
p. 541 line 9, " λ_{0} " instead of " 1_{0} "

Correction to

UNIQUENESS AND EXISTENCE PROPERTIES OF BOUNDED OBSERVABLES

S. P. Gudder

Volume 19 (1966), 81-93
The author recently discovered that the proof of the corollary to Theorem 4.5 is incorrect, thus invalidating Theorem 4.6. We show now that Theorem 4.6 is still true for a class of observables with infinite spectra and prove a generalization of Theorem 4.5.

An observable x is semi-bounded above (below) if there is a number
$-\infty<c<\infty$ such that $\sigma(x) \subset\{\lambda: \lambda \leqq c\}(\sigma(x) \subset\{\lambda: \lambda \geqq c\})$. The following not only generalizes Theorem 4.5 but gives a much simpler proof.

Theorem 1.1. Let x and y be observables on a quite full logic which are semi-bounded above and suppose that $m(x)$ exists if and only if $m(y)$ exists and in that case $m(x)=m(y)$. Then $\lambda_{0}=$ $\max \{\lambda: \lambda \in \sigma(x)\}=\max \{\lambda: \lambda \in \sigma(y)\}$ and $x\left(\lambda_{0}\right)=y\left(\lambda_{0}\right)$.

Proof. The first part of the conclusion follows just as in Theorem 4.5. Now suppose $m\left[x\left(\lambda_{0}\right)\right]=1$, and $m\left[y\left(\lambda_{0}\right)\right] \neq 1$. Then there is a number $\mu<\lambda_{0}$ such that $m[y(-\infty, \mu)]>0$. Now since $m(x)$ exists, so does $m(y)$ and we have

$$
\begin{aligned}
\lambda_{0}=m(x)=m(y) & =\int_{\left(-\infty, \lambda_{0}\right]} \lambda m[y(d \lambda)]=\left(\int_{(-\infty, \mu)}+\int_{\left[\mu, \lambda_{0}\right]}\right) \lambda m[y(d \lambda)] \\
& \leqq \mu m[y(-\infty, \mu)]+\lambda_{0} m\left[y\left[\mu, \lambda_{0}\right)\right]<\lambda_{0} .
\end{aligned}
$$

which is a contradiction. Thus $m\left[y\left(\lambda_{0}\right)\right]=1$ whenever $m\left[x\left(\lambda_{0}\right)\right]=1$ and hence $x\left(\lambda_{0}\right) \leqq y\left(\lambda_{0}\right)$. By symmetry $x\left(\lambda_{0}\right)=y\left(\lambda_{0}\right)$.

Of course the same result holds for observables which are semibounded from below.

Theorem 1.2. Let x and y be bounded observables on a quite full logic and suppose the spectrum of x has at most one limit point. If $m(x)=m(y)$ for all $m \in M$ then $x=y$.

Proof. The most general such x has a point $\lambda_{0} \in \sigma(x)$ which is a limit point from both above and below of elements of $\sigma(x)$. The other cases will follow in a similar manner. We can assume without loss of generality that $\lambda_{0}=0$. Let the points of $\sigma(x)$ be ordered as follows: $\mu_{1}<\mu_{2}<\cdots<\lambda_{0}<\cdots<\lambda_{2}<\lambda_{1}$. Now by Theorem 1.1 $\max \{\lambda: \lambda \in \sigma(y)\}=\lambda_{1}$ and $y\left(\lambda_{1}\right)=x\left(\lambda_{1}\right)$. Now let $x_{1}=x-\lambda_{1} \chi_{\lambda_{1}}(x)$ and let $y_{1}=y-\lambda_{1} \chi_{\lambda_{1}}(y)$. Letting f be the identity function $f(\lambda)=\lambda$ we have for $E \in B(R)$

$$
\begin{align*}
x_{1}(E) & =\left(f-\lambda_{1} \chi_{\lambda_{1}}\right)(x)(E)=x\left[\left(f-\lambda_{1} \chi_{\lambda_{1}}\right)^{-1}(E)\right] \\
& = \begin{cases}x(E) \wedge x\left(\lambda_{1}\right)^{\prime} & \text { if } 0 \in E \\
x(E) \vee x\left(\lambda_{1}\right) & \text { if } 0 \in E\end{cases} \tag{1}
\end{align*}
$$

It is now easy to see that

$$
\left.\sigma\left(x_{1}\right)=\sigma(x) \cap\left\{\lambda_{1}\right\}^{\prime} ; x_{1}\left(\lambda_{i}\right)=x \lambda_{i}\right), i=2,3, \cdots ;
$$

and

$$
x_{1}\left(\mu_{i}\right)=x\left(\mu_{i}\right), i=1,2, \cdots .
$$

Now

$$
m\left(x_{1}\right)=m(x)-\lambda_{1} m\left[x\left(\lambda_{1}\right)\right]=m(y)-\lambda_{1} m\left[y\left(\lambda_{1}\right)\right]=m\left(y_{1}\right) .
$$

Applying Theorem 1.1, $\lambda_{2}=\max \left\{\lambda: \lambda \in \sigma\left(y_{1}\right)\right\}$ and $y_{1}\left(\lambda_{2}\right)=x_{1}\left(\lambda_{2}\right)=x\left(\lambda_{2}\right)$. It now follows by applying (1) to y_{1} and y that λ_{2} is the second largest number in $\sigma(y)$ and $y\left(\lambda_{2}\right)=y_{1}\left(\lambda_{2}\right)=x\left(\lambda_{2}\right)$. Continuing this process with the λ_{i} 's and also the μ_{i}^{\prime} 's we have $\left\{\lambda_{i}, \mu_{i}: i=1,2, \cdots\right\} \subset \sigma(y)$ and $y\left(\lambda_{i}\right)=x\left(\lambda_{i}\right), y\left(\mu_{i}\right)=x\left(\mu_{i}\right), i=1,2, \cdots$. Since λ_{0} is a limit point of the λ_{i} 's it follows that $\lambda_{0} \in \sigma(y),\left\{\lambda_{i}, \mu_{i}: i=1,2, \cdots\right\}=\sigma(y)$ and

$$
\begin{aligned}
y\left(\lambda_{0}\right) & =y\left(\left\{\lambda_{i}, \mu_{i}: i=1,2, \cdots\right\}^{\prime}\right)=\left[\Sigma y\left(\lambda_{i}\right)+\Sigma y\left(\mu_{i}\right)\right]^{\prime} \\
& =\left[\Sigma x\left(\lambda_{i}\right)+\Sigma x\left(\mu_{i}\right)\right]^{\prime}=x\left(\lambda_{0}\right) .
\end{aligned}
$$

Hence $y=x$.
A similar technique may be used to prove:
Corollary 1.3. Let x and y be observables on a quite full logic which are semi-bounded from above (below) and suppose the spectrum of x has no finite limit point (this includes the possibility of a limit point at $-\infty(+\infty)$). Suppose $m(y)$ exists if and only if $m(x)$ exists and in that case $m(y)=m(x)$. Then $x=y$.

We close with a slightly strengthened form of Lemma 6.2 [1].
Lemma 1.4. If L is quite full and has Property E, then L is a lattice and $m(a)=m(b)=1$ implies $m(a \wedge b)=1$.

Proof. That L is a lattice follows from Lemma 6.2 [1]. If $m(a)=m(b)=1, \quad$ then $\quad m\left(x_{a}+x_{b}\right)=m(a)+m(b)=2 \quad$ and hence $1=m\left[\left(x_{a}+x_{b}\right)\{2\}\right]=m(a \wedge b)$.

This last lemma is of interest since it rules out the counterexample of Section 5 [1] and is thus a possible sufficient condition for Property E.

