A SEMIGROUP UNION OF DISJOINT LOCALLY FINITE SUBSEMIGROUPS WHICH IS NOT LOCALLY FINITE

T. C. Brown

The semigroup S of the title is the free semigroup F on four generators factored by the congruence generated by the set of relations $\{w^2=w^3\mid w\in F\}$. The following lemma is proved by examining the elements of a given congruence class of F:

LEMMA. If $x, y \in S$ and $x^2 = y^2$, then either $xy = x^2$ or $yx = x^2$.

From the Lemma it then easily follows that the (disjoint) subsemigroups $\{y \in S \mid y^2 = x^2\}$ of S are locally finite.

This note answers in the negative a question raised by Shevrin in [2].

Theorem. There exists a semigroup S with disjoint locally finite subsemigroups S_e such that $S = \bigcup S_e$ and S is not locally finite.

Let F be the free semigroup with identity on four generators. Let \sim denote the smallest congruence on F containing the set $\{(x^2, x^3) \mid x \in F\}$. That is, for $w, w' \in F$, $w \sim w'$ if and only if a finite sequence of "transitions", of either of the types $ab^2c \rightarrow ab^3c$ or $ab^3c \rightarrow ab^2c$, transforms w into w'.

The equivalence classes of F with respect to \sim are taken as the elements of S, and multiplication in S is defined in the natural way.

There is given in [1] a sequence on four symbols in which no block of length k is immediately repeated, for any k. Thus the left initial segments of this sequence give elements of F containing no squares. Since no transition of the form $ab^2c \to ab^3c$ or $ab^3c \to ab^2c$ can be applied to an element of F containing no squares, the equivalence classes containing these elements consist of precisely one element each; thus the semigroup S is infinite, and hence not locally finite.

In what follows, the symbols α , α_1 , α_2 , \cdots refer to transformations (on elements of F) of the form

$$ab \rightarrow ayb$$
, where $a \sim ay$, and $a, b, y \in F$.

The symbols β , β_1 , β_2 , \cdots refer to transformations of the type

$$axb \rightarrow ab$$
, where $a \sim ax$, and $a, b, x \in F$.

Note that $ab^2c \rightarrow ab^3c$ is an α , and $ab^3c \rightarrow ab^2c$ is a β .

LEMMA 1. If $w, w' \in F$, and $w\beta\alpha = w'$, then there are α_1, β_1 such that $w\alpha_1\beta_1 = w'$.

Proof. Let

$$w = axb$$
, $w\beta = ab$, where $a \sim ax$.

Let

$$w\beta = AB$$
, $w\beta\alpha = AyB$, where $A \sim Ay$.

There are two cases:

(i) A is contained in a. That is,

$$a=Aa'$$
 and $w'=wb\alpha=aetalpha=Aa'blpha=Aya'b$.

Here let

$$w\alpha_1 = axb\alpha_1 = Aa'xb\alpha_1 = Aya'xb$$
.

Now since

$$Aya' \sim Aa' = a \sim ax = Aa'x \sim Aya'x$$

we may let

$$w\alpha_1\beta_1 = Aya'xb\beta_1 = Aya'b = w'$$
.

(ii) A is not contained in α . That is,

$$b = b_1 b_2$$
, $A = a b_1$, $A \sim A y$,

and

$$w'=wetalpha=ablpha=ab_1b_2lpha=Ab_2lpha=Ayb_2=ab_1yb_2$$
 .

Since

$$axb_1 \sim ab_1 = A \sim Ay = ab_1y \sim axb_1y$$
,

we may let

$$w\alpha_1 = axb\alpha_1 = axb_1b_2\alpha_1 = axb_1yb_2$$
,

and

$$w\alpha_1\beta_1=axb_1yb_2\beta_1=ab_1yb_2=w'$$
.

LEMMA 2. If $w, w' \in F$, $w\gamma_1\gamma_2 \cdots \gamma_m = w'$, where each γ_i is either an α or a β , then there are $\alpha_1, \dots, \alpha_n, \beta_1, \dots, \beta_k$ such that $w\alpha_1 \cdots \alpha_n\beta_1 \cdots \beta_k = w'$.

This follows immediately from Lemma 1 by induction.

Lemma 3. The word $ab\alpha$ contains a left initial segment which is equivalent to a.

Proof. Let ab=AB, $ab\alpha=AyB$, where $A\sim Ay$. Again there are two cases:

- (i) A is contained in a. That is, a = Aa', $ab\alpha = Aa'b\alpha = Aya'b$. Since $A \sim Ay$, the left initial segment Aya' of $ab\alpha$ is equivalent to a.
 - (ii) A is not contained in a. That is, $b = b_1b_2$, $A = ab_1$, $ab\alpha = ab_1b_2\alpha = ab_1yb_2$.

Here, a itself is a left initial segment of $ab\alpha$, and is certainly equivalent to a.

LEMMA 4. If $x, y \in F$ and $x^2 \sim y^2$, then either $y \sim xa$ for some $a \in F$, or $x \sim yb$ for some $b \in F$.

Proof. By Lemma 2, there are α_i and β_j such that $xx\alpha_1 \cdots \alpha_m\beta_1 \cdots \beta_n = yy$. Let $w = xx\alpha_1 \cdots \alpha_m = yy\beta_n^{-1} \cdots \beta_1^{-1}$. By Lemma 3, w contains a left initial segment A equivalent to x. Similarly, since each β_i^{-1} is an α , w also contains a left initial segment B equivalent to y. Depending on which segment contains the other, either B = Aa for some a, or A = Bb for some b. In the first case, $y \sim B = Aa \sim xa$; in the second, $x \sim A = Bb \sim yb$.

LEMMA 5. In this lemma, "=" will denote equality in S. Let e be an idempotent element of S: $e = e^2$. Let $S_e = \{x \in S \mid x^2 = e\}$. Then S_e is a locally finite subsemigroup of S.

Proof. First, we note that $z \in S_e$ implies ez = ze = e. For $ez = z^2z = z^2 = e$, and similarly ze = e. Now let $x, y \in S_e$, that is, $x^2 = y^2 = e$. By Lemma 4, either y = xa or x = yb. In the first case, we obtain $xy = x^2a = x^3a = x^2y = ey = e$. In the second case, we obtain similarly that yx = e. Thus $x, y \in S_e$ implies xy = e or yx = e. In either case, $(xy)^2 = e$, that is, $xy \in S_e$. Thus S_e is a semigroup.

Now let $x_1, \dots, x_n \in S_e$, and let $\langle x_1, \dots, x_n \rangle$ denote the subsemigroup of S_e generated by x_1, \dots, x_n . If n=1, then $\langle x_1 \rangle$ is clearly finite; so suppose n>1. Then every element of $\langle x_1, \dots, x_n \rangle$ may be expressed as a product of not more than n of the x_i 's. For any product z of more than n x_i 's must contain some x_i twice: $z=ax_ibx_ic$, where $a,b,c\in S_e$. Since either $x_ib=e$ or $bx_i=e$, it follows that $x_ibx_i=e$ and $z=aec=ec=e=x_1x_1$. This shows that $\langle x_1,\dots, x_n \rangle$ is finite, and hence that S_e is locally finite.

The theorem follows immediately from Lemma 5, since clearly $e\neq e'$ implies that S_e and $S_{e'}$ are disjoint, and

$$S = \bigcup S_e$$
 .

REFERENCES

- 1. R. A. Dean, A sequence without repeats on x, x^{-1}, y, y^{-1} , Amer. Math. Monthly **72** (1965), 383-385 (Math. Rev. **31**, No. 3500).
- L. N. Shevrin, On locally finite semigroups, Doklady Akad. Nauk SSSR 162 (1965), 770-773 = Soviet Math. Dokl. 6 (1965), 769.

Received December 19, 1966. Partially supported by Canadian NRC grant no. A-3983.

SIMON FRASER UNIVERSITY