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DIAGONABILITY OF IDEMPOTENT MATRICES

ARTHUR STEGER

A ring “# (commutative with identity) with the property
that every idempotent matrix over ZZ is diagonable (i.e.,
similar to a diagonal matrix) will be called an ID-ring. We
show that, in an ID-ring 2, if the elements a;, a;, -+ -, @, € FZ
generate the unit ideal then the vector [a;, a, -+, a,] can be
completed to an invertible matrix over 4. We establish a
canonical form (unique with respect to similarity) for the
idempotent matrices over an ID-ring. We prove that if 7/~
is the ideal of nilpotents in <% then 2 is an ID-ring if and
only if <#/_4~ is an ID-ring. The following are then shown
to be ID-rings: elementary divisor rings, a restricted class of
Hermite rings, n-regular rings, quasi-semi-local rings, poly-
nomial rings in one variable over a principal ideal ring (zero
divisors permitted), and polynomial rings in two variables
over a m-regular ring with finitely many idempotents.

In this paper, =# will denote a commutative ring with identity,
and £, will denote the set of nxm matrices over &#,. If A, Be &,
then A = B will mean that A is similar to B. We remark that if
& is an ID-ring then every finitely generated projective R-module
is the finite direct sum of cyclic modules, and that <Z is a directly
indecomposable ID-ring if and only if every finitely generated
projective “Z-module is free. Most of the literature on this subject
has been concerned with showing that a given ring “Z has the
property that every finitely generated projective .“Z-module is free.
This necessarily imposes the condition that <# be indecomposable.
In this paper, no such restriction is made.

2. Properties of ID-rings.

DEFINITION 1. &2 is said to be an ID-ring provided that for
every A=A4Aece <z, n=1,2, .-+, there exists an invertible matrix
Pe &%, such that PAP-! is a diagonal matrix.

DEFINITION 2. The row vector [a,, @, ---, a,] with components
in 2 is said to be a basal provided that it can be completed to an
invertible matrix over .#.

DEFINITION 3. The row vector X is said to be a characteristic
vector of Ae <2, corresponding to re .<Z provided (1) X is a basal
vector and (2) XA = rX,
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The following lemma, due to A. L. Foster, is an important tool
in our development.

FOSTER’S LEMMA. & is an ID-ring if and only if every
tdempotent matrixz over # has a characteristic vector.

From this lemma, which appears essentially as Theorem 10 in
[2], one can quickly deduce that quasi-local rings and principal ideal
domains are ID-rings. Then, known structure theorems suffice to
show that principal ideal rings (see [7], p. 66), rings with descending
chain condition, and Boolean rings are ID., These results will be
extended in the next section.

THEOREM 1, Let A = A*c &, If there exist invertible matrices
P, Qe &, such that PAQ is a diagonal matrixz then A is diagonable.

Proof. Let PAQ = B = diag (b, b, -+-, b,) and let U = Q'P~' =
(%;;). Then (BU)*= BU and BUB = B. Hence b; = bu,;, bu,; is
idempotent, and by Lemma 2.1 of [9] b; ~ byu;; for each 7, Thus,
we may assume that @ has been adjusted so that b =b;,,1=1,2, ..., n.
The equation BUB = B now yields

1) bu;="b,1=12 ---,m, and

(2) bbu; =0, 1% 3,5,7=12 +++, n.

From (1),

b1 b1u12 e bluln

BU — b.2u’21 b.z e b%um

bnunl bnunﬂ e bn

If Xk = [bkuku bkukzy ) bkukk—-ly 1, bkulck+15 ey, bkukn] then XkBU e
b, X, k=1,2, -+, n. Now let

From (2), it follows that |C| = 1. Hence (CP)A(CP)~* = CBUC~ =
dia’g (bly b29 ctey bn)'

THEOREM 2. Let & be an ID-ring. If a,a, +++,a,€ %
generate the unit ideal in & then the vector |a,, a,, ---, a,] is basal.
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Proof. Let Syt wa, =1 and let B = (x,0;)e.5#,. Then B*= B
and tr B=1, Since 2 is ID, B=C = diag (¢, ¢y, ++-,¢,). If X =
[y, €y <<+, ¢,] then XC = X and, since S ,c;, =1,

¢ C, Cytev Gy
—1 1 0-.--0
-1 0 1---0|=1.

—-1 0 0 -..-1

Hence, B has a characteristic vector Y = [y,, ¥., - -+, %] corresponding
to 1. From YB =Y, we have S yx.a; =y;, j=1,2,--+-,n. Thus
G lay, agy o+ a,] = [ys, Yoy -+ +, ¥,]. Since Y is basal, so also

is [a/ly a'Qy ) a/%]'

THEOREM 3. If <2 is an ID-ring then every invertible ideal in
R is principal,

Proof. Let 9% be an invertible ideal in .ZZ2. Then there exist
elements @, @, -+, a,c 2% and elements x, 2., ---, 2, in the full
ring of quotients of .<# such that z, %% & <, i=1,2,---,n, and
S aa; =1, It follows that 5 = (ay, a,, - -+, @,). Let B= (v;a,) € F,.
Then, as in Theorem 2, there exists a basal vector Y = [y, ¥, «*+, Y.l
such that y; = Y yxa,, j=1,2,---,n. Nowlet x; =¢,/d, ¢;,,de . F#
and d not a zero divisor. If p = 37 ,y.,c; then [pa, pa,, ---, pa,] =
[dy., dy,, -+, dy,]. Since Y is basal, p.9% = (d). Hence there is an
a e 9% such that pa = d. Thus, p is not a zero divisor. If be %7,
then for some r€.%2, pb = rd = pra. Hence, b = ra and % = (a).

Recall that if .7 is the set of idempotents of .22 then (&, N,
U, *> where e Nb=ab, anb=a+b—ab, and a*=1—aq, is a
Boolean algebra (see [1]). It follows that if @, a, .-, a,€ .5 and
a = Ur,e, then a, a,, ... a, generate the principal ideal (a) in 2.

THEOREM 4. (Canonical Form) Let .72 be an ID-ring and let
A= Ac #. Then A =diag(a,a, ---,a,) where a;|@; ., =
1,2, ..., n—1. Morewer, tf A=diag(b,b, -+-,b,) with b;|b;.,,
=12 ---,m—1, then a; =5b,,t1=1,2 ---,m.

Proof. Since &# is ID, let A = C = diag(c, ¢, -+, ¢,) and let
a, = Ur.e;. Then there exist idempotents x,, ., ---, x, such that
z,a, = ¢; for each 7 and r,2; = 1. Thus, (2, %, -++, 2,) = 1 and, by
Theorem 2, X =[x, x,, ---,x,] is basal. Since z; is idempotent,
1=1,2 ---,n, XC=q,X and, as in the proof of Foster’s Lemma,
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A = diag (a,, d, -+-, d,). By induction, A = diag (a,, a., -+, a,) Where
a; |y, 1 =2,8,---,m — 1, Since a, divides each entry of C, a,]a..
If also, A = diag (b, by, -+, b,) with b;|b;\,, 1 =1,2, ---,n — 1, then
it is a consequence of Theorem 9.3 of [6] that b, = a, for each 1.
This can also be seen directly as follows: since a, divides each r-rowed
minor of diag(a,, a,, +--, a,), a, divides b, = bb, -+ b,. Similarly, b,
divides a, and, since both «a, and b, are idempotent, a,=b, » =
1,2, .., n,

COROLLARY. If < 4s ID and A — A*c 2%, then A has «a
characteristic vector corresponding to |A|.

Proof. We need merely observe that if A = diag (¢, a,, ---, @,)
with a;|a;,,, 1 =1,2, .-+, n — 1, then a, = | A|.

THEOREM 5. Let _Z be the Jacobson radical of 2, let 4~ be
the ideal of milpotents in FZ, and let 27 be an arbitrary tdeal in
ZE. If o S _F and R[] 2% is an ID-ring then F is an ID-ring.
If o < " then # is an ID-ring if and only if #[5 is an
ID-ring,

Proof. Let 2 < _# and assume that &2/9 is ID. Let A=
A= (4;)e A, and A* = (a;; + 9). Then (A*))= A* and if d=
|A| then d + 27 = |A*|. By the corollary to Theorem 4, we may
let X* = [, + 5, @, + 5, -+, ®, + 577] be a characteristic vector
of A* corresponding to d - .%#". Then, if X =[x, 2, -+, 3,], XA=
dX + Y where the components of Y are in 9. Since A*= A4
and d*=d, XA=dXA + YA, YA=(1—-d)XA=(1—-d)Y, and
(X+@2d—-1)Y)A=dX +dY =d(X + (2d —1)Y). Since ¥ & _7,
w4 % is a unit of &2/ % if and only if w is a unit of &Z. It
follows, therefore, that since X* is basal so also is X + (2d —1)Y.
By Foster’s Lemma, &2 is ID. Now let 97 < _#". Since 1" S _Z,
we need only prove that if <2 is ID then <2/ 2 is ID. Hence,
assume that &2 is ID and A* = (A*) = (a;; + %) e (#|%),. It
will suffice to show that there exists an idempotent matrix F =
(fi)) e &, such that fi;, + % =a;; + %, 4, =1,2, +-+,m, If A=
(a;;) then A* = A + B where the components of B are in .%". Thus
B is nilpotent. Let k be the least natural number such that B* =
Z = zero matrix, If &k = 1, there is nothing left to prove. Hence,
assume that ¥ > 1 and let C = A + (I — 24)B. Then the components
of C — A are in K and, since AB = BA,

C*= A* + 2A(I — 24)B + (I — 24)B° .
Therefore, C* — C = B + (I — 2A)(B* — B). Since (I — 24)* = I + 4B,
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C*=C + B4B — 3I). If we let D= B*4B — 3I), we have C® =
C + D where the components of D are in .9 and, for some natural
number ! < k, D' = Z, Repeating this process, we arrive in a finite
number of steps at the required matrix F

COROLLARY, Let 4~ be the ideal of milpotents in F and let
Xy, Xy, v v, ¥ be indeterminates. Then FB[x,, &y, «-+, %] s ID if and
only if (Bl )w, @y -+, x,] s ID.

Proof. The corollary follows by observing that _# [, @,, -+, 2]
is the ideal of nilpotents in .ZZ[x,, x., ---, #,] and that

'%{xl! Doy * v 0y xk]/-/l/‘[xly Loy * 0y xk] ~ (%/-/1/)['%17 Loy * v+, mk] .

3. Classes of ID-rings. As an immediate consequence of
Theorem 1, we have:

THEOREM 6. An elementary divisor ring is an ID-ring.

THEOREM 7. Let % be a Hermite ring with Jacobson radical
o If A has the property that ab = 0 implies either (a) = (@)
or ae _Zor be _Z then F is an ID-ring.

Proof. Let A= A*= (a;;)e .2, and let Q be an invertible matrix
such that QA = B = (b;;) is triangular; ie., b;,; =0 if ¢ <j. Let
Q—l = (pw) Then X = [bupm b11p12y tt bllpm] is the first row of
QAQ™. If (b,) = (b}) then there is an idempotent e such that b, ~ e.
By Theorem 3.9 of [6], there are vectors X,, X;, ..., X, such that
(X X

X, eX, |

1.2}1:e. IfC= ¢ %theniC+(1—e)IJ:1. Thus, the vector
: | i . 1

! Xn ! t__6X2 (

Y = [byp, +1—e byDy,- -+, bup,] is basal and Y(QAQ™) = X =

eX = ¢Y; i.e, Y is a characteristic vector of QAQ~* corresponding to
e. If b,e_7 then 1 — b,p, is a unit of % and

[1 - bupu, - bllpl‘_’: trty T bnpm]

is a characteristic vector of QAQ~ corresponding to 0. Suppose now
that neither of these assumptions on b, is true. From the equation,
BA = QA* = QA = B, we obtain b,(1 — a,) = 0. By the hypothesis
on #, 1-aye_Z, a, is a unit of &, and [ay, ay,, -+, a,,] is a
characteristic vector of A corresponding to 1. In any event, A has
a characteristic vector and Foster’s Lemma completes the proof.
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THEOREM 8. A w-regular ring is an ID-ring.

Proof. Let &2 be m-regular with Jacobson radical #. Then
Z|_# is regular and, therefore an elementary divisor ring (see [3],
p. 365). The coneclusion follows from Theorems 5 and 6.

THEOREM 9. A quasi-semi-local ring is an ID-ring.

Proof. Let .22 be quasi-semi-local with Jacobson radical _~.
Since, by definition, .ZZ has only a finite number of maximal ideals,
Z[ F is a finite direct sum of fields. Theorem 5 completes the
proof,

THEOREM 10. Let 2 be an ID-ring and let &7 be a subring
of R[[x]] which contains . If & has the property that we .S
and w is a unit of R[[x]] tmply that w is a unit of & then &
is an ID-ring.

Proof. Let A = A*c.%, and let A’ be the matrix in .<#, obtained
from A by suppressing all positive powers of x. If A’ = Z = zero
matrix and A # Z, let k be the highest power of z which divides (in
R[[»]]) each entry in A. Then we may write A = a*B; and some
entry in B is not divisible by x. Since A is idempotent x*B = 2B,
Thus, B = «*B® and, since k > 0, we have arrived at a contradiction.
Again, let A = A°c.&4. Then (A’)*= A’ and, since .ZZ is ID, it
follows from Theorem 4 that the entries of A’ generate in . a
principal ideal (¢) where ¢ is idempotent. Then (1 — e)A is idempotent
and (1 —e)A)Y = Z. Thus, (1 —e)A=Z. Let P be an invertible
matrix in .2, such that PA'P~' = diag(a. a,, -+, a,) where a;|a,.,,
1=1,2 ---,m — 1, Therefore, a, =¢ and PAP~' = B = (b;;) with
by=e+ra+ra*+ ... Then, if Y =][1—e+ by by ---, bl
(1 —e)B= Z implies YB =¢Y. Since 1 — ¢ + b, is a unit in R[[x]],
by the hypothesis on .&#, Y is a characteristic vector corresponding
to e. The theorem follows from Foster’s lemma.

Theorem 10 shows for example that the domain of complex valued
functions of a complex variable which are analytic at some point z,
in the complex plane is an ID-ring, or that the domain of real valued
functions of a real variable analytic at some real number », is ID.
It is also true that the domain of entire functions is ID. This has,
however, nothing to with Theorem 10; but it is rather a consequence
of Theorem 7 in conjunction with a theorem proved in [4] to the
effect that in the domain of entire functions every finitely generated
ideal is principal.
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The problem of determining, given a ring .<#, whether or not
] is ID is a difficult one. An important result in this area is due
to Seshadri who proved in [8] that if <2 is a principal ideal domain
then Z[x]is ID. In particular, 9 [z, y], where .2 is a field, is _# D,
The character of .9 [x, v, #] is open. Horrocks showed ([5]), p. 718) that
if <2 is a regular local ring of dimension 2 with a field of coefficients
then “Z[x] is ID. Chase, on the other hand, has constructed an
example (unpublished) of a complete local domain .<Z such that Z[«]
is not ID. The ring in Chase’s example has dimension 1, is not a
regular local ring, and in fact is not integrally closed.

THEOREM 11, Let 2 be a ring with _4~ its ideal of nilpotents.
1) If Z|.v is a principal ideal ring then P[x] is ID; (2) if
R " 18 a Boolean ring then FZlx,y] 1s ID; and (3) if # is a
m-regular ring with finitely many idempotents then F#|x,y] is ID.

Proof. The assertions of this theorem are a consequence of apply-
ing the Corollary to Theorem 5 to Seshadri’s result. First, assume
that “#/.+" is a principal ideal ring. It is a consequence of the
result on page 66 of [7] that <2/ s  is a finite direct sum of principal
ideal domains, Thus (1) has been established. Now assume that
(. 4" 1s a Boolean ring and let A = A*e ((ZZ/_17)[x, y]).. Then the
set of coefficients of the entries in A together with 1 generate a
finite Boolean subring &# of .“Z/_4~ whose unit element is the unit
element of ZZ/_4~. Since .&” is the finite direct sum of fields, A is
diagonable and (2) has been proved. Finally, assume that < is a
w-regular ring with finitely many idempotents. Then .22/ ¢~ is the
finite direct sum of fields. This completes the proof of (3).
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