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ON DUAL SERIES RELATIONS INVOLVING LAGUERRE
POLYNOMIALS

K. N. SRIVASTAVA

In this paper, we shall consider the problem determining
the sequence {An}, such that

Σ {AnlΓ(n + α + 1)} L",(x) = Ux) , 0^x<y,

ϋ {AnlΓ(n + α + 1/2} Ll(x) = fz{x) , y < x ^ oo, a > - 1 / 2 ,

where L%x) is a Laguerre polynomial, the functions fi(x) and
fι{x) being prescribed. By expressing the sequence {An} in
terms of a sequence of integrals involving an unknown func-
tion g(u) the problem is reduced to that of solving an Abel
integral equation for g(u).

In recent years, dual series relations involving Fourier-Bessel,
Dinί series, trigonometric series and series of Jacobi polynomials have
been investigated by various workers [1, 2, 5 to 12]. Here we shall
apply the method developed by Sneddon and Srivastav for obtaining a
solution of the dual series relations involving Laguerre polynomials.

As pointed out by Sneddon and Srivastav [6], with a view to
simplify the calculations, we split the problem posed by the pair of
dual equations given above into two parts: Problem (a). Determine
the constants {An} satisfying the dual series relations

(1.1) Σ {An/Γ(n + tf + 1)} L%x) - f,{x), 0 ^ x < y ,
71 = 0

(1.2) Σ {An/Γ(n + a + 1/2)} L°n{x) = 0 , y <x^ o o , a > - 1 / 2 .
»=0

Problem (b). Determine the constants {An} satisfying the dual
series relations

(1.3) Σ {An/Γ(n + a + 1)} La

n(x) = 0 , 0 ^ x < y ,

(1.4) Σ {AnlΓ(n + a + 1/2)} L%x) = ft(x) , y < x £ o o , a > - 1 / 2 .
0

The solution of the general problem is obviously obtained merely by
adding the solutions of problem (a) and (b). We suppose that func-
tions fiix) and fι{χ) satisfy the following conditions:

(i) F^x) = xaf1(x) is finite and continuously differentiate for

0 S x < V,
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(ii) Ft(x) = \e~xf2(x)dx is finite and continuously differentiate

f or y < x ^ oo.

As we shall presently see the classes of functions f^x) and f2(x) for

which the problem under discussion is solvable, must satisfy the above

conditions,

2* In this section we list some results for ready reference. By
combining the results [3, p. 292 (2), (3)], we have

(2.1) [mχ°e-Ll(x)L*m(x)dx = (n + L)a-dmn ,
Jo

where 3mn is a Kronecker delta. From [4, p. 193 (27), (28)] we have

(2.2) A- {χ«L«n(x)} =(n + a) x^LΓ\x) ,
dn

(2.3) [~e-»L*n(y)dy =
Jx

We shall also require the following results which are easily derived
from the more general results given in [3, p. 293 (5), p. 405 (20)].
For α > -1/2

(2.4) j (2, - xy^e-yL%y)dy = Γ(l/2)e-*La~ll2(%) ,

(2.5)

We also note that if f(x) is continuously differentiate then Abel
integral equation

(2.6) f(x) = Γ *W dy
Jo (x - yγι*

has a continuous solution given by the equation

Π dy Jo (y — χ)112

Furthermore, if f(x) is continuously differentiate then the integral
equation

(2-8) M = f- *(y\m dy

has a continuous solution
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Π dy iv (x - yψ2

This can be easily established by simple methods given in [13, p. 229].
The analysis given here is purely formal and no attempt is made to
justify the interchange of various limiting processes.

3* Solution of the problem (a). Let us suppose that for 0 rg
x < y

(3.1) Σ {An/Γ(n + a+ 1/2)} Ll(x) = -β 4~ Γ °l(U\ , du .% = ° dx Jx (u — x)1

Using the orthogonal property (2.1), it can be shown that

(3.2) A»=-J^"+l/g>fθm>LWfl(' ^ ) dMW
Γ ( ^ + a + 1) Jo v V da; J* (w - ^) 1 / 2 /

Since

d

i*(u~ xfi* (y - xyι* i. (u- xyi*

we obtain with the help of (2.5), the equation

(3.4) An = Γ(n + 1) Γ(l/2) Γ ^ u ^ - ' Ί L Γ 1 ' W % , n = 0, 1, 2,.
J 0

If in the equation (1.1), we substitute for the coefficients An from
(3.4), on interchanging the order of summation and integration, we
get

(3.5) Ux) - (*g^uju^K^u, x)du , 0 ̂  x < y ,
Jo

where

(3.6) Kx{u, x) = fj ^ + 1]

a

r{11^ LTV\u)Ll(x)

with the help of equations (2.1) and (2.4) it can be shown that

(3.7) K^u, x) = eux~«(x - u)-1'2 H(x - u)

where H(t) is Heaviside's unit function. (2.7) is easily proved. Let

where the coefficients an are given by
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Au, x)x°e-L°n{x)\
Γ(n + a. + 1) Jo

3 .+ α + 1)

Thus the equation (3.5) is equivalent to

(3.8) Ft(x) = x'f^x) = \' 9^y^~ψ'f>% du , 0 g x < v .
Jo (a; — u)υ-

This is Abel integral equation, since F^x) is finite and continuously
differentiable, its solution is given by

(3.9) u-v*e*gι(u) = J _ A ί " *af&) dχ .
// du Jo (^ — α;)1/2

The coefficients An may now be calculated with the help of the
relations (3.4) and (3.9).

4* Solution of the problem (b). We start with the assumption
that f or y < x g αo

(4.1) ± {An/Γ(n + a + 1)} L;(®) - α;"̂  Γ g*(u\ du .
^ = o Jif (a? — t6) 1 / 2

This is equivalent to assuming that

(4.2) 4n = Γ(n + l)Γ(l/2) ί ^ 2 W r a L Γ ] / 2 W ώ , n = 0, 1, 2, .

If we multiply both sides of the equation (1.4) by exp(—x) and in-
tegrate with respect to x from x t o o o , y < x S °°, we obtain

(4.3) ^(flj) = \~e-*ft(x)dx - Σ {-4^/^(^ + a + 1)} β - i Γ 1 ^ ) .
J x «—0

Substituting the values of the coefficients from (4.2) in the equation
(4.3) we find on interchanging the order of summation and integra-
tion that

(4.4) e*Fz(x) = [°g2(u)e-uK2(u, x)du, y < x
Jy

where

(4.5) Kt(u, x) = Σ
= o

< oc

»=o Γ(n + a + 1/2)
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From the relations (2.1) and (2.5) it easily follows that

(4.6) K2(u, x) - exu~a+ll2(u - x)'ll2H(u - x) .

Consequently the equation (4.4) reduces to the integral equation

? y < x ^ oo .(4.7) F9(x) = Γ

Since F2(x) is finite and continuously diίferentiable, the solution of
the above equation is given by

(U — X)1'2

(4.8) „,<*) = - I**'" A.? F ^ dx .
Π du Jo (x — uf11

The coefficients An are given by the relations (4.2) and (4.8).
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