
PACIFIC JOURNAL OF MATHEMATICS
Vol. 19, No. 3, 1966

K- AND L-KERNELS ON AN ARBITRARY
RIEMANN SURFACE

MYRON GOLDSTEIN

The Z-kernel which was first considered by Schiffer for
plane regions is extended to arbitrary open Riemann surfaces
for a number of significant subspaces of the space of square
integrable harmonic differentials Γh. The Z-kernel for each
of the subspaces considered is expressed in terms of the
principal functions. Thus if W is an open Riemann surface
and p and q the Lx principal functions of W with singularities
Re 1/z and Im 1/z respectively, then the following result is
proved.

THEOREM. The differential dp — dq* is an ί-kernel for
the space Γh.

The Z-kernel and another kernel function called the k-
kernel by Schiffer are applied to the solution of some well
known extremal problems on open Riemann surfaces.

It should be noted here that these problems have also been con-
sidered by G. Weill [9]. Finally, the properties of the kernel functions
are used to obtain a test for when a surface is of class 0^.

M. Schiffer in [7] defined the k- and Z-kernels for plane regions
G. The /c-kernel reproduces the value of every square integrable
analytic function on G at a prescribed point while the Z-kernel is
orthogonal to the space of square integrable analytic functions on G
with Dirichlet metric. Schiffer showed that these kernel functions
can be expressed in terms of the Green's function thus enabling one
to aetually construct them for a given region.

An important question is whether the k- and ^kernels can be
generalized to arbitrary open Riemann surfaces and, if so, whether
they can be expressed in terms of functions depending only on the
surface as in the case of place regions. We shall answer this question
in the affirmative for a number of significant subspaces of the space
of square integrable harmonic differentials. In addition, we shall see
that these generalized k- and ϊ-kernels have important extremal
properties.

1* Principal functions

2* In this section we shall briefly review certain results on
principal functions (see cf. [1] pp. 148-186) that will be needed later
on.

Let W be the interior of a compact bordered Riemann surface W
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with border β. Consider a regularly imbedded boundary neighborhood
W c W with compact complement and with relative boundary a, and
a continuous function / on a. Then Lof is defined to be the harmo-
nic function on W with boundary values / on a and with vanishing
normal derivative on β. Lof is unique.

Let P be a partition of the contours of W. That is, β = u &,
where the & are disjoint unions of contours. We then define (P)L1f
to be the harmonic function on W' with boundary values f on a and
constant values on each β1 such that the flux across & vanishes. Lo

and (P)!^ are called the principal operators.
Let W now be an arbitrary open Riemann surface, and W a

fixed regularly imbedded subregion c W with compact complement
and relative boundary a, negatively oriented with respect to W. We
can extend the definitions of the principal operators to W as follows.
Let {Ωn}, with borders {a (j βn}9 be a regular exhaustion of W. L0(Ωn)
and (P)L2(βJ, the principal operators on ΩΛ, are well defined and by
taking the limit as Ωn tends to W\ we obtain the principal operators
on W. For brevity, we shall used Lγ for {P)LX.

3* The principal functions p0 and px of an arbitrary open Riemann
surface W are defined as follows.

DEFINITION. Suppose at a finite number of points ζ3 e W, there
are given singularities of the form

(3.1) R e Σ &ί/}(s - Cy)-1 + c(i)

where the c( i ) are real and subject to the condition X cU) = 0. The

principal functions p0 and p1 are by definition harmonic on W, except

for the singularities (3.1), such that LopQ = p0 and L^i = px in FT'.

These functions are unique and independent of W, save for an
additive constant (cf. [1] p. 169).

2* Harmonic differentials on Riemann surfaces

4* We shall consider here the space of square integrable harmo-
nic differentials Γh and some significant subspaces of Γh. The main
tool to be used is the general formula for partial integration which
states that if / is of class C\ and if x is a 2- chain, then

(4.1) [ (df)ω =\ fω-\fdω
Jx Jdx Jx

holds for all differentials ωeC1 and thus in particular for all ωeΓh.
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The ^-kernel of any closed subspace Γh, of Γh is defined as follows.

DEFINITION. A differential ψ is said to a ά-kernel of Γh, provided

(4.2) f e Γk,

(4.3) for all ωe Γh,, (ω, f) = - ^ ( 0
dx

where ω = du near ζ.
The i-kernel of Γh is defined as follows.

DEFINITION. A harmonic differential θ on W — {ζ} with a harmo-
nic pole at ζ is said to be an ϊ-kernel of Γh provided

(4.4) (ω, θ) — 0 for all ωe Γh where the inner product is taken in
the Cauchy sense.

The ^-kernel is easily seen to be unique while the Z-kernel depends
on the singularity. However the following result on the ϊ-kernel is
valid.

THEOREM 1. If θ1 and θ2 are two l-kernels of Γh with the same
singularity, then θx = 02.

Proof. Since θ1 and θ2 have the same singularity, θ1 — θ2 e Γh.
By property 4.4, (θ1 ~ θ2, θ, - θ2) = 0 and thus θx = θ2.

Consequently, we can say that the i-kernel of Γh is unique up to
a singularity.

We shall now relate the k- and ϊ-kernels of Γh to the principal
functions and thus obtain constructive proofs of the existence of the
k- and ί-kernels.

Let W be an arbitrary open Riemann surface with ideal boundary
β, and denote by r, the Lx principal function of W with respect to
the identity partition of β and for any singularity. The following
auxiliary result is valid.

LEMMA 1 (Rodin [6]). If ω e / \ , then

(5.1) ( rω = 0 .

Proof. Let Ω denote a canonical subregion of W with border
ββ, and rΩ the h1 principal function of Ω with respect to the identity
partition of βΩ% Since rΩ is constant on βΩ, it follows that

(5.2) [ rΩω = 0 .
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By 4.1, the right hand side of the above equation is dominated by
I (dr - drΩi ώ*)Ω\. Consequently, using Schwarz's inequality, we find
that

(5.3) rω * Ω \\Ω ίl

In Ahlfors and Sario [1], it is shown t h a t lim \\dr — drQ || = 0. Hence
Ω-*w

the right hand side of 5.3 tends to 0 as Ω tends to W which implies

the result of the lemma.

Let ζ denote an arbitrary point on W and p and q the Lx principal
functions of W with respect to the identity partition of β and singu-
larities Re 1/z and Im 1/z respectively at ζ. We can now state the
following result.

THEOREM 2, The differential dp — dq* is an l-kernel of the

Hubert space Γh. Explicitly

(5.4) (ω, dp ~ dq*) = 0

for all ωe Γh.

Proof. Let Δ denote a parametric disc with center at ζ and
corresponding to {z : | z \ < r < 1}. In Δ, p = Re(l/z) + h(z) and q =
lm(ljz) + v(z) where h(z) and v(z) are harmonic. From the definition
of the inner product, it follows that

(5.5) (α), dp - dq*)W-4 = (( ((%>)ω* - ί ( (dq)ω .

By 4.1 and Lemma 1, we may rewrite 5,5 as follows.

(5.6) (ω, dp — dq*)w_A = I qω — p ω * .
J\z\=r

By the linearity of the scalar product, we may assume without
loss of generality that ω is real. Therefore in Δ, we can write
ω ~ du where u is harmonic. Since Re (lfz) = Im (i/z) and Im (1/js) =
Im(l\z), we obtain from 5.6, the following result.

(5.7) (α>, dί> - dqηw_, - Im ( ^ +Jdu* + f M % * + ^ ^ ^

On the circle | z | = r, i = r2/z and therefore

(5.8) Im f d u + _ ^ u * = 0 .
Jl2l=r Z
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Since u and u* are of bounded variation on | z | = r, it follows that

(5.9) ( hdu* + vdu = o(l) .
J l«l=r

Consequently,

(5.10) (ω, dp - dq*)w_< = o(l) .

Letting r tend to 0, we obtain the desired conclusion.
I t was shown by Rodin [6] in his doctoral dissertation that the

corresponding fc-kernel of Γh is — (l/2π) (dp + dq*).

6* We shall now consider the space of square integrable harmo-
nic exact differentials Γhe. The Z-kernel of Γhβ is defined as follows.

DEFINITION. A harmonic exact differential ^ o n I f - {ζ} with a
harmonic pole at ζ is said to be an ^-kernel of Γhβ provided

(6.1) (ω, θ) = 0 for all ωe Γhe where the inner product is again taken
in the Cauchy sense.

We shall now prove the following lemma.

LEMMA 2. Let W be an arbitrary open Riemann surface with
border β, and let p denote the Lo principal function of W for any
singularity. Then

(6.2) ( udp* = 0
Jβ

for all dueΓhe.

Proof. As before Ω will denote a canonical subregion of W with
border βΩ. Since pΩ, the Lo principal function of Ω with the same
singularity as p9 has vanishing normal derivative on βΩ, it follows
that

(6.3) I f udp* = I ( u(dp* - dp0*)
I J β Ω I J βΩ

The rest of the proof now follows in the same manner as that of
Lemma 1.

Let pίls denote the Lx principal function of W with respect to
the identity partition and singularity s = Re(l/«), and pos denote the
Lo principal function of W with singularity s. Applying Lemma 2,
we obtain in a manner similar to the proof of Theorem 2 the follow-
ing result.
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THEOREM 3. The differential dplls + dp08 is an l-kernel of Γhe.

It should be noted that the Z-kernel of Γh§ is also unique up to
a singularity. This remark follows in the same manner as that of
Theorem 1.

The corresponding fc-kernel [6] of Γhe is — (l/2π) (dpΠs — dpos).

Let us now turn to the space of square integrable harmonic
semiexact differentials Γhse. We recall that a differential (not neces-
sarily square integrable) is said to be harmonic semiexact on an
arbitrary open Riemann surface W if it is harmonic with vanishing
periods along all dividing cycles of W. This leads us to the following
definition.

DEFINITION. A harmonic semiexact differential θ on W — {ζ} with
a harmonic pole at ζ is said to be an i-kernel of Γhse provided

(6.4) (ω, θ) = 0 for all ω e Γhse .

By a method of proof similar to that of Lemma 1, we obtain the
following result.

LEMMA 3. If p denotes the L1 principal function of W with
respect to the canonical partition for any singularity, then

(6.3) ( pω = 0
Jβ

for all ωe Γhse.

Denote by p10t the L1 principal function of W with respect to
the canonical partition and with singularity t = Im (1/z). Applying
the result of Lemma 3, we can establish in a manner similar to the
proof of Theorem 2 the following.

THEOREM 4. The differential (dplls — dp*ct) is an l-kernel of

We again note that the ϊ-kernel of Γhse is unique up to a singu-
larity. The corresponding ά-kernel {6] is — (X/2π)(dpll8 + dp?ot).

?• The A -kernel of Γhe can also be characterized in terms of a
complete orthonormal set of square integrable harmonic exact differ-
entials on any surface W&0HD. In fact, if {duu}, v ~ 1,2, •••, is
such a complete orthonormal set, then as an immediate consequence
of the Riesz Fischer theorem we obtain the following result.
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THEOREM 5.

- ~ {dvus - dPos) = Σ ̂ ψL duv .

3* Analytic differentials on Riemann surfaces

8* We shall now consider some important subspaces of the space
of square integrable analytic differentials Γa. The ^-kernel of Γa is
defined as follows.

DEFINITION. An analytic differential Θ on W — {ζ} with a pole
at ζ is said to be an i-kernel of Γa provided

(8.1) (ω,θ) = Q for all ωeΓa where the inner product is taken in
the Cauchy sense.

With the same notation as before, we obtain the following result.

THEOREM 6. The differential dp - dq* + i(dp* + dq) is an
l-kernel for Γa.

The proof is similar to that of Theorem 2. Of course, the Z-kernel
is agrain unique up to a singularity.

Rodin [6] has shown that the Zc-kernel of Γa is

- J L (dp + dq* + i(dp* - dq)) .
4π

Let us now consider the space of square integrable analytic semi-
exact differentials Γase. If in the definition of the ϊ-kernel of Γa we
replace the word analytic by analytic semiexact and the space Γa by
the space Γαse, we obtain the definition of the Z-kernel of Γase.

Denote by pWs the L1 principal function of W with singularity
s = Re (XIz) at ζ with respect to the canonical partition. As a con-
sequence of Lemma 3, we have the following result.

THEOREM 7. The differential dplϋs — dp*ot + i(dp?Os + dpwt) is
an l-kernel of Γase.

The corresponding A -kernel [6] of Γase is

- -7- (dpWs + dpfot + i{dpfcs - dpwt)) .
4τr

We shall now consider the space of square integrable analytic
exact differentials. If in the definition of the ϊ-kernel of Γa we
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replace the word analytic by analytic exact and Γa by Γae, we obtain
the definition of the ί-kernel of the space of square integrable exact
differentials Γae.

Let us now consider a planar Riemann surface W. On a planar
surface every cycle is dividing and consequently P3 = pWs + ipfOs and
Po — PQOS + ip*08 become single valued meromorphic functions. Thus
we obtain the following result.

COROLLARY 1. On a planar surface, the differential dP, + dP0

is an l-kernel of Γae.

The corresponding fc-kernel [6] is — (l/4:π)(dP1 — dPQ).

9* The A -kernel of Γa can also be characterized in terms of a
complete orthonormal set of square integrable analytic differentials.
To be precise, if W£ 0AD and if au(z)dz, v = 1, 2, - , is such a com-
plete orthonormal set, then the following result is valid.

THEOREM 8.

_ _L (dp + dq* + i{dp* - dq)) = Σ av(ζ)au(z)dz .

The proof is similar to that of Theorem 5.

4* Extremal problems on Riemann surfaces

The properties of the k- and i-kernels of the space Γae can be
used to solve certain extremal problems for harmonic functions on an

arbitrary open Riemann surface. Thus if we let B(p) = 1 dp*, we

obtain the following result.

THEOREM 9. The function (l/2)(pίls + pos) minimizes the expres-
sion B(p) in the class of all harmonic functions p with singularity s.

Proof. Since dplls + dpos is an i-kernel or Γhe, it follows that

(9.1) 0 S = HdPllV-j

- (dp, dplls + dpos)w_j + — || dplls + dpos ||V-j
4

and that



K- AND L-KERNELS ON AN ARBITRARY RIEMANN SURFACE 457

(9.2) \\d(p - λ(p1Ia + P o . ) ) | L = I! dp IIV-

- — (dp, <Zp17β + dpos)w_A

Consequently

(9.3) (dp, dpίls + dpos)w_j = - ί || d p l j s + dpo s ||^_j +

and therefore

(9.4) 1 1 | dp1IS + dpβ. IIV-, ̂  II dp IIV-, + o(l ) .

Applying 4.1 to 9.4, we obtain the following.

(9.5) B(±(PlI. + p,

= B(p) - \ %
)\z\=r

Letting r tend to 0, we obtain the desired result.

Theorem 9 was first proved by Sario [9] by another method. The
proof presented here is considerably shorter thus showing the power
of the i-kernel concept.

We also have the following extremal property of the Zc-kernel of
the space Γhe.

THEOREM 10. In the class of all harmonic functions u, the
expression

(9.6) \\du\<f-4πdu(ζ)

dx

is minimized by the function pos — plls.

Proof. By the reproducing property of the A -kernel, it follows
that

3u{ζ)
(9.7) \\du\\2-Aπ-

dx

~\\du- (dpos - dplls) ||2 - || dp08 - dplls ||2 .

However
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(9.8) \\du- (dpos - dplls) ||2 - || dpos - dPlIS ||2

^ - II dpos - dplls ||2 = || dpos ~ dp1IS ||2 - 4

Actually in the course of the proof we have shown more, namely
that the value of the minimum is —1| dpos — dpιls ||2. Again we see
that the proof is very easy once the reproducing property of

——- (dplls - dpos)
2π

is established. For another proof of this theorem the reader is re-
ferred to [9].

10. The A -kernel of the space Γae also possesses an extremal
property with respect to the class of analytic functions. Let dk(z, ζ)
denote the fc-kernel of Γae. Then the following result is valid.

THEOREM 11. The function Δπk(z, ζ) minimizes the expression
\\df\\1 — 4ττRe a(f) in the class of all analytic functions f on W
where a(f) is the coefficient of z — ζ in the Taylor expansion of f
about ζ. Moreover α(4π7b(z, ζ)) is nonnegative and 2πa(4πk(z, ζ) =
D(iπk(z, ζ)) where in general D(f) denotes the Dirichlet integral
off.

The proof follows from the reproducing property of the λ -kernel
and is similar to that of Theorem 10. The existances of the A -kernel
of Γae follows from the existence of the ^-kernel of Γa and the
orthogonal decomposition Γa — Γae + Γas where Γas denotes the space
of all square integrable analytic Schottky differentials.

If we call a(4πk(z, ζ)) the span, then by Theorem 11, we have
the following result.

THEOREM 12. An arbitrary open Riemann surface is of class
®AD if and only if the span vanishes for all choices of ζ.

The span a(4πk(z, ζ)) is a generalization of the well known Schiffer
span which was defined by him for planar surfaces.
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