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TAME SUBSETS OF SPHERES IN E*

L. D. LOVELAND

Let F be a ciosed subset of a 2-sphere S in E®, We
define F' to be tame if F lies on some tame 2-sphere in E'3,
The sets " and S satisfy Property (x, F, S) provided Bing’s
Side Approximation Theorem can be applied in such a way
that the approximating 2-sphere S’ misses F' (that is, SN .S’
lies in a finite collection of disjoint small disks in S — F),
In this paper we show that Property (x, F, S) implies that I’
is tame by establishing a conjecture made by Gillman. Other
properties which are equivalent to Property (x, F, S) are also
given,

If F\,F,,---,F, is a finite collection of closed subsets of
S such that Property (x, F;, S) holds for each i, then Property
(*, 33F;, S) also holds. We use this resuit to show that if S
is locally tame modulo >\F;, then S is tame.

Bing’s Side Approximation Theorem [8, Theorem 16] can be stated
as follows:

THEOREM 0. If S is a 2-sphere in E® V is a component of
E3— S, and € > 0, then there is a polyhedral 2-sphere S’ containing
a finite collection D, D,, ---, D, of disjoint disks each of diameter
less than ¢, and there is a finite collection K, E,, ---, E, of disjoint
disks on S, each of diameter less than €, such that

1. there is a homeomorphism of S onto S’ that moves no point
as much as e,

2. S—=>i.D;,cV, and

8. SnfS c > E.

If F is a closed subset of the 2-sphere S and V is a component
of E® — S, we define Property (x, F, V) to mean that Theorem 0 can
be applied relative to S and V with the additional requirement that

4. CE)NF=@.

Property (x, F, S) is satisfied if Property (x, F, V) holds for each
component V of E® — S,

Gillman has already established that an arc A is tame if A lies
on a 2-sphere S and Property (x, 4, S) is satisfied; however, he com-
ments that the “natural approach” to the problem requires a certain
conjecture which he states and does not prove [13, p. 467]. Theorem
3 establishes this conjecture, and Theorem 6 shows that an arbitrary
closed set F on S is tame if Property (x, F', S) holds.

Hosay has announced two sufficient conditions for a closed subset
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F of a 2-sphere S to be tame [14]. In the statement of his results
he requires that the set of diameters of the components of F' be
bounded below by a positive number. Under this restriction on the
size of the components of F' we show that each of Hosay’s sufficient
conditions is equivalent to Property (x, F', S); hence, Hosay’s result
follows from Theorem 6. For these results, see §3.

If (x, F', S) is satisfied it follows from Theorem 1 that there is a
nondegenerate continuum M on S such that Fc M and (x, M, S)
holds. Using Theorem 1, Theorem 8, and Hosay’s result [14], we
see that (x, F, S) implies that F' is tame. Working independently,
Ernest Milton also made this observation and established a theorem
similar to Theorem 1. His work has not yet been published. As
mentioned above, we do not depend on Hosay’s result in this paper.

Theorems 17 and 18 are generalizations of Theorems 8.4 and 8.5
of [9]. We use these generalizations to show that the union F of a
finite collection of closed subsets F,, F,, ---, F, of a 2-sphere S satisfies
(%, F, S) provided Property (x, F;, S) holds for each ¢ (Theorem 21).
It follows from this result and Theorem 15 that S is tame if S is
locally tame modulo the union of a finite collection of closed subsets
F; where (x, F';, S) holds for each 7. We also use some of the results
of Sections 3, 4, and 5 in another paper [16] where we give some
conditions under which a 2-sphere is tame in E°

We use the prefix in “e-disk”, “ec-set”, etc., to imply that the
point set in question has diameter less than e¢. However, the prefix
in “2-sphere” refers to the dimension of the sphere. It should be
clear in which context the prefix is to be taken. The distance function
in E® is denoted by “p”. The symbol “N(R, ¢)”, where ¢ >0 and R
is a set, is synonymous with “c-neighborhood of R” and is defined as
the set of all points that are within a distance ¢ of some point of R.
We indicate that a point set R has diameter less than ¢ by writing
“diam R < ¢”. If {D,} is a countable sequence of disks such that lim
diam D;=0, we call {D;} a null sequence of disks. The closure of a
set B is denoted by CI(R). If S is a 2-sphere we denote the bounded
and unbounded components of E® — S by Int S and Ext S, respectively.
IJE JD) is a disk we let Int D = D — Bd D, where Bd D is the boundary
of D.

Most of the definitions used here will be found in either [4] or
[10]; however, we will review some of them briefly. A 2-sphere S
in E® is tame if there is a homeomorphism % of E*® onto itself such
that h(S) is polyhedral. The set Y is locally simply connected at a
point p of CI(Y) if for each neighborhood N of p there is an open
set U containing p such that each map of a simple closed curve into
UN Y can be shrunk to a point in NN Y. A 2-sphere S is said to
be tame from a complementary domain V of S if S+ V is a
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3-manifold with boundary. The sphere S is locally tame at a point p
from Vif pisin S and p lies in a subset U of S + V such that U
is open relative to S 4+ V and Cl(U) is a topological cube.

2. (% F,S) implies that F is tame. We now give an alternative
definition of Property (x, F', S).

Property (x, F, S). Let F be a closed subset of a 2-sphere S in
E® We say that Property (x, F', Ext S) holds if and only if for each
€ > 0 there is a polyhedral 2-sphere S’ containing a finite collection of
disjoint e-disks D, D,, -+, D, and there is a finite collection of disjoint
e-disks E, E,, ---, E, on S such that

1. there is a homeomorphism of S onto S’ which moves no point
as much as ¢,

2. 8 —=>D,c ExtS,

8. S—>E,CcIntS’, and

4. Fn(XZE)=0.

A similar definition is made for (x, F', Int S), and we define (x, F, S)
to mean that both (%, F', Int S) and (x, F', Ext .S) hold.

The property defined by (x, F, S) in the introduction follows
directly from this definition. The converse is also true as can be seen
using the technique illustrated in [6, p. 585]. Since the two defini-
tions of Property (x, F', S) are equivalent we will use whichever de-
finition seems appropriate.

Although we show in this section that Property (%, F, S) implies
that F' is tame, it is not true that S is locally tame at points of F
if Property (¥, F, S) holds. To see this, let F' be an arc on the 2-
sphere S described in [5]. Then F is tame, so Property (x, F, S)
holds [13, Theorem 10]. Yet S is not locally tame at any point.

THEOREM 1. If ¢ >0 and F is a closed subset of a 2-sphere S
in E?® such that (x, F', S) is satisfied, then there is a continuum M
on S and a null sequence {D;} of disjoint e-disks on S such that

1. M=8-3,Int D,

2. (x, M, S) is satisfied, and

3. FCM->D,=S—3,D..

Proof. Let ¢, ¢, ¢, -+ be a sequence of positive numbers (subject
to restrictions to be mentioned later), and let S, S,, S;, -+ be a
sequence of polyhedral 2-spheres, where S; is obtained relative to ¢;
using Property (x, F', S), such that for each ¢

(1) S; is homeomorphically within ¢; of S,

(2) S contains a finite collection of disjoint ¢;-disks E;, By, «++, Einy
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n (%)
such that (Z E‘ij) nF=0,
st

(8) S, contains a finite collection of disjoint ¢;-disks D, Dis, +++, Diyiy
such that

(@ S;— >4 D;cIntS and S — 34 E,; < Ext S, if 7 is an odd
integer, and

(o) S;— Sy D;cExtS and S — S E,;cIntS; if 7 is an
even integer,

We will impose restrictions on the ¢’s to insure that S —

1 238 E;; contains a continuum M which satisfies the requirements

of Theorem 1. First we insist that &, < ¢/7 for each i. We need an

inductive procedure for defining the remaining restrictions to be imposed

on the ¢’s. In this inductive procedure we also define an array of
e-disks

GnGm et Glz(i)
GmGzz e G2t(1) cc sz)
G31G32 e Gstu) e Gat(‘:) ce Gst(3)

where the k" row is a finite collection of disjoint e-disks on S such
that 10 B, < SU® Int Gyy; Gy © Gy for k=1,2,--- and 1 <1 <
t(k) (that is, the columns are nested); and no G,; intersects F. We
will also do the construction so that for each fixed row k, diam
G <epif t(f —1) < j = t(f) (where ¢(0)=0 and 1 = f = t(k)).
Assuming we have defined such an array of disks, we let 4; be
the intersection of the j™ column; that is 4; = N, G;; (where we let
Gi; =S =1IntG;; 7 > t(i)). Since A; is the intersection of a nested
collection of disks it follows that A4, is a continuum. In fact we have

defined a sequence of disjoint continua A,, A,, 4;, --- on S such that
for each 1

(4) A; does not separate S,
(5) diam 4; < ¢,
(6) lim diam A; = 0, and
(7) ANF=0.

In the inductive definition of the G;;’s we will insure that

(8) if E,; (where m is a positive integer and 1 < f < n(m)) lies in
G.. (where k is a positive integer such that 1 < k =< ¢(m)), then

E,;c Dl Gy = 4, .
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Condition (8) implies that

o n(1) i
(9) S5, 34

Assuming that all these conditions are satisfied, let us show how
the proof can be completed. From (6) the decomposition G of S whose
only nondegenerate elements are the A;’s is upper semicontinuous. It
follows from (4) and [18] that the decomposition space is a 2-sphere.
Since there are only a countable number of nondegenerate elements
in G, the image of these nondegenerate elements forms a countable
point set in the decomposition space. Also from (7) this countable set
fails to intersect the image of F' in the decomposition space. Using
(5) and (6) we can find an infinite collection of disks in the decompo-
sition space such that the pre-images of these disks form a null
sequence of disjoint e-disks D,, D,, D,, --- on S, where no D; intersects
F and >7,4;C 32, Int D;,. The continuum M which is required in
the conclusion of the statement of Theorem 1 is S — 32, Int D,.

Obviously M contains F. Let a be a positive number, and let V'
be a complementary domain of S. Since the ¢,’s converge to zero we
can find an odd integer « and an even integer y such that ¢, and ¢,
are each less than a, If V = Int S, then S, will satisfy the conditions
of (x, M, IntS) relative to «. If V = ExtS, then S, will satisfy the
conditions of (¥, M, Ext S) relative to . For example, consider V =
Int S. Then S, satisfies Conditions (1), (2), and (3a) as stated in the
first paragraph of this proof. All we need to show is that M does
not intersect (3% E,;). But this follows immediately from (9) and
the fact that the A,’s lie in the union of the interiors of the D,’s.
Hence we have (x, M, S).

Now let us show how the induction is carried out to define the
¢;’s and the infinite array of G;;’s. We indicate the inductive procedure
by illustrating the first three steps.

Step 1. No further restriction is placed on ¢, so we let S, be a
polyhedral 2-sphere satisfying (1), (2), and (3a). There is a finite
collection of disjoint e-disks Gy, Gy, +-+, G,y S0 that E,; C IntG,;
and G;; N = @. For convenience in our inductive procedure we let
n(l) = t(1), and we let H,;, = E,; for 1 < i < t(1). We choose &, to be
less than o(H;, S — G,;) for 1 <1 = #(1). Then S, is defined to satisfy
(1), (2), and (3b).

Step 2. Let K,,, K., -+, K,;;, be the components of (3% H,; +

»2 F.) such that H,, c K,;,., From our choice of &, K;; C IntG,.

Let H,; be K;; plus the sum of all components of S — K,; which lie
in G, for 1 =7 =< t(1). Then
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(10) Eli = Hli (@ 1{21: (- .Hz.,; C Int Gli 9 fol‘ 1 é ?: é t(l) .

For each 7 such that 1 <14 =< ¢(1), we let G,; be a disk in Int G,; such
that G, N VM H,; + SM? E,) = H,; < Int Gy, Let t(2) be a non-
negative integer so that exactly #(2) — #(1) of the E.;’s are not covered
by V¥ G,;,. We define H, 4y, =+, Hype) to be these uncovered E,;’s.
Now expand each H,;(t(1) < ¢ = t(2)) slightly to obtain a collection of
disjoint &,-disks Gh,uyrs, =+ +, Gorey covering S, H,; such that no Gy
intersects F. The G,;’s are selected so that G, G, -+, Gy 1S @
finite collection of disjoint e-disks satisfying

n(1) n(2) t(2)
(1) (5B + S B) © 3t G,
(12) Hzi (@ Int Gg,; c Gg,,: c Int G“‘ y fOI' 1 é 7 é t(2) B
(13) diam G,; < e, for t(1)<1=1t(2),
t(2)

(14) (S6.)nF=2, and

t(1) n(2) .
(15) Gy N (g H, + 2E> — H,, for 1=i=1Q.

It follows from (12) that
(16) diam G,; < ¢, if 1 =1 = (1) .

Choose ¢, less than p(H,;, S — Gy;) for 1 =1 = ¢(2). Then S; is
chosen relative to ¢, so that S, satisfies (1), (2), and (3a).

Step 3. Let K, K, ++-, K,y be the components of (3} H,; +
>3 Ey) such that H,; € K;;,. From the definition of ¢;, K,; C Int G,,.
Define H,; to be K,; plus the sum of the components of S — K,; which
lie in Int G,; (1 = 7 < £(2)). Then

1 H,cK,cH,cIntG, for 1=<1i=1t0?).

For each ¢ such that 1 < ¢ =< t(2), we let G,; be a disk in Int G;; such
that G, N (Y H,y; + SS9 Ey) = Hy; C Int Gy, Let ¢(3) be a non-
negative integer so that there are exactly ¢(3) — ¢(2) of the E,’s which
are not covered by 3% G, and let H,,o., -+, Hyys be these
uncovered F;’s. Now we expand each H;;(£(2) < 7 = ¢(3)) so slightly
that we obtain a collection of disjoint &,-disks Gi.y41, * * +, Gassy COVEring
S oy Hy; such that no Gy; intersects F and no Gy(£(2) < i = t(3))
intersects a G;;(1 < j = t(2)). The collection Gy, Gy, -+, Gy5) can be
selected to form a disjoint set of e-disks satisfying

n(1) n(2) n(3) t(3)
(18) (S B+ B+ Y Bs) © S Int G,
1=1 1= 1= 1=
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(19) HycIntGyc G Int Gy for 1=4i=¢3),
(20) diam Gy; < g, for #(2) <1 =1t3),
1(3)
(21) (X Gsz-) NF=0g, and
t2) n(3) .
(22) Gy N (Z H:+ S Eg,.> —H, for 1=i=1¢3).
=1 7=1

From (13), (16), and (19) it follows that
(23) diam Gy; < &, if t(1) < 7 = i(2),
and diam G;; < g, if 1 =71 =t(1).

Choose ¢, less than o(H;;, S — Gy;) for 1 < ¢ =< ¢(3), and let S, be
defined to satisfy Conditions (1), (2), and (3b). Now we are ready to
proceed with Step 4 where ¢, is defined.

We assume that the inductive process is completed, so we have
defined an array of G;;’s which satisfies the conditions required at the
beginning of the proof. Perhaps we should elaborate on the reason
that Condition (8) is satisfied. From the inductive procedure, as
illustrated by Conditions (10) and (17), we see that H,; C H,; © H,; -+ -
for each j, provided we let H,; = @ if H;; is not yet defined. Also
from Conditions (12) and (19), carried through the inductive process,
we have >, H;; © N2, G;; = A;. Suppose now that E,; lies in G,,
(see (8)). Then the intersection of G, with (S V H, ., + Sm E.)
is H,, (see Condition (22)), so K, lies in H,,. Since 32, H,,C NG,
Condition (8) holds.

The other conditions on the array of G;,’s are easily verified, so
the proof is complete.

THEOREM 2. If U is am open subset of a 2-sphere S in E* and
F is a closed set in U such that (x, F, S) is satisfied, then there is
a closed set F' containing F such that
1. F'" s a subset of U,
2. (%, F', S) is satisfied, and
3. the set of diameters of the components of F' has a positive
lower bound.

Proof. Let V be an open set whose closure lies in U such that
F lies in V. Choose a positive number ¢ less than po(F, Bd V). From
Theorem 1, F' lies in a nondegenerate continuum M in S such that
(x, M, S) is satisfied. But M might not lie in U so we suppose that
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M intersects Bd U.

Let @ be the set of all components of M N Cl(V) which intersect
F. For each element C in Q, diam C > ¢ since C intersects both F
and Bd V. Let F’ be the sum of the elements of Q. Then F”’
satisfies Conditions 1, 2, and 3 of Theorem 2. We need only show
that F’ is closed.

Suppose F’ is not closed and let pe CI(F') — F’. Let L be the
component of M N Cl(V) which contains p. Then L does not intersect
F. There is a sequence of points {p;} converging to p such that each
p; lies in some C; in Q. It follows that lim sup C; is a subcontinuum
L' of L which contains p. Then L’ fails to intersect F, so we let
N be an open set containing L’ which does not intersect /. For each
1, we can find a point ¢; in C; — N, since otherwise some C; would
lie in N and consequently N would intersect F. Then the set of ¢;’s
has a limit point ¢ in S — N. The point ¢ must be in L’ by the
definition of L’. Hence we have a contradiction. Then F’ is closed.

The following lemma, which we state without proof, has been
used by Gillman in the proof of Theorem 2 in [13].

LEmMA 1. If S is a 2-sphere in E® and € > 0, then there is a
positive number & so that if fis a homeomorphism of S which moves
no point more than 0, then any o-subset of f(S) lies in a disk in
J(S) of diameter less than e,

THEOREM 8. If U is an open subset of a 2-sphere R in E® F
18 @ closed subset of U such that (x, F', R) is satisfied, and S is a
2-sphere in E® containing U, then (x, F, S) is also satisfied.

Proof. Let a be a positive number, and let V be a complementary
domain of S. We will construct a 2-sphere i(S) which satisfies the
conditions o (x, F', V) relative to a. The construction of &(S) is
similar to Bing’s construction of A(S) in his proof of Theorem 1 in [4],
but the construction here could be considered simpler in the sense
that we do not parallel his third approximation (the one which is
obtained using Dehn’s lemma). For convenience we assume V = Int S,
and Theorem 2 allows us to assume that the diameters of the com-
ponents of F are bounded below by «. If R = U the theorem is
trivial, so we assume this is not the case.

Let ¢ be a positive number such that each e-subset of S lies in
a disk in S of diameter less than «. Then let ¢, be a positive number
satisfying the two conditions

(1) 8¢, < o(F,R — U), and
(2) 14e, < €.
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(a) A special cellular decomposition of S. Let T be a decom-
position of S into disks so that

(3) the diameter of each disk of T is less than ¢,

(4) the collection of disks of T is the sum of three finite subcollec-
tions A4,, 4,, and A, such that no two elements of A, intersect
(t=1,2,38), and

(5) if D and D’ are two elements of T, then Int D and IntD’ do
not intersect.

To see how to obtain such a decomposition, see [4, p. 296]. We

let K, be the l-skeleton of T; that is, K, is the sum of the boundaries
of the disks of T,

Q

(b) Pulling the disks of T partially into IntS. Let ¢ be a
positive number so small that the distance between two disks of T
without a common point is more than 6. We also require that
(6) 6 <e.

Using Lemma 1, we let ¢, be a positive number so that if f is a
homeomorphism of R which moves points no more than e, then each
g-subset of f(R) lies in a §/6-disk on f(R). This, together with (6),
implies that

(7) 6 < 0/6 < &/6.

Let S, be a polyhedral 2-sphere and let 7, be a homeomorphism
of S onto S; such that

(8) Ry, moves no point as much as ¢,

(9) S, contains a finite collection of disjoint ¢,-disks H,, H,, ---, H,
such that S, — 3 Int H; C Int S,

(10) S contains a finite collection of disjoint ¢,-disks such that S minus
these disks lies in ExtS,, and

(11) h(K)c S, — > H;.

For details on how to obtain S, and h,, see [4, p. 296] and [8].

(¢) The next approximation to elements of 7. For each disk
D in T, h(D) is a first approximation to D. Notice that h,(D)NS lies
in the sum of a finite collection of disjoint ¢,-disks in &,(Int D) (this
collection of disks is a subcollection of the disks H; of (9)), and
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hy(D) — >\ Int H; lies in Int S. It follows from (7) and (8) that
(12) h(D) lies in a 6/6-neighborhood of D, for each disk De T.

We will now construct a second approximation h,(D) to each disk
D in T. Let C be the set of all disks D in T such that h,(D)
intersects F. For each disk D in T — C, we choose a homeomorphism
h, which agrees with &, on D; that is, for D in T — C, the second
approximation to D is just 2, (D). We must show how h,(D) is obtained
if Disin C.

Let C’ be the set of all disks D’ in T such that there is a disk
D in C which intersects D’. Then for D’ in C’ it follows that there
is a disk D in C such that &, (D) and h,(D’) intersect. Notice that
Cc (', and h, is already defined on the disks in C’ — C.

Using (3), (7), and (8), it follows that

(13) diam A, (D) < &, + 2¢, < & + 6/3 < 2¢,, for each De T.

Consider a disk D’ in C’. There is a disk D in C such that &,(D) and
h(D') intersect. From (7) we see that 2(e, + 6/3) is less than 3e,.
Since h,(D) intersects F', we may use (13) to see that

(14) h,(D’') lies in a 3e,-neighborhood of F', for D’ in C’.
From (14) and (1) it follows that

(15) h(DYNRc U, for each disk D’ in C’.

Then from (9) and (15) we have

(16) h(D') — S\IntH,Cc E* — R, if D’ is a disk in C’.

Thus we may choose a positive number ¢, such that it is less than
o(h(D') — 3, Int H;, R) for each disk D’ in C’. We also require that

(17) 6 <& .

Let C; be the set of all disksD in C’ such that #,(D) —
> IntH,Cc ExtR and let C, =C N C!. Let C; be C’'— C!, and let
C,=CnNC,. Notice that C=C,+C,, and C'=C;! + C;. If D is
in C,, then A,(D) intersects F and A(D) — 3, Int H, lies in Int R. We
will first show how to obtain A,(D) for the disks in C,.

Using (x, F', Ext R), we let S’ be a polyhedral 2-sphere and we
let 2’ be a homeomorphism of R onto S’ such that

(18) A’ moves no point as much as e,

(19) S’ contains a finite collection of disjoint e-disks such that S’
minus these disks lies in Ext R,
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(20) R contains a finite collection of disjoint &,-disks Y, Y., ---, Y,
such that R — 33 Int Y, < Int S’, and

(21) SCY)nF=0.

Consider a disk D in C,. From our choice of ¢, S'NA,(D)c > Int H,.
We assume with no loss in generality that %4,(D) N S’ consists of a
finite number of disjoint simple closed curves, and we let @ be the
component of 4,(D) — S’ which contains Bd 4,(D). The simple closed
curves in Cl(Q) N S’ will be denoted by J,,J,, ---,J,. Since each J;
lies in some H; and diam H; < ¢,, it follows that diam J; < ¢,. Using
(17), (18), and the definition of &, we see that each J; bounds a disk
F, in S’ such that

(22) diam F, < 6/6 .

From (18), the definition of &, and [15, p. 97] it follows that %,(D) —
S Int H; ¢ Ext S’ (this is true for all disks D in C{). We fill the
holes in @ with the F/s, moving each F; slightly into ExtS’ as we
add it, to obtain a polyhedral disk 4,(D) in ExtS’ [4, p. 297]. The
F!s are moved to slightly that the new F'!s also have diameter less
than 6/6. Henceforth we use the symbol F; to denote the disk F;
after it has been moved into ExtS’. Notice that #A,(D) does not
intersect £ from (20) and (21). The homeomorphism 7, is selected to
agree with %, on A7 (A, (D) — 3\ Int H;). Thus we have obtained #.(D)
for each disk D in C,.

For D in C, we obtain %,(D) in just the same way as for the disks
in C,. The only difference is that we use (x, F, Int R) to obtain a
polyhedral 2-sphere S”, homeomorphically within &, of R, which “lies
almost in Int R and misses F'” (that is, S” satisfies conditions similar
to (18), (19), (20), and (21)). For each disk D in C,, A,(D) will lie
“almost” in Int S”, so we can “pull 4,(D) and S” apart” just as we
“pulled %,(D) and S’ apart” in the preceding paragraph to obtain a
polyhedral disk %,(D) in IntS”. Again A, is selected to agree with
h, on D — 3 hi'(Int H,). Thus 4, is defined for all disks D in T in
such a way that

(23) h{D) N F = @, for each disk D in T.

Now consider a disk D in C. We will prove that the disks F;
which replaced disks in %,(D) to form #4,(D), do not intersect S, —
> Int H;. First we observe from the construction of %,(D) and (22)
that

(24) hy(D) lies in a 6/6-neighborhood of 4,(D), for each De T.
From (12) and (24) we have
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(25) hy(D) lies in a 6/3-neighborhood of D for each De T.

If D’ does not intersect D, it follows from (25) and the definition of
0 that A,(D) and A,(D’) fail to intersect. Thus if D is in C, F; is a
disk associated with 4,(D), and F; intersects %,(D’), then D’ is in C’.
Consider a disk D’ in C'. It follows from the definition of &, and (18)
that F; does not intersect 4,(D’) — 3. Int H;,. Recalling that 4, = A,
on Ak (D) — S, Int H,), we see that no F; intersects S, — >, Int H..
Summarizing;

(26) If Ay (D) and Int A, (D’) intersect and D == D’, then D and D’ are
both in C’. Furthermore if D = D’, then %,(D’) cannot intersect
Int 2,(D) in the set (2 (D) — >, H)).

(d) Untangling the %,(D)’s. This section is the same as §(e) in
[4, p. 298] provided we substitute our %,(D)’s for the #Zy(D)’s in that
paper. In order to be sure we have a 2-sphere Ai(S) after we use
Bing’s untangling process, we must be sure that if D and D’ are two
elements of 7 which do not intersect, then 4.(D) and A,(D’) also fail
to intersect. However this follows directly from (25) and the defini-
tion of 4,

Notice that from (26) we know the intersection of #,(D) with
Int 2,(D’) does not intersect S, — 3 Int H; (unless D is D’). This
means that the untangling process does not involve S, — > Int H,
so we may choose % equal to 4, (and equal to %)) on Z;*(S; — 3 Int H)).
Thus 2(S) contains the set S, — ¥ Int H;, which is a 2-sphere minus
a finite collection of disjoint disks. To be sure that #(S) is homeo-
morphically within @ of S, we insure that the disks which are added
to S; — S Int H; to form A(S) are of small diameter. We show in
§(e) that this has been accomplished. From (23) we see that the
untangling can be done so that A(S) N F = @.

() The homeomorphism A moves no point as much as Q.
From (3), (25), and (6) it follows that diam 4,(D) < diam D + 2(6/3) < 2¢,,
for each disk D in 7. Sinece % = h, on each disk of A,, we have

2m diam 2(D) < 2¢,, if D is a disk in 4, .

Let D’ be a disk in 4,. To form A(D’) we added to A,(D’) disjoint
disks near 4(D) where D is in A,. Then from (27),

(28) diam 2(D’) < diam 4,(D’) + 2(2¢,) < 6¢,, if D'e A4,.

Let D” be a disk in A4,, In forming A(D"), we added to %,(D") disks
near 4(D) for D in A, and disks near 4(D’) for D’ in A,. Using (27)
and (28) we see that each disk added to %,(D”) has diameter less than
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6¢,. Since each added disk intersects 4,(D”), it follows that
(29) A(D) lies in a 6¢,-neighborhood of %,(D), for each De T, and
(30) diam 2(D) < diam A,(D) + 2(6¢,) < 14¢,, for each De T.

From (29) and (25), each point of A(D) lies within a distance 6¢, of a
point of %,(D) which lies within a distance 6/3 of a point of D. Hence
no point is moved more than 6e, + /3 + diam D < 8¢, < ¢ < «; using
(6), (3), and ¢ < a.

(f) Property (%, F, Int S) is satisfied. Since the homeomorphism
h was selected to agree with 4, on the set S — 3 A7'(Int H;), each
Bd H; lies in some %(D) and bounds a disk D; in that 4(D). From (30)
and (2), diam D; < e, The collection of disjoint e-disks D,, D,, - -, D,
on /(S) has the property that A(S) N S < > Int D, (see Condition (9)).
It follows from (9) and (11) that A(S) — 3\ D; C Int S.

We must exhibit a finite collection of disjoint a-disks on S so
that none of these disks intersect ' and so that S N A(S) lies in the
union of these disks. Since each component Z of #(S) N S lies in some
D;, diam Z < e. From the definition of ¢, Z lies in an a-disk on S.
Assuming 2a is less than diam S and recalling that « is a lower bound
on the diameters of the components of F, we see that F lies in the
large component of S — Z(Z N F = @ because 4(S) N F = @), for
each component Z of #(S) N S. Following the procedure in the proof
of Theorem 9 of [8], we obtain a finite collection of disjoint a-disks
G, Gy, +++, G, on S such that (33G) N F =@ and A(S) N S (3 G).
Then (*, F, Int S) is satisfied.

A similar procedure is used to establish (x, F, ExtS). Then it
follows that (x, F, S) is satisfied.

REMARK. The proofs of the next three theorems are modifications
of Bing’s proofs of Theorems 4, 5, and 1 in [6]. Consequently we
do not carry out the details of the proofs, but merely outline the
differences between his proofs and ours.

For what is meant by “a 2-sphere S can be ¢ approximated from
Int S (or Ext S)”, see [6]. We define “H(4, B) < ¢’ to mean that A4
and B are homeomorphically within ¢ of each other.

THEOREM 4. If ¢ > 0 and F is a closed subset of a 2-sphere S

in E* such that (x, F', Int S) is satisfied, then there is a 2-sphere S’
such that

1. S’ is obtained from S by removing a finite collection of

disjoint e-disks from S — F and replacing them with e-disks
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and
2. S’ can be ¢ approximated from IntS’,

Proof. Because of the definition of (*, F', Int S), we are able to
accomplish in one paragraph all the essential elements in the first
three paragraphs of Bing’s proof of Theorem 4 in [6]. We know
there is a polyhedral 2-sphere S” containing a finite collection of disjoint
¢/6-disks D,, D,, ---, D, and there is a finite collection of disjoint &/6-
disks E,E, ---,E, on S such that S — \D,cIntS, S—
> E;c ExtS”, no E; intersects F, and H(S, S”) < ¢/6. In fact since
F is closed, we may assume with no loss in generality that S”— >Int D;
lies in Int S and S — >\ Int E; c Ext S”.

The proof is completed by following Bing’s paragraphs 4, 5, 6,
and 7 in his proof of Theorem 4 in [6].

THEOREM 5. If ¢ >0 and F 1s a closed subset of a 2-sphere S
m B such that (x, F, S) is satisfied, then there 1is a 2-sphere S’
such that
1. S is obtained by removing a finite number of disjoint
e-disks from S — F and replacing them with e-disks and
2. S’ can be e approximated from each of its complementary
domains.

Proof. The proof of Theorem 5 in [6] is followed here. We
apply Theorem 4 to obtain a 2-sphere S, such that
(1) S, is obtained by removing a finite collection G of disjoint ¢/4-
disks E, E,, ---, E, from S — F and replacing them with &/4-
disks and

(2) there is a 2-sphere S” in Int S, such that H(S,, S”) < ¢/4.

Let 6 be a positive number subject to four restrictions to be
mentioned later. Since S — ) E; is an open subset of S NS, which
contains F', it follows from Theorem 38 that (x, F', S)) is satisfied.
This permits us to reapply Theorem 4, this time relative to Ext .S, and
0, to obtain a 2-sphere S’ such that

(3) &’ is obtained by removing a finite collection of disjoint d-disks
D, D,, ---, D, from S, — F and replacing them with ¢-disks and

(4) there is a polyhedral 2-sphere S’ in ExtS such that
H(S", S < 6.

With suitable restrictions on §, S’ is the required 2-sphere,
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Restrictions 1, 2, and 4 of the proof of Theorem 5 in [6] are also used
here. We change Restriction 3 somewhat.

Restriction 3, We must identify a collection H of disjoint e-disks
on S which are to be replaced as mentioned in the first requirement
in the conclusion of Theorem 5. For each 7 (1 =1 =< m), let E| be
an ¢/3-disk on S such that E;c IntEl, E,NF = @, and E! N E; = @
if v j. We choose § so that 6 < o(S — E}, E;) for each 7. If we
let H; be the component of SN (3 E; + 3, D;) which contains E;
(L = 7 =m), it follows from our choice of ¢ that H; lies in Int E} for
each z. Then we can find a simple closed curve J; in E} — 3} D; which
separates S — E} from H; in S. Let L, be the ¢/3-disk in E] which
is bounded by J,. Then H;c L,. Thus we have defined a finite
collection of disjoint ¢/3-disks L., L, ---, L, such that for each 4,

Suppose the intersection with S of some disk D; on S, is not
covered by > L;. Since D, fails to intersect any L, we know that
D; lies in the intersection of S and S,. From Restriction 1 we know
that 6 < ¢/4, so diam D, < ¢/4. The collection H is the set of all the
L’s together with all the D/s which are not covered by the sum of
the Lls.

THEOREM 6., If ¢ >0 and F is a closed subset of a 2-sphere S
. K such that (x, F', S) is satisfied, then there is a continuum M
on S and a null sequence {D;} of disjoint e-disks on S such that

1. M=8 - > IntD,

2. (x, M, S) is satisfied,

8. FcM—>D;,=8S~— S,D,, and

4. M lies on a tame 2-sphere in E°.

Proof. It follows from Theorem 1 that there is a continuum M
aud a sequence {D;} of disks satisfying Conditions 1, 2, and 3 in the
statement of Theorem 6. All we need to show is that there is a
tame 2-sphere in E® which contains M., This tame 2-sphere will be
constructed as the limit of a sequence of 2-spheres S,, S,, -+, justas
in the proof of Theorem 1 of [6]. In that proof Bing indicates three
restrictions to be placed on the Sjs to insure that

(1) limS; is a 2-sphere,

(2) limS; is tame, and

(3) lim S; shares a Sierpinski curve X with S.

Our restrictions to insure that lim S; is a tame 2-sphere are the
same as those used by Bing in his Steps 1 and 2, provided we sub-
stitute our Theorem 5 wherever he uses his Theorem 5. In the fol-
lowing paragraph we show that lim S; shares M with S. Of course
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(3) follows because of the construction of M.

Since (%, M, S) is satisfied, we are able to use Condition 1 of
Theorem 5 to obtain a 2-sphere S, such that S, is constructed by
removing from S a closed set H, which is the sum of a finite collec-
tion of disjoint ¢,-disks in S — M. Then S — H, is an open set in
S N S, which contains M. Applying Theorem 3 we see that (x, M, S))
is satisfied,

Again we apply Condition 1 of Theorem 5, this time relative to
S,, to obtain a 2-sphere S, such that S, is constructed by removing
from S, a closed set H, which is the sum of a finite collection of
disjoint e.-disks in S, — M. Then S, — H, is an open subset of SN S,
which contains M. From Theorem 3 we have (x, M, S,) satisfied.

We continue this procedure so that M c S; for each 4. This
insures us that M c lim S,.

Remavrk. Gillman has shown that a 2-sphere S can be pierced
by a tame arc at a point p of S if and only if p lies in-a tame arc
on S [13, Theorem 6]. It follows that S can be pierced by a tame
arc at each point of the continuum M identified in the conclusion of
Theorem 6. Repeated application of Theorem 6 will thus establish
that the set Y of points of S where S cannot be pierced by a tame
arc is a subset of a 0-dimensional Gs set. We state this result, without
proof, as Theorem 7. Bing has already proven that Y lies in a 0-
dimensional Gs set [7, Theorem 5.2], and Gillman has shown that Y
is a 0-dimensional F, set [13, Theorem 11].

THEOREM 7. FEach 2-sphere S in E* contains a sequence {M;} of
tame continua such that for each 1

L. M;,c M,

2. (%, M;, S) holds,

3. S— S\M,; is a 0-dimensional G5 set, and

4. S can be pierced by a tame arc at each point of >, M.

3. Conditions which are equivalent to (x, F, S). In the fol-
lowing definitions we are considering F to be a closed subset of a
2-sphere S in E3,

Property (A, F, S). For each ¢ > 0 there is a 0 > 0 so that each
d-simple closed curve in E® — S is homotopic to a constant (can be
shrunk to a point) in an e-subset of E® — F.

Property (B, F, S). There exist infinite sequences {S;} and {S7}
of 2-spheres such that S; and S} are each homeomorphically within
1/t of S, Fc IntS;, and F c ExtS..
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Hosay has announced that if the diameters of the components of
F have a positive lower bound and either of Properties (4, F, S) or
(B, F', S) is satisfied, then F lies on a tame 2-sphere in E%14]. It
is our purpose to show that if the diameters of the components of F
have a positive lower bound, then not only are Properties (4, F, S)
and (B, F, S) equivalent, but each is equivalent to Property (x, F, S).
The proof follows the pattern (x, F', S)= (B, F', S)= (A, F, S) = (x, F', S).
For convenience, we state the following two lemmas but do not include
their proofs. A proof for Lemma 2 can be found in [10, Lemma 1],
and Bing has stated Lemma 3 in [4, p. 294].

LemMA 2. If D, D, ---,D, is a finite collection of disjoint
disks in E* and f is a map of a disk K into E® such that
JBAK)CE*— 3\ D;, then there is a map g of K into E* such
that

1. ¢/|BdK= f|BdK,

2. 9(K)C f(K) + 3 Int D;, and

3. 9(K) — 3. D, is connected.

LEMMA 3. If F is a closed subset of a 2-sphere S in E°® such
that for each point pe F and for each meighborhood N of p there is
an open set U such that pe U and each stmple closed curve in
U— S can be shrunk to a point in N — F, then for each ¢ > 0 there
s a 6 >0 such that each o6-simple closed curve im E®* — S can be
shrunk to a point in an e-subset of E® — F.

THEOREM 8. If F' is a closed subset of a 2-sphere S in E* such
that (%, F,S) is satisfied, then (B, F,S) is also satisfied.

Proof. For each positive integer ¢ we must show the existence
of 2-spheres S; and S} such that each is homeomorphically within 1/7
of S, FcIntS,, and F c ExtS]. Using the definition of (x, F, Ext S)
we obtain a polyhedral 2-sphere S; containing a finite collection of
disjoint 1/i-disks D,, D,, --+, D,, and a finite collection of disjoint 1/i-
disks E, E,, -+, E, on S such that S and S; are homeomorphically
within 14, S;— 3\D;cExtS, S— 3E; lies in IntS,;, and
CE)NF=¢@. It follows that # lies in IntS,.

The 2-sphere S’ is obtained in the same manner using the defini-
tion of (%, F,Int S).

THEOREM 9. If F is a closed subset of a 2-sphere S im E® such
that (B, F, S) is satisfied, then (A, F, S) is also satisfied.

Proof. All that we need to show is that for each pe # and for
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each neighborhood N of p there is a neighborhood U of p such that
each simple closed curve in U — S is homotopic to a constant in
N — F. The uniform conditicn in the definition of (4, F,S) then
follows from Lemma 3.

Let p be a point of F, and let N be a neighborhood of p such
that there are points of S not in N. Let K beadisk in NN S such
that » is in Int K, and let U be a neighborhood of p such that
CU)n ScIntK, Bd U is a tame 2-sphere, and Cl(U) C N. Let J
be a simple closed curve in U — S. Then J is homotopic to a con-
stant in U, so we let f be a map of K into U such that f restricted
to BdK is a homeomorphism onto J. For convenience we assume
that J is in Ext S,

Choose a positive number § so that

(1) o< pJ,S),

(2) o< p(S—K,U), and

(3) 0 < p(BAN, K).

Using (B, F, S), we let S’ be a 2-sphere which is homeomorphical-
ly within 6 of S and such that F < Int S”. Let 2 be a homeomorphism
of S onto S’ such that

(4) %2 moves no point as much as 4.

Suppose that S’ intersects U in S’ — 4(K). Then there is a point
¢ in S — K such that Z(x) is in U. This means that p(z, A(x)) =
oS — K, U) = 6, using (2). Since this contradicts (4) we have

(5) UnNS' chK).

In a similar manner, using (3) and (4), it follows that

(6) Ah(K)c N.

Then from (1), (4) and [15, p. 97], we have

(7) Jc ExtS’.

Condition (7) allows us to use Lemma 2 to obtain a map g of K
into E* such that

(8) ¢|BdK=f|BdK,

(9) 9(K)c f(K) + Int i(K), and

(10) g(K) — A(K) is connected.

Suppose g(K) is not a subset of S’ + ExtS’. Then the connected
set g(K) — 2(K) intersects both complementary domains of S’ and
consequently intersects S’. But from (5), (9), and the fact that
fIK)C U, we see that this is impossible. Hence g(K) lies in S’+Ext S’,
which means that g(K) N F = @. It follows directly from (6) and
(9) that g(K) © N. Hence g(K)c N — F, and we have established
Theorem 9.

THEOREM 10. If F is a closed subset of a 2-sphere S in E* such
that Property (A, F, S) is satisfied and the diameters of the com-
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ponents of F have a positive lower bound, then (x, F', S) is satisfied.

Proof. The proof here is almost identical to Bing’s proof that a
2-sphere in E?® is tame if its complement is 1-ULC [4, Theorem 1].
Bing wuses the 1-ULC condition to construect a 2-sphere A(S) which
lies in IntS and is homeomorphically close to S. Property (4, F, S)
permits us to use the same type construction to obtain 2-sphere 4(S)
which satisfies all the requirements of Property (¥, F', S), although
h(S) need not lie in Int.S. Bing has broken his proof into six sections-
a through e. We indicate how each of these sections can be changed
to obtain a proof of Theorem 10.

Let @« >0 and let ¢ be a positive number so small that each e-
subset of S lies in an a-disk on S. With no loss in generality we
assume that « is less than the diameter of each component of F. We
choose a positive number ¢, so that 14¢, is less than e.

We will show that the conditions of Property (x, F, IntS) are
satisfied relative to the positive number a. We follow exactly the
same procedure that Bing followed in Sections a, b, and ¢ where he
obtained a special cellular decomposition and applied the Side Appro-
ximation Theorem,

d. Third approximation to D. It is here that the major change
is made. (Notice that “Bd D” should be changed to “A,(Bd D)” in the
first paragraph of §d of Bing’s paper). Everywhere Bing uses
“Int.S” in his §d we substitute “E®* — F””. The remainder of his §d
is followed here except we allow the open set U, which contains the
singular points of g(h,(D)), to intersect S — F, but we insist that
FNU=¢@. This is possible since each Bd E! is shrunk to a point

missing F.

e. The fourth approximation to D. Bing’s untangling procedure
can be done so that no A(D) intersects F since each component of
hy(S) N S lies in U.

f. Epsilontics. In the paragraph where Bing defines ¢, we replace
the second occurence of “E®* — S” with “E* — F”, using (4, F, S) in
place of 1-ULC. The remainder of Bing’s §f is followed here, but
we must add a few comments to complete the proof.

Since 9, < o(S, ~,(D) — S, E;), we know that S’, as identified by
Bing, intersects 4,(D) only in 3} Int E;,. Then A, may be selected to
agree with A, on each D — S 47'(Int E)). Each point of Bd E} (of §d)
is within ¢, of S and Bd E! is shrunk to a point in a §,/2-subset of
E?® — F. This means that each Bd E; is shrunk to a point in a set
which is within e, + 6,/2 of S. Since ¢, < 8,/2, then g(hy(D)) has its
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singular points within 6, of S. It follows from the definition of 4,
that 4, may be chosen to agree with A, on D — 3% A7'(Int E;). Since
h(D) — 3\ E; is not involved in the untangling process described in
§e, £ may also be chosen to agree with 4, on D — 3\ ATY(Int E;), It
follows that each simple closed curve Bd E; lies in A(D) and bounds
a disk R; in 4(D). Bing has shown that 4(D) lies in a 6¢-neighborhood
of %y(D) and that diam %,(D) is less than 2¢,. Then

diam R; < diam A(D) < 2¢, + 2(6e)) = l4e, ,

which is less than ¢. Each A(D) has an associated collection of R/s,
so we collect all these R/s together to form a finite collection of dis-
joint edisks G, G, ---,G, on A(S) so that A(S) N Sc > IntG,.
Furthermore, since A(D) — 3, Int G; = A(D) — 3, Int E; which lies in
Int S, it follows that A(S) — >\ G, < Int S.

To show that 4(S) satisfies the conditions of (x, #, Int S) relative
to @ we must exhibit a finite collection of disjoint a-disks H,, H,, -,
H, on S such that no H,; intersects # and S N A(S) < 3, H,. Since
each component Z of A(S) N S lies in an e-disk G, it follows that
diam Z < e, Then Z lies in an a-disk on S(see the definition of ¢).
Since « is a lower bound on the diameters of the components of F
and no Z intersects #, we may use the procedures in the proof of
Theorem 9 of [8] to obtain disjoint a-disks {H;} such that H, N F =
@ and A(S) N Sc > H..

Thus Property (x, F, IntS) is satisfied. The proof that (x, F,
Ext S) holds is similar, so Property (x, #, S) is satisfied.

REMARK. The requirement that F be such that the diameters of
its components are bounded below by a positive number cannot be
removed from the hypothesis of Theorem 10. For let S be the wild
2-sphere described by Fox and Artin [13] where the set of wild points
of S consists of a single point p. It is easy to see that Property
(B, {p}, S) is satisfied and that Property (x,{p}, S) does not hold.
However the following question apparently has not been answered.
If Fis a closed subset of a 2-sphere S in K?® Property (B, F, S) is
satisfied, and F has no degenerate components, then will Property
(*, #, S) hold? Of course a similar question could be asked where
Property (A, F, S) replaces Property (B, F, S).

We also note that if # is a closed subset of a 2-sphere S such
that Property (4, F, S) is satisfied, then F need not lie in a non-
degenerate subcontinuum M of S such that (4, M, S) holds. To see
this we use the same example as in the previous paragraph and let
F = {p}. If a nondegenerate continuum M exists such that pe ¥ S
and (4, M, S) holds, then (x, M, S) also holds, but this is impossible.
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If Property (A, F, S) holds for a closed subset F of S where F has
no degenerate components, then does F lie in a nondegenerate conti-
nuum. M in S such that (4, M, S) holds?

The next two theorems are useful in the proofs of some theorems
in [16], but they also lead to some interesting results in this paper.
We define a simple closed curve in E® to be wunknotted if it is the
boundary of a tame disk in ES3,

THEOREM 11. Suppose p is a point of a 2-sphere S in K V is
a complementary domain of S, N is a meighborhood of p, and K is
a disk. Then there is an open set U contaiming p such that for
each closed subset F of S satisfying (x, F, V) and for each map f
of B K into UN V there is a finite collection of disjoint disks
H,H, -+ H, in (N—F)NS and there is a map g of K into N
such that g¢|BdK = f and g(K) N S 3, Int H,.

Proof. For convenience in notation we will assume K is a disk on
S such that peInt Kc K< N. Let K’ be a disk on S such that
peIntK’ and K’'c Int K, and let U be a neighborhood of » such
that Cl(U) N ScInt K’, CI(U) C N, and Bd U is a tame 2-sphere. For
convenience we assume V = ExtS. Let f be a map of Bd K into
UNYV. Since Bd U is tame we can extend f to map all of K into U.

Choose a positive number § so that

(1) 0 <p(f(BdK),S),

(2) 9<0(S— K, K),

(3) 6<pBdN, K), and

(4) < p(S— K, U).

Now let " be a closed subset of S satisfying (x, F, Ext S).

Using the definition of (¥, /', Ext S), we let S’ be a polyhedral
2-sphere containing a finite collection of disjoint é-disks D,, D,, «--, D,
and let E, E,, --., E. be a finite collection of disjoint J-disks on S
such that

(5) There is a homeomorphism % of S onto S’ such that zZ moves
no point as much as 4,

(6) S—IntE;cIntS’,

(7) S'—3,D,c ExtS, and

(8) FN(ZE)=0.
Condition (6) does not come directly from the definition of (x, £, S);
however, from (x, #, S) we have S — >\ E;C IntS’. Then we can
find a finite collection of disjoint o-disks EY, E/, ---, E! on S such
that S — >\Int E! c Int S’ and no E; intersects F. Thus we may
assume without loss in generality that Condition (6) holds.

It follows from (4) and (5) that

(9) UnS’ chK),
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from (3) and (5) that

(10) A(K’)c N,
and from (2) and (5) that

(1) MK')nSc K.

From (1) and (5) we have f(Bd K) c E* — i(K’). This allows us
to use Lemma 2 to obtain a map g of K into E*® such that

(12) ¢g|Bd K = f|Bd K,

(18) ¢(K) c f(K) + Int 2(K’), and

(14) g(K) — h(K') is connected.

It follows from (13) and (10) that g(K) c N. Let H, H,, -+, H,
be the subcollection of the E/s such that each H, intersects 4(K’) and
WK')NSc S\H;. Since each H; is a é-disk that intersects i(K’), it
follows from (11), (8), and (8) that each H; lies in (N — F) N S.

Now we will show that ¢g(K) N Sc > Int H;. It follows from
(12), (1), (5), and [15, p. 97] that ¢g(Bd K) lies in ExtS’. Suppose
g(K) intersects S — 3} Int H;,. Then g(K) intersects both components
of E*— S’, by (6); hence, g(K) — h(K’) intersects each component of
E*—8’. From (14), g(K) — h(K') intersects S’. Then from (13) and
the fact that f(K) lies in U, it follows that ¢(K) — A2(K’) intersects

b

S" in U. But this contradicts (9). Then g(K) N S c 3, Int H,.

THEOREM 12. Suppose p is a point of a 2-sphere S in E?, V 1is
a complementary domain of S, and N is a neighborhood of p. Then
there is an open set U containing p such that for each closed subset
F of S which satisfies (x, F, V) and for each unknotted simple
closed curve J in U N V there is a finite collection of disjoint disks
H,H, ---, H, in (N — F) N S such that J bounds a tame disk D in
Nand DN S c 3 Int H,.

Proof. The proof here is similar to the proof of Theorem 11,
Let K’ K, and U be defined as in that proof, and let J be an
unknotted simple closed curve in U N V. Then J bounds a tame disk
E in U. Now the proof here reads the same as the proof of Theorem
11 up to and including Condition (11) if we identify J with f(Bd K)
and E with f(K).

We assume that E is locally polyhedral at its interior points [2,
Theorem 7] and that E and A(K’) are in general position. Let C be
the component of E — A(K’) such that J lies in C, and let J,, J,, -+ J,
be the components of CI(C) N A(K’). Since E NS Ci(K’') and
JcC ExtS’, we know that each J; is a simple closed curve. Let
D, D, .-, D, be the disks on %(K’) such that Bd D; = J; and assume
that the D/s are ordered so that if ¢ < j, then D, is not a subset of
D,. Now we add D, to C and move D, slightly into ExtS’. Next we
add D, and move it into ExtS’. We continue until all the D/s have
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been added to C and adjusted, following a procedure described by
Bing [4, p. 297]. Then we have a polyhedral disk D in Ext S’ such
that BdD =J. The moving at each stage is done so that Dc N
and D NS lies in 3, Int E,.

The subcollection H,, H,, ---, H, of the E/s is chosen in the same
way as in the proof of Theorem 11. Since D lies in Ext S’, it follows
from (6) and (8) that D < N — F.

REMARK., Theorem 12 allows us to define another property which
is equivalent to (x, 7, S) for certain closed sets F on a sphere S.

Property (A4', F, S). Let F be a closed subset of a 2-sphere S
in B3, If for each ¢ > 0 there is a § > 0 such that each unknotted
simple closed curve of diameter less than 4, which lies in E®*— S,
bounds a tame e-disk in E* — F', then F' and S are said to satisfy
Property (4, F, S).

If (%, F, S) is satisfied, pe F, and N is a neighborhood of p, it
follows from Theorem 12 that there is a neighborhood U of p such
that each unknotted simple closed curve in U — S bounds a tame disk
in N — F, Thus we can apply an argurment similar to the proof of
Lemma 3 to show that (x, F', S) implies (4’, F', S).

The converse is also true provided the diameters of the components
of F' have a positive lower bound. To see this we observe that in
the proof of Theorem 10 all we needed was to have certain small
unknotted simple closed curves in E®— .S bound small tame disks
missing F. Thus the following theorem holds.

THEOREM 13. If the diameters of the components of the closed
subset F' of a 2-sphere S in E°® have a positive lower bound, then
(4, F,S) and (x, F, S) are equivalent.

THEOREM 14, If S is a 2-sphere in E®, V is a component of
E® — 8, F is a closed subset of S, (x, F', V) holds, and W is an open
subset of S such that V is locally simply connected at each point of
W — F (or equivalently, S 1s locally tame from V at each point of
W — F), then S is locally tame from V at each point of W.

Proof. Let pe F N W, and let N be a neighborhood of » such
that NNSc W. Let U be an open set containing p such that U
satisfies the conditions of Theorem 11 relative to V, N, and p. Let
f be a map of the boundary of a disk K into U N V.

Using the properties of U guaranteed by Theorem 11, we let
H, H, -, H, be a finite collection of disjoint disks in (N — F) N S
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and we let ¢ be a map of K into N so that g|Bd K= f and
g(K) N Sc S, Int H;, Let X be an arc from a point be f(Bd K) to
a point ¢ in S— 3 H; such that X —g¢ lies in V. For each
1(1 =7 = t) there is a disk H/ such that Bd H; = Bd H;, Int H/ c VNN,
and g(Bd K) + X lies in Ext (H; + H}). This is because S is tame
from V at each point of each H,[1;17].

Using Lemma 2 we obtain a map .2 of K into E® such that
h|BAdK = f, h(K) c g(K) + 3. Int H!, and 2(K) — >, H/ is connected.
Obviously #(K) c N. Since A(K) is connected and A2(BdK)c V, it
will follow that 42(K) c V if we show that A(K) N S = @. To show
this we use the fact that A(K) — 3, H/ is arcwise connected.

Suppose 4(K) intersects S. Let Y be an arc in A(K) — > H/
from the point b to a point d in S such that (Y —d)c V. Since
gK)NSc S IntH;, and A(K)cC g(K) + >, Int H/, it follows that
delnt H; for some j(1 < j=t). Let Z be an arc from the point ¢
to d such that Z — (d + ¢) < E* — (S + V). Then X + Y + Z contains
a simple closed curve L which links Bd H; [7, Theorem 3.3], and it
follows from Theorem 10 of [2] that L links Bd H]. Therefore L
intersects H;., But this is a contradiction since X + Y + Z does not
intersect H.

Thus (K) © N N V, so V is locally simply connected at each point
pof WnN F. Then, from the hypothesis, V is locally simply connected
at each point of W. Using Theorems 1 and 2 of [10], it follows that
S is locally tame from V at each point of W,

THEOREM 15. If a 2-sphere S in E® is locally tame modulo a
closed subset F' which satisfies (x, F',S), then S is tame.

Proof. Using W = S in Theorem 14, we have the result that S
is locally tame from each of its complementary domains. Then S is
tame from each such domain; hence S is tame.

REmMARK, It follows from Theorem 15 that F' cannot contain an
isolated wild point of S if (x, F',S) is satisfied. Also the set W of
wild points of a 2-sphere S fails to satisfy (x, W, S), since W is closed.

4. Property (x, F) and its relation to (x, F, S). We now define
Property (x, F). If a closed subset F' of a 2-sphere S in E*® has no
degenerate components, we suspect that Property (x, F') is satisfied if
and only if Property (x, F, S) holds. However Theorem 16 is as close
as we have come to establishing this equivalence.

Property (x, F). A closed set F' has Property (x, F') if and only
if it satisfies each of the following conditions:



TAME SUBSETS OF SPHERES IN E? 513

1. Fis a subset of some 2-sphere in E°,
2. If Sis a 2-sphere in E® such that S contains F and S is
locally tame modulo F', then S is tame.

If each of the following sets lies on some 2-sphere in E°® then
each is an example of a set F' satisfying property (x, F'): (1) a tame
disk [2; 11], (2) a tame finite graph [11, Corollary 1], (3) a tame
Sierpinski curve [9, Theorem 8.2], and (4) a set which is the union
of a finite number of tame finite graphs and tame Sierpinski curves
[9, Theorem 8.4], If F consists of a single point, it is easy to see
that F' does not satisfy (x, F') (see the example of a 2-sphere which
is wild at a single point, as given in [12]). This raises a question
which is related to one asked in [13, p. 464]. Does a closed set F
satisfy (%, F') if F' lies in a tame 2-sphere and F has no degenerate
components? We do not answer this question,

THEOREM 16, A closed subset F of a 2-sphere satisfies (x, F) if
and only if (%, F'| S) is satisfied relative to each 2-sphere S contain-
ing F.

Proof. Suppose F' has Property (x, F, S) relative to each 2-sphere
S containing F, We want to show that (x, F) holds, so we let S’ be
a 2-sphere such that S’ contains F and S’ is locally tame modulo F.
We apply Theorem 15 to see that S’ is tame. As suggested by Gillman,
the other half of Theorem 16 is proved using the techniques in the
proof of Theorem 2 in [13].

THEOREM 17. If S* is a 2-sphere im E* containing a finite
collection of closed sets F, F, «--, F, such that each F,; satisfies
(x, F), then (x, 3| F}) also holds.

Proof. Let S be a 2-sphere containing 3 F; such that S is
locally tame modulo S} F;. We will complete the proof by showing
that S is tame. First we observe from Theorem 16 that (x, F;, S)
holds for each 7, Now an application of Theorem 14 shows that S is
locally tame from Ext S at each point of the open set U, = S — S7,F..
Another application of Theorem 14 shows that S is locally tame from
Ext S at each point of the open set U,=S — S7,F.. We continue
applying Theorem 14 until we have S locally tame from Ext S at each
point of U,=S. Then S is tame from ExtS. A similar argument
shows that S is tame from IntS. Hence S is tame.

THEOREM 18, If S is a 2-sphere in E% F, F,, ---, F, is a finite
collection of closed subsets of S such that (x, F,) holds for each 1;
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and U is an open subset of S such that S is locally tame at each
point of U — (3} F,), then S is locally tame at each point of U.

Proof. Although a proof similar to the proof of Theorem 17 can
also be given here, we give an alternative method. We apply Theorem
17 to see that (x, ) F);) holds; then we use Theorem 16 to see that
(¥, 3 F;, S) is true. Now two applications of Theorem 14 will show
that S is locally tame from each of its complementary domains at
each point of U. Thus S is locally tame at each point of U,

REMARK. It is known that if F' lies on some 2-sphere in E*® and
F' is either a tame finite graph or a tame Sierpinski curve, then (x, F')
is satisfied [11; 9]. Theorem 19 shows the existence of a continuum
M satisfying (%, M) such that M is not a finite union of tame finite
graphs and tame Sierpinski curves. It follows that Theorems 17 and
18 are generalizations of Theorems 8.4 and 8.5, respectively, in [9].
It also follows from Theorem 19 that the continuum M in the conclu-
sion of Theorem 6 satisfies (x, M).

Theorem 19. If M is a tame continuum on o 2-sphere S in E?
such that M is obtained by removing from S the interiors of a null
sequence of disjoimt disks on S, then (x, M) is satisfied.

Proof. Let M = S — 3 Int D;, where {D;} is a null sequence of
disjoint disks on S. Suppose S’ is a 2-sphere containing M such that
S’ is locally tame mod M. We will show that S’ is tame.

Let E; be the disk on S’ such that Bd E; = Bd D,, for each <.
It is easily seen that {E;} must be a null sequence.

Let G = {H,, H,, ---}, be an infinite collection of disjoint disks of
S" such that lim diam H; = 0, each E; is in G, and 3} H; is dense in
S’. Then S’ — 3\ Int H; is a Sierpinski curve K[20], and since Kc M,
it follows that K is tame. Furthermore, since S’ is locally tame at
each point of 37 Int H;, it follows that S’ is locally tame modulo K.
Since (x, K) is satisfied [9], then S’ is tame.

THEOREM 20. If S is a 2-sphere in E°, {D;} is a null sequence
of disjoint disks on S, and M = S — 3, Int D;, then the following state-
ments are equivalent:

1. M is tame.

(A, M, S) is satisfied.
(x, M, S) is satisfied.
(x, M) s satisfied.
(B, M, S) is satisfied.
(A’, M, S) is satisfied.

IS i
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Proof. Since M is a nondegenerate continuum, we have already
proven that Statements 2, 8, 5, and 6 are equivalent (see Theorems
8, 9, 10, and 18). Bing’s proof of Theorem 8.1 in [9] also shows that
Statement 1 implies 2. Since 2 implies 3, the proof will be completed
if we show that 3 implies 4 and 4 implies 1. If 3 is satisfied it
follows from Theorem 6 that 1 is true. Then 4 follows from Theorem
19. Thus 3 implies 4. Section 8 of [8] shows the existence of a 2-
sphere S’ containing M such that S’ is locally tame modulo M, Then
4 implies 1 because S’ is tame if 4 is satisfied.

REMARK. Statements 1 through 6 of Theorem 20 characterize
tame Sierpinski curves on 2-spheres in E3, This follows because if
K is a Sierpinski curve on S, then there is a null sequence of disjoint
disks D, D,, -++, on S such that K =S — 3, Int D; [19].

5. Finite sums of sets F satisfying (%, F,S). The following
theorem is used in [16].

THEOREM 21, If F, F,, ---, F, is a finite collection of closed
subsets of o 2-sphere S im E*® such that (x, F;, S) is satisfied for each
1, then (x, >, F;, S) also holds.

Proof. We use Theorem 6 to obtain a finite collection of tame
continua M,, M,, ---, M, on S such that, for each 17, (x, M;, S) is
satisfied, F; © M;, and M, is obtained by removing from S the interiors
of a null sequence of disjoint disks on S. From Theorem 19 we see
that («, M;) is satisfied for each 4. Then it follows from Theorem 17
that (x, >, M;) holds. Now we use Theorem 16 to see that (x, 3} M;, S)
is satisfled, and (x, 3 F;, S) follows because 3 F; C S, M,.

REMARK. We note that Theorem 21 cannot be extended to the
case where the F/s form an infinite collection of closed subsets of S.
To see this, let S be a wild 2-sphere in E*® and for each ¢ let F); be
a continuum M; as in the statement of Theorem 7. Then (x, M;, S)
holds for each ¢ and S — 3, M, is a 0-dimensional set. Suppose
(x, 5, M;, S) holds. Since S — 3} M; contains no disk it follows that
S can be homeomorphically approximated in each of its complementary
domains. This is a contradiction since under these conditions S is
tame [3, Theorem 2.2]. Is (x, 3} F;, S} satisfied if {F}} is an infinite
collection of closed subsets of S such that 3 F is closed and (x, F3, S)
holds for each ¢?

THEOREM 22, If F,, F,, ---, F, is a finite collection of closed
subsets of a 2-sphere S im E? such that for each 1
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1. either (A, F;, S) or (B, F;, S) is satisfied, and
2. the diameters of the components of F; have a positive lower
bound,
then (A, 3\ F;, S) and (B, >, F;, S) are satisfied.

Proof. Because (x, F;, S), (4, F;, S), and (B, F};, S) are equivalent
under Condition 2 of the hypothesis (see Theorem 8, 9 and 10), Theorem
22 is a direct corollary to Theorem 21.

THEOREM 23. If F, F,, ---, F, is a finite collection of disjoint
closed subsets of a 2-sphere S in E® such that either (A, F;, S) or
(B, F';, S) is satisfied for each 1, then (A, S, F;, S) is satisfied.

Proof. We will show that (A4, F, + F,, S) is satisfied, then by
induction and Theorem 9 the theorem will follow. Let ¢ be a positive
number., We assume that 3¢ < o(F), F.). There are positive numbers
0, and §,, obtained using the definitions of (A4, F,, S) and (4, F}, S),
respectively, such that for each 7 (¢ = 1, 2) each §;-simple closed curve
in £* — S can be shrunk to a point in an ¢-subset of E° — F,. We
choose 6 = min (8,, 9,), and suppose that J is a &-simple closed curve
in £*—~ S, Let N be an e-neighborhood of J. Since 6 < ¢ it follows
that N is a 3e-subset of E°. Then N cannot intersect both F) and
F,. Since § = 6,(1 = 1, 2), J can be shrunk to a point in N— (F,+ F}).
Thus we have established Property (4, F, + F,, S).

REMARK. We do not know whether Theorem 23 is true without
the requirement that the F/s be disjoint. We have an affirmative
answer in the special case where the diameters of the components of
each F; are bounded below by a positive number, since in this case
Properties (A4, F,, S), (B, F;, S), and (x, F;, S) are equivalent (see
Theorems 8, 9, 10, and 22).
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