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THE 32-PROCESS AND RELATED TOPICS

RICHARD R. TUCKER

This paper deals with (1) acceleration of the convergence
of a convergent complex series, (2) rapidity of convergence,
and (3) sufficient criteria for the divergence of a complex
series. Various results of Samuel Lubkin, Imanuel Marx and
J. P. King which concern or are closely related to Aitkin's
32-process are generalized. Some typical results are as follows:

(1) If a complex series and its ^-transform converge,
their sums are equal.

(2) Suppose that Σan, Σbn are complex series such that
Klein -> 0, and A, B exists such that | αn/αΛ-i | ^ A < 1/2,
I bjbn-i I £ B < 1 for all sufficiently large n. Then Σbn

converges more rapidly than Σan.
(3) If the sequence {l/αΛ — l/αn-i} is bounded, then the

complex series Σan diverges.

Given a convergent complex series Σan = Sy quantities Tn —
(an + an+1 + . . - )/αΛ_! are used to obtain results on accelerating the
convergence of Σan and on rapidity of convergence. The convergence
of {Tn} is treated and corresponding necessary and sufficient conditions
are established for the transform Σaan = S to converge more rapidly
t h a t Σ a n , w h e r e a a 0 = α 0 + a λ a u a a n = a n + a n + 1 a n + 1 - a n a n f o r n ^ l ,
and {ocn} is any complex sequence. Divergence theorems are proven,
of which Theorem 2.8 furnishes a generalization of corrected results
of Marx [10] and King [7]. The appropriate corrections are indicated
in Tucker [16]. These divergence theorems are used to prove that
if Σan and its S2-transform are convergent complex series, their sums
are equal. This fact was first published by Lubkin [9] for real series.
Theorem 2.9 gives a generalization of a theorem of Marx [10] and
King [7], corrected statements of which are given in Tucker [16].
Some related theorems on rapidity of convergence are then proven.
Before turning to the general analysis, we now present difinitions,
notations and certain elementary facts relevant to acceleration.

Given a complex series Σ7 an, we shall write Σan for ΣΓ^«, Sn =
Y$ak, and, if Σan converges, S — Σan. Similarly, if Σa'n converges,
then Sf = Σa'n. Given two convergent series Σan and Σa'ni the latter
is said to converge more rapidly than the former if and only if
(S' - S'n)/(S - Sn)->0 as n-+ oo. If Σa% converges, "MR(Σan)" will
denote the class of all series Σbn which converge more rapidly to S
than Σan.

The concept of "acceleration" or "speed-up" can now be defined
as the problem of finding a series Σbn such that Σbn e MR(Σan). We
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will say that Σa'n converges with the same rapidity as Σan if and
only if there are numbers A and B such 0 < A < . | S'-S'n |/| S- Sn | < . B.
The notation " < . " means that < holds for all sufficiently large n.
If "*" denotes any relation, "* ." will be used in the same manner,
while "*:" means that * holds for infinitely many positive integers n.

Various methods, found in the literature, for obtaining a series
Σa'n e MR(Σan) may be summarized as follows. A sequence {hn} is
proposed, and then the partial sums S'n are specified by the equation
S'n = Sn + bn+1 for n ^ 0. It is immediate that a[ = aQ -\- bu and a!n —
an + bn+1 - bn for n ^ 1.

It seems somewhat advantageous to set bn = anan for n ^ 1, and
specify the "transform sequence" {an}. In doing so, we set San =
Sn + an+1an+1 for n ^ 0, aaQ = Sa0 = α0 + α A , and α β w - San - Sa{n-U =

an + an+1an+1 — anan for n ^ 1. If i^α^ converges, its sum will be
denoted by Sa.

Suppose that Σan converges and an Φ 0 for n ^ 0. Then with
α»+i = (S - Sn)/an+1, n ^ 0, we have Sαw = SΛ + αn+1α:%+1 = Sn +
an+1(S — Sn)/an+1 = S for w ^ 0. Hence, if MR(Σan) is nonvoid, this
transform sequence is the most desirable solution to our problem of
speed-up. In general we must satisfy ourselves with an approximation
to this solution.

For each n such that an_λ Φ 0 we write rn — αΛ/αΛ_! and r — lim rn.
Similarly, τf

n = < / < _ ! and r' = lim < .
Aitken's δ2-process can be obtained by defining its transform

sequence {δn} as follows:

(1.1) δn = 1/(1 — rn) if rn Φ 1 exists; δΛ = 0 otherwise.

The notation in (1.1) will be adhered to throughout this paper. The
transform sequence {an} where

(1.2) a* = 1/(1 - r) ,

being closely related to (1.1), is also considered in §2 of this paper
and in § 3.

Among publications in which (1.1) is found are the following:
Aitken [1, p. 301], Forsythe [3, p. 310], Hartree [4, p. 233], House-
holder [5, p. 117], Isakson [6, p. 443], Lubkin [9, p. 228], Marx [10],
Pflanz [11, p. 27], Samuelson [12, p. 131], Schmidt [13, p. 376],
Shanks [14, p. 3], Todd [15, pp. 5, 86, 115, 187, 197, 260], and Tucker
[16]. We find (1.2) in Lubkin [9, p. 232] and Shanks [14, p. 39].
Todd [15, p. 5] states that the δ2-process dates back at least to
Kummer [8].

Aitken's <52-process can be formulated in various ways. In par-
ticular, assuming that division by zero is excluded, we have:
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Returning to the most desirable solution for speed-up an =
(S - Sn_τ)lanJ n ^ 1, we have an = (an + (S- Sn))/an = 1 + (S - Sn)/an =
1 + Tn+i, if we set Tn+1 - (S - Sn)/an for ^ ^ 1. Hence 1 + Tu+1,
n^l, is the most desirable solution.

Suppose that Σan converges and n is any integer ^>1 such that
αn_! Φ 0. We then formally define Tn = (S — S%_1)/α%_1. Similarly,
TH = (S' — Sl)/a'n. Some relations satisfied by the quantities Γw,
assuming division by zero excluded, are:

Tn = r . ( l + Γ.+1) .

(1 - rw)(l + Tn+1) =

[(1 - rn)/an](S - S U

Tn+1 - rn/(l - rn) +

Tn = rn + rnrn+1 +

Tn+1 - Tn .

- rn) .

(rnrn+1 - rn+k) +

In treating slowly convergent series Σan, Bickley and Miller [2]
saw fit to single out the quantities M(n) which in our notation is
Γn+1, but their considerations were directed along somewhat different
lines from ours and were restricted to series with positive terms only,
with the additional restriction that ajan^ —• 1.

2* Acceleration, convergence or divergence, and the δ2-process*
All series are assumed to be complex unless explicitly stated to the
contrary.

THEOREM 2.1. The conditions (1) rn — 0, (2) T%—> 0, and (3)
TJrn —• 1 are equivalent.

Proof. If Tn-+ 0, then an Φ. 0 so that rn = . Γw/(1 + Tn+1) — 0.
Conversely, assume that r n —> 0. Let 0 < ε < 1. Then \rn\ g . e , so

r n r n + 1 + rn\\rn
that I Γ. I = . I 7
and thus Tn—>-0.

If ΓB — 0, then Γ^r . = . 1 +[Tn+ι — 1. Conversely, if Tn/rT C-»1,
then Tn+1 =. TJrn - 1 — 0 .
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THEOREM 2.2. // Tn—*t for some complex number t, then:
(1) r = ί/(l + t), I r I ̂  1, and r ^ 1.
(2) t = r/(l - r) and -1/2 ̂  Re ί.

If, in addition, {an} is a sequence of complex numbers such that
an —+ aQ for some complex number aQ, then:

(3) Sa = S.
(4) Σaan e MR(Σan) if and only if a, = 1/(1 - r).
(5) Σaan converges with the same rapidity as Σan if and only

if a0 Φ 1/(1 - r).

Proof. Since {Tn} converges and Tn =. rJX + Tn+1), Tn Φ. 0 and
TΛ ^ . — 1. Consequently ί ^ — 1, since otherwise | rn \ =. \ TJ(1 + Tn+1) | —>
+ co f which is impossible since an —* 0. Thus, rn =. TJ(1 + Tn+1) —•
ί/(l + ί), i.e., r = ί/(l + t) Φ 1. Clearly, | r | ^ 1 so that (1) holds.
From (1), t = r/(l - r) and | ί |/| (-1) - t \ - | ί/(l + ί) | = | r | ^ 1.
Thus, | ί [ ^ | ( - l ) - ί | , which is equivalent to -1/2 ̂  Re ί, so that
(2) holds. (3) holds since San = Sn + α Λ + 1 α n + 1 —> S + 0α:0 = S. Since
ΓΛ ^ . 0, we have (S - Sn^) ^ . 0 . If t = 0, then rΛ/Γn -> 1 = 1 - r,
according to (1), (2) and Theorem 2.1. If t Φ 0, then rJTn—>r/t =
(1 — r) from (1) and (2). In either case,

(S - Sβn)/(S - Sn) =.[S~(Sn + an+1an+1)]/{S - Sn)

= .1- an+1an+1/(S - Sn) =. 1 - an+1rn+1/Tn+1 -> 1 - αo(l - r) .

Hence, (4) and (5) hold, since 1 — ao(l — r) = 0 is equivalent to <x0 =
1/(1-r).

COROLLARY 2.3. // {TΛ} converges, then Σa8ne MR(Σan).

Proof. Suppose Tn —• ί. From (1) of Theorem 2.2, rn —> r where
r ^ l . Thus δw = . 1/(1 - rΛ)-> 1/(1 - r), so that 2 ^ e MR(Σan)
according to (4) of Theorem 2.2.

We inquire if the convergence of {Tn} is also necessary for
Σa5neMR(Σan). In Tucker [17], it is proven that ΣaBneMR(Σan) if
and only if Tn+1 - Tn — 0.

THEOREM 2.4. // Σan and Σa$n are convergent real series, then

Proof. Assume that S Φ S5. Since an8n = . S^n^λ) — S{n_λ) —>
Sδ - S Φ 0, δn Φ. 0 and αw/(l - rΛ) = . M n -> Sδ - S Φ 0. Thus αΛ -> 0
implies that 1 — rn—> 0, i.e., r n —>r = 1 so that 0 < . rn and 0 < . Tn.
From 1 + Tn+1 - Tn = . [(1 - rn)/αn](S - S.^) — 0, we have 1 + ΓΛ+1 -
Tn<Λ/2 and 0 < . Γn + 1 < . r n , which implies that {Γn} converges.



THE ^-PROCESS AND RELATED TOPICS 353

From (1) of Theorem 2.2, r Φ 1, which contradicts r = 1. Thus our
assumption is false, and S — Ss.

Lubkin [9, Th. 1] gave the first published proof of Theorem 2.4
for real series. The proof of this theorem for the complex case is
given in Theorem 2.6, after the following preliminary theorem is first
proved.

THEOREM 2.5. If (1 — rn)/an —• L Φ 0, then Σan diverges.

Proof. Assume that Σan converges. We may suppose that L = l — ί;
since otherwise Σa'n converges where a'n = anL/(l — i) and (1 — < ) / < = .
(1 - rJ/[anL/(l - i)] — 1 - ί. Accordingly, (1 - rn)/an = . [(Reαn)/| an |

2 -
(Re an_x)l\ an_λ |

2] + i[(Im an^)/\ an_λ |
2 - (Im αn)/| an |

2] -* 1 - i. Conse-
quently, (Re an__λ)l\ an_λ |

2 < . (Re an)/\ an |
2 so that (Re an)/\ an |

2 -^ Lx

for some Lλ ̂  + oo. If Z,χ < + oo, then Re [(1 - rn)/an] —> Lλ - Lλ = 0,
which is impossible since Re [(1 — rn)/an] —> 1. Thus Lλ = + oo and
0 < . Re αn. Similarly, (Im α .̂O/l α%_i Γ < . (Im an)/\ an |

2 and 0 < . Im αΛ.
Hence setting αn = | αw | β

ίaw we may chose θn such that 0 < . θn < . ττ/2.
From

Γn = . ajan^ + an+ιjan_λ + + an+k/an^ + -

= . [| a n\ cos (βn - θn^) + . . . + I an+k \ cos (θn+k - θn_λ)

and 0 < . ̂ Λ < . τr/2, we have 0 < . Re Γn. Since 1 + Tn+1 - Tn=.
[(1 - rn)/an](S - Sn^) -> 0, we have 1 + Re Tn+1 - Re ΓΛ = . Re (1 +
Γ +i - Tn) — 0. Thus Re Tn+1 - Re Tn < -1/2 for n ^ ΛΓ, where iV
is some positive integer. It follows that

Re TN+n =.ReTN + ±Re[TN+i - 2WJ < . R e Γ , - ^ - - o o
•=i 2

as w—> co. Hence, Re Γn < . 0 which contradicts 0 < . Re Tw. Conse-
quently our initial assumption cannot hold, i.e., Σan must diverge.

THEOREM 2.6. If Σan and ΣaBn both converge, then S — Sδ.

Proof. Assume that S Φ Sδ. Then an3n =. S5{n_v — Sn^ —* S8 —
S Φ 0 so that δΛ ̂ . 0 and aj(l -rn)=. ajn -> SB - S Φ 0. Thus
(1 — rn)/an—+l/(Sι — S) Φ 0, which implies, in view of Theorem 2.5,
that 2 K diverges, a contradiction. Therefore our assumption cannot
hold, i.e., S = S8.
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After establishing the following lemma, we turn to a generalization
of Theorem 2.5, using a different approach in its proof.

LEMMA 2.7. Suppose that Σan is a convergent series, anφ.θ,
and cn = c + Sn — S for n J> 0 where c is some complex number.
Then,

an I an_L an an

Proof. We have

- LΛ + c + s«-i - S

αn

- S __Λ , S - Sn S

α w an_τ an

THEOREM 2.8. // {(1 — rn)/an} is bounded, then the complex series
Σan diverges.

Proof. Assume that Σan converges. Since {(1 — rn)/an} is bounded,
there is an ε > 0 such that | ε(l — rn)/an \ <. 1/4. Let c be any complex
number satisfying | c \ = ε so that

(1) - R e c ( l - r n ) / α n < . l / 4 .

Setting cn = c + Sn — S, for n ^ 0, we have cΛ —• c. From Lemma 2.7,

ReΓl + c( 1 " r Λ + is=L - 5s.Ί ^ .Re 1 " r * (S - S^O - 0

and thus,

( 2 ) 1 + Re ci1" r* ) + Re ^=± - Re ̂  <. 1/4 .

Using (1) and (2),

1/2 + Re-22=L <.Re^L _ Ree

from which it is easily seen that Recjαπ—> + co and Recjan >,0.
Since ΈLecJan >.O and cn-+c9 v/e conclude that

( 3 ) an $ ,{z: arg c + 3ττ/4 ^ arg z ^ arg c + 57Γ/4} .
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Choosing arg c successively in (3) as 0, τr/2, TΓ, and 37r/2, we conclude
that an is not in the complex plane for large n, which is absurd.
Hence, our initial assumption cannot hold, i.e., Σan must diverge.

A proof of Theorem 2.8 can be found in the proof of a lemma
by Marx [10], under the additional hypothesis that an is real and
an_x > an > 0 for all n. His lemma is shown to contain a minor error
in Tucker [16] where appropriate changes are indicated and similar
comments are made on a paper by King [7].

For the series Σan where an = l/(log n) for n^2, we have
(1 — rn)/an —» 0 so that, from Theorem 2.8, Σan diverges. Similarly,
with an — l/(n + 1) for n ^ 0, we have l/an — l/α%_1 = (n + 1) — n = 1
for n ^ 1, and thus Σan diverges. For the divergent series Σan where
an — l/(n log n) for n ^ 2, we have l/an — l/an_x —> ©o 9 so that Theorem
2.8 is not applicable. As a final application, Theorem 2.8 manifests
the divergence of the series Σan where an = eiφn/(n + 1), φn = 1 + 1/2 +
• + l/(w + 1), since it is easily seen that {l/an — l/α%_1} is bounded.

The following theorem furnishes a generalization of Theorem l(ϊ),
given in Tucker [16].

THEOREM 2.9. / / Σan is a convergent series, then some subse-
quence of {S8n} converges to S.

Proof. Suppose Σan is convergent and assume that no sub-
sequence of {SSn} converges to S. Since S5n — Sn = an+1δn+1, our
assumption holds if and only if no subsequence of {anδn} converges to
zero, and this is equivalent to | anδn \ >.B for some B > 0. Thus
I (1 - rn)/an I = . 1 / | anδn | < . 1/B. From Theorem 2.8, Σan diverges, a
contradiction. Therefore our assumption cannot be true, i.e., some
subsequence of {Sδn} converges to S.

Theorem 2.9 clearly yields a second proof of Theorem 2.6.

EXAMPLE 2.10. It is not necessarily true that if Σan converges,
Σa8n will also converge. In particular, Lubkin [9, p. 240] considers
the series Σan = 1 + 1/2 - 1/3 - 1/4 + 1/5 + 1/6 - 1/7 -1/8 + 1/9 + •
which converges while ΣaSn diverges. However, according to Theorem
2.9 some subsequence of {S8n} must converge to S. Here, of course,
this is evident since rn < : 0 and Sδ?, = . Sn + αΛ+1/(l — r Λ f l ) . This
particular series shows that the S2~process is not regular.

EXAMPLE 2.11. Lubkin [9, p. 240] also shows that the series
Σan = l + 1/(1 + 1) + 1/22 + 22/(24 + 1) + 1/32 + 32/(34 + 1) + . . . con-
verges while Σa5n diverges. Again, according to Theorem 2.9, some
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subsequence of {Sδn} must converge to S. This is not so obvious by
inspection as was the case in Example 2.10.

THEOREM 2.12. If Σan is a series such that Σahn is properly
divergent, i.e., \S8n\—>°°, as n—>oo, then Σan diverges.

Proof. Assume that Σan is convergent. From Theorem 2,9 some
subsequence of {Sδ%} converges to S, so that \S^n\-/> oo as n —> o°,
i.e., ΣaBn is not properly divergent.

3* Acceleration and rapidity of convergence*

THEOREM 3.1. A necessary and sufficient condition that {Tn}
converge is that rn —>rφl and Tn+1 — Tn —> 0.

Proof. The necessity follows from (1) of Theorem 2.2 and the
fact that {Tn} converges implies that Tn+ί - Γn—>0.

For the sufficiency, r Φ 1 implies that rn(l — rn) Φ. 0. Conse-
quently, Γn+1 = . rj(l - rn) + (Tn+1 - Tn)/(1 - rn)^r/(l - r).

THEOREM 3.2. If rn-+r where | r | < 1, then Tn —> r/(l — r).

Proof. Since | r \ < 1, r Φ 1 and Jα w converges, so that Tn exists
for large n. Let ε > 0 and p be any number such that | r \ < p < 1.
There exists an integer N such that forn^N and m ^ J V we have
I rΛ I < |0 and | rm — rn \ < ε(l — p). Thus, for each n ^ N we have

= I [rΛ + 1 - rΛ] + [rn+1rn+2 - rwrw + 1] + •

- (rw rn+k)] + I

+i rΛ + f c 11 rn+k+1 - rn | +

< ε(l - p) + pε(l - p) + ... + pkε(l - p) + = s .

Hence, | ΓΛ+1 - T J — 0, i.e., Tw + 1 - Γn — 0. From Theorem 3.1, {Γn}
converges. Consequently, Tn —> r/(l —r) according to (2) of Theorem 2.2.

THEOREM 3.3. Suppose that rn-^r where \ r \ < 1, and let {an}
be a complex sequence converging to some complex number a0. Then
Tn—*t for some complex number t, and conditions (1) through (5) of
Theorem 2.2 hold.

Proof. From Theorem 3.2, {Tn} converges. We now apply
Theorem 2.2.
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According to Theorem 3.3, ΣaBn e MR(Σan) if r = 0. Nevertheless,
the reader should be forewarned in case r = 0. In particular, let

Σan = Σo~(-1)7^! = 1/β. We have rn = -1/n for n^l, and δn =
1/(1 - rn) = 1/[1 + (1/n)] = n/(n + 1) = 1 - l/(n + 1) - 1 + rn+1 for
n ^ 2. Consequently, S i w = Sn + αn+1dw+1 = S u + αw + 1(l + r%+2) = Sn+2

for w ̂  1.

LEMMA 3.4. If \ r | < 1, Tn/rn — 1/(1 - r).

Proof. If r = 0, then TJrn —• 1 = 1/(1 — r) according to Theorem
2.1. If r Φ 0, then TJrn-+[r/(l - r)]/r = 1/(1 - r) according to
Theorem 3.2.

THEOREM 3.5. Suppose that Σan and Σa'n are series such that
I r I < 1 and | r ' | < 1. Then:

(1) Σaf

n converges more rapidly than Σan if and only if a'n/an —•> 0.
(2) Σa'n converges with the same rapidity as Σan if and only if

there are numbers a and b such that 0 < a < . | a'Jan | < . b.

Proof. From Lemma 3.4, TJrn -> 1/(1 - r) and Tϊ/r'n -+1/(1 - rr).
If a'Jan — 0,

S' - 1/(1 -r') _ Q

1/(1 - r)S - S ^ ' an TJrn

Conversely, if 2 K converges more rapidly than Σan,

<^ TJrn

S - 1/(1 - r>)

This proves (1).
Assume that a and 6 are numbers such that 0 < a < . | α'Jα,, | < . b.

Since | (TΪ/r'n)/(TJrn) | -> | (1 - r)/(l - r') | ^ 0, there are numbers c
and d such that 0 < c <. \ (Tl/r'n)/(TJrn) \ < . d. Thus,

0 < ac <.
S' -

s -
<.bd .

Assume that A and 5 are numbers such that

0 < A < . ! (S' - SLi)/(S - S._!) I <• B

As above, there are numbers c and cί such that

0<c<.\(TJrn)/(T:/rn)\<.d.

Thus,

0 < Ac T Ir
TΊr' O
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LEMMA 3.6. If \rn\ ^ . p < 1/2 for some number p, then

0 < (1 - 2 0 / ( 1 - p)H.\ TJrn I ^ . 1/(1 - p) .

P r o o / . W e h a v e \Tn\^.\rn\ + \ rnrn+1 \ + ... + \rn... rn+k | +
• ^.\rn |/(1 - p) ^ . ,0/(1 - 0 < 1. Thus, | TJrn \ £. 1/(1 - p) and
I Γ./r. I - . ί 1 + Tn+11 ^ . 1111 - | Tn+1 \ \ =. 1 - | Tn+11 ^ . 1 - p/{l - p) -
(1 - 20/(1 - 0 > 0.

THEOREM 3.7. Suppose that Σan, Σo!n are series such that a'n/an-^0,
and \rn\ fg. pλ < 1/2, \r'n\ i^. p2 <1 for some numbers pu p2. Then
Σa'n converges more rapidly than Σan.

Proof. From Lemma 3.6, 0 < (1 - 2p1)/(l - p,) ^ . | TJrn |. Also,

I TLK I = . 11 + < + 1 + K + 1 < + 2 + . . . I ̂ . 1/(1 - ft). Thus,

* ^0 .

The following counterexample shows that the hypothesis of
Theorem 3.7 cannot be relaxed by replacing 1/2 by any larger number.

COUNTEREXAMPLE 3.8. Let ε be any number such that 0 < ε < 1/4
and f{x, n) = xn+1 - 2x + 1, n = 1, 2, . Then /(1/2, w) >. 0 and
/(1/2 + ε, n) <. 0. We may thus assume that N is a positive integer
such that for some 6, /(δ, JV) = 0 and 1/2 < δ < 1/2 + ε. Thus, - 1 +
b + δ2 + + δ* = (δ - l)-y(δ, N) = 0. Define an = -bn for n =
k(N + 1) and k = 0,1, 2, , and αn = δw otherwise. Accordingly,
Σan converges, | rn \ = δ < 1/2 + ε and $ — Sn = : 0. Hence the series
Σa'ni where a'n = ajnl, a'n/an —* 0 and \r'n \ —> 0, does not converge more
rapidly than Σan.

The author wishes to thank Professor A. T. Lonseth for his
guidance and encouragement which led to the completion of the authors
thesis.

REFERENCES

1. A. C. Aitken, On Bernoulli's numerical solution of algebraic equations, Proc. Roy.
Soc. Edinburgh 46 (1926), 289-305.
2. W. G. Bickley, and J. C. P. Miller, The numerical summation of slowly convergent
series of positive terms, Philos. Mag. 22 (1936), 754-767.
3. G. E. Forsythe, Solving linear algebraic equations can be interesting, Bull. Amer.
Math. Soc. 59 (1958), 299-329.
4. D. R. Hartree, Notes on iterative processes, Camb. Phil. Soc. 45 (1949), 230-236.
5. Alton S. Householder, Principals of Numerical Analysis, McGraw-Hill, New York,
1953.



THE <52-PROCESS AND RELATED TOPICS 359

6. Gabriel Isakson, A method for accelerating the convergence of an iterative process,
J. Aero. Soc. 16 (1949), 443.
7. J. P. King, An application of a non-linear transform to infinite products, J. Math,
and Phys. 44 (1965), 408-409.
8. E. E. Kummer, Eine neue Methode, die numerischen Summen langsam convergi-
renden Reihen zu berechnen, J. Reine Angew. Math. 16 (1837), 206-214.
9. Samuel Lubkin, A method of summing infinite series, J. Res. Nat. Bur. Standards
48 (1952), 228-254.
10. Imanuel Marx, Remark concerning a non-linear sequence-to-sequence transform,
J. Math, and Phys. 42 (1963), 334-335.
11. Erwin Pflanz, Uber die Beschleunigung der Konvergenz langsam konvergenter
unendlicher Reihen, Arch. Math. 3 (1952), 24-30.
12. Paul A. Samuelson, A convergent iterative process, J. Math, and Phys. 24 (1954),
131-134.
13. R. J. Schmidt, On the numerical solution of linear simultaneous equations by an
iterative Method, Philos. Mag. 32 (1941), 369-383.
14. Daniel Shanks, Non-linear transformations of divergent and slowly convergent
sequences, J. Math, and Phys. 34 (1955), 1-42.
15. John Todd (ed.), Survey of Numerical Analysis, McGraw-Hill, New York, 1962.
16. Richard R. Tucker, Remark concerning a paper by Imanuel Marx, J. Math, and
Phys. 45 (1966), 233-234.
17. , (to appear)

Received April 25, 1966. Except for Counterexample 3.8, the material in this
paper was taken from the author's Doctorial Dissertation, submitted to Oregon State
University, Corvallis, Oregon, under the guidance of Professor A. T. Lonseth.

THE BOEING COMPANY

SEATTLE, WASHINGTON






