SOME TOPOLOGICAL PROPERTIES OF PIERCING POINTS

D. R. McMillan, Jr.

Let K be the closure of one of the complementary domains of a 2 -sphere S topologically embedded in the 3 -sphere, S^{3}. We give first (Theorem 1) a characterization of those points $p \in S$ with the following property: there exists a homeomorphism $h: K \rightarrow S^{3}$ such that $h(S)$ can be pierced with a tame arc at $h(p)$. The topological property of K which distinguishes such a "piercing point" p is this: $K-p$ is 1 -ULC. Using this result, we find (Theorems 2 and 3) that p is a piercing point of K if and only if S is arcwise accessible at p by a tame arc from $S^{3}-K$ (note: perhaps S cannot be pierced with a tame arc at p, even if p is a piercing point of K). Thus, the "tamely arcwise accessible" property is independent of the embedding of K in S^{3}. The corollary to Theorem 2 gives an alternate proof of an as yet unpublished fact, first proven by R. H. Bing: a topological 2 -sphere in S^{3} is arcwise accessible at each point by a tame arc from at least one of its complementary domains.

In the last section of the paper, we give two applications of the above theorems. First, we show in Theorem 4 that S can be pierced with a tame arc at p if and only if p is a piercing point of both K and the closure of $S^{3}-K$. Finally, we remark in Theorem 5 that S can be pierced with a tame arc at each of its points if it is "free" in the sense that for each $\varepsilon>0, S$ can be mapped into each of its complementary domains by a mapping which moves each point less than ε. It is not known whether each 2 -sphere S with this last property is tame.

A space homeomorphic to such a set K in S^{3} (as described at the beginning of the Introduction) is called a crumpled cube. We write Bd $K=S$ and Int $K=K-\mathrm{Bd} K$. An arc A in S^{3} is said to pierce a 2 -sphere S in S^{3} if $A \cap S$ is an interior point p of A and the two components of $A-p$ lie in different components of $S^{3}-S$. The piercing points of a crumpled cube are defined as above and were first considered by Martin [10]. It follows from Lemmas 2 and 3 of [10] and [6; Th. 11] that the nonpiercing points of a crumpled cube K form a O-dimensional F_{σ} subset of Bd K.

If C and D are subsets of a space Y with metric d, and $\varepsilon>0$, we use $B(C, D ; \varepsilon)$ to denote the set of all points $x \in D$ such that for some $y \in C, d(x, y)<\varepsilon$. The metric on E^{3} and S^{3} is always assumed to be the ordinary Euclidean one. Let $\Delta^{n}(n \geqq 1)$ denote a closed n -
simplex. If Y is a metric space and $A \subset Y$, we say that A is n-LC $(n \geqq 0)$ at $p \in \mathrm{Cl} A \subset Y(\mathrm{Cl} A=$ the closure of $A)$ if for each $\varepsilon>0$ there is a $\delta>0$ such that each mapping of $\mathrm{Bd} \Delta^{n+1}$ into $B(p, A ; \delta)$ extends to a mapping of Δ^{n+1} into $B(p, A ; \varepsilon)$. We say that A is n ULC $(n \geqq 0)$ if for each $\varepsilon>0$ there is a $\delta>0$ such that each mapping of $\mathrm{Bd} \Delta^{n+1}$ into a subset of A of diameter less than δ extends to a mapping of Δ^{n+1} into a subset of A of diameter less than ε. We refer to a mapping $f: \mathrm{Bd} \Delta^{2} \rightarrow Y$ as a loop.

By a null sequence of subsets of a metric space, we mean one such that the diameters of its elements converge to zero. A Sierpinski curve X is (uniquely) defined as any space homeomorphic to $\left[\operatorname{Bd} \Delta^{3}\right]-\cup \operatorname{Int} D_{i}$, where D_{1}, D_{2}, \cdots, is a null sequence of disjoint 2-cells whose union is a dense subset of $\mathrm{Bd} \Delta^{3}$. The inaccessible part of X corresponds to $\left[\mathrm{Bd} \Delta^{3}\right]-\bigcup D_{i}$. For a more detailed discussion of Sierpinski curves, see [3].
2. Preliminary lemmas. The following is Theorem 1 of [12], stated here for the reader's convenience.

Lemma 1. Let C be a q-cell ($q=1,2$, or 3) topologically embedded in E^{3}, and let $D \subset \mathrm{Bd} C$ be $a(q-1)$-cell. Let $A_{1}, A_{2}, \cdots, A_{k}$ be a finite disjoint collection of tame arcs in $E^{3}-D$ with each Bd $A_{i} \subset E^{3}-C$. Then, there exists a compact set $E \subset C-D$ such that, for each $\varepsilon>0$, there is a homeomorphism $h: E^{3} \rightarrow E^{3}$ with each $h\left(A_{i}\right) \subset$ $E^{3}-C$ and h is the identity outside the ε-neighborhood of E.

We shall also need the following [5; Th. 2].
Lemma 2. Let B be a closed subset of Δ^{2}; let A be a subset of the separable metric space Y and suppose that A is O-LC and 1-LC at each point of Y. Let $\varepsilon>0$ and a mapping $f: \Delta^{2} \rightarrow \mathrm{Cl} A$ be given. Then, There is a mapping $f^{*}: \Delta^{2} \rightarrow \mathrm{Cl} A$ such that

$$
f^{*}\left(\Delta^{2}-B\right) \subset A, f^{*}|B=f| B, \text { and } d\left(f^{*}(x), f(x)\right)<\varepsilon
$$

for each $x \in \Delta^{2}$, where d is the metric for Y.

Let X be a topological space, and Y a closed subset of X. A loop $f: \mathrm{Bd} \Delta^{2} \rightarrow X$ will be said to be contractible in $X(\bmod Y)$ if there exists a connected open set N in Δ^{2} such that $\mathrm{Bd} \Delta^{2} \subset N$, and a mapping $F: \mathrm{Cl} N \rightarrow X$ such that $F \mid \mathrm{Bd} \Delta^{2}=f$, and F maps the (point-set) boundary of N (in Δ^{2}) into Y.

Lemma 3. Let K be a crumpled cube in S^{3}, and let U be an
open subset of K such that $U \cap \mathrm{Bd} K$ is an open 2-cell T. Let A be a compact subset of K such that $A \cap \mathrm{Bd} K$ consists of a single point p in T, where $K^{*}-p$ is 1-LC at p and K^{*} is the crumpled cube S^{3} - Int K. Then, if a loop in $U-A$ is contractible in $U-A$ $(\bmod T-p)$, it is contractible to a point in $(U-A) \cup(W-A)$, where W is any open set in S^{3} containing p.

Proof. Let N be a connected open set in Δ^{2} containing $\operatorname{Bd} \Delta^{2}$, let W be an open set in S^{3} containing p, and let

$$
F: \mathrm{Cl} N \rightarrow U-A
$$

be a mapping which takes the boundary B of N in Δ^{2} into $T-p$. By the homotopy extension theorem, $F \mid B: B \rightarrow T$ extends to a mapping $G: \Delta^{2} \rightarrow T$. Hence, by Lemma 2, and the fact that $K^{*}-p$ is 1-LC at $p, F \mid B$ extends to

$$
G^{*}: \Delta^{2} \rightarrow[T-p] \cup\left[\left(W \cap K^{*}\right)-p\right] .
$$

Finally, define $H: \Delta^{2} \rightarrow(U-A) \cup(W-A)$ by $H|\mathrm{Cl} N=F| \mathrm{Cl} N$ and $H\left|\Delta^{2}-N=G^{*}\right| \Delta^{2}-N$. Then H is the required contraction of $F \mid \operatorname{Bd} \Delta^{2}$.

Remark. Given the notation of the lemma, and a loop $f: \operatorname{Bd} \Delta^{2}$ $\rightarrow U-A$, a necessary condition for f to be contractible to a point in $(U-A) \cup(\mathrm{W}-A)$, where W is a small neighborhood of p in S^{3}, is that f be contractible in $U-A(\bmod T-p)$.

3. Characterizations of piercing points.

Theorem 1. Let K be a crumpled cube and p a point of $\operatorname{Bd} K$. Then p is a piercing point of K if and only if $K-p$ is 1-LC at p.

Proof. We may assume, by [8] and [9], that K is embedded in S^{3} in such a manner that there exists a homeomorphism h of C, the closure of $S^{3}-K$, onto the closed unit ball in E^{3}. Let A be the inverse image under h of the straight line segment in E^{3} from the origin to $h(p)$. Then A is an arc which is locally tame in S^{3} except possibly at p, and according to Martin [10], p is a piercing point of K if and only if A is tame. By [11, Lemma 5], A is tame if and only if $S^{3}-A$ is 1 -LC at p. Hence the problem is reduced to showing that $S^{3}-A$ is 1-LC at p if and only if $K-p$ is $1-\mathrm{LC}$ at p.

We shall give the details of the "if" part of the above assertion. The converse is merely a rearrangement of the same ideas. Suppose
$K-p$ is 1 -LC at p, and let ε be a positive number. We must find a $\delta>0$ such that each loop in $\mathrm{B}\left(p, S^{3}-A ; \delta\right)$ is contractible in $B\left(p, S^{3}-A ; \varepsilon\right)$. We assume that ε is less than the distance from p to $h^{-1}((0,0,0))$. Since $K-p$ is 1-LC at p, there exists $\rho>0$ such that each loop in $B(p, K-p ; \rho)$ is contractible in $B(p, K-p ; \varepsilon)$. Let U be an open subset of S^{3} such that $p \in U \subset B\left(p, S^{3} ; \rho\right)$ and such that there is a homeomorphism of $U \cap C$ onto the set of points in E^{3} having nonnegative z-coordinates which takes $U \cap A$ into the z-axis. Finally, choose $\delta>0$ so that $B\left(p, S^{3} ; \delta\right) \subset U$.

Now, a given loop in $B\left(p, S^{3}-A ; \delta\right)$ is homotopic in $U-A$ to a loop in

$$
(U \cap K)-p \subset B(p, K-p ; \rho)
$$

and this loop in turn is contractible to a point in $B(p, K-p ; \varepsilon)$, as required.

Remark. Since K is compact and locally contractible, the condition " $K-p$ is $1-\mathrm{LC}$ at p " is equivalent to " $K-p$ is 1 -ULC".

Corollary. Let K be a crumpled cube, and p a point of $S=$ $\operatorname{Bd} K$. Then p is a piercing point of K if and only if the following condition holds: For each $\varepsilon>0$, there is a $\delta>0$ such that each simple closed curve in $B(p, S-p ; \delta)$ is contractible in $B(p, K-p ; \varepsilon)$.

Proof. The condition is necessary by the preceding theorem. To show sufficiency, assume the notation of the preceding proof and let $\varepsilon>0$ be given as before. Let $\delta>0$ be chosen to satisfy the above condition and so that only the component of $A-B\left(p, S^{3} ; \delta\right)$ which contains $h^{-1}((0,0,0))$ fails to lie in $B\left(p, S^{3} ; \varepsilon\right)$. We also assume that A is locally polyhedral at each point of $A-p$. Then, each piecewiselinear homeomorphism

$$
f: \mathrm{Bd} \Delta^{2} \rightarrow B\left(p, S^{3}-A ; \delta\right)
$$

extends to a piecewise-linear mapping F of Δ^{2} into $B\left(p, S^{3}-p ; \delta\right)$ such that F is in general position relative to A. Hence $F^{-1}(A)$ is finite. If $x \in F^{-1}(A)$, then F restricted to a sufficiently small curve enclosing x represents a loop in $B\left(p, S^{3}-A ; \delta\right)$ which is homotopic in $B\left(p, S^{3}-\right.$ $A ; \varepsilon)$ to a loop in $B(p, S-p ; \delta)$, and hence is contractible in $B(p, K-$ $p ; \varepsilon)$. This permits us to redefine F in a small neighborhood of each $x \in F^{-1}(A)$, and thus obtain an extension of f mapping Δ^{2} into $B\left(p, S^{3}-\right.$ $A ; \varepsilon)$. Hence $S^{3}-A$ is $1-\mathrm{LC}$ at p and the result follows.

Lemma 4. Let K be a crumpled cube in S^{3}, and p a piercing
point of the crumpled cube $K^{*}=S^{3}$ - Int K. Suppose A is an arc in K having p as an end-point, such that $A \cap S=p$, where $S=\mathrm{Bd}$ K. If there exists a homeomorphism $h: K \rightarrow S^{3}$ such that $h(A)$ is tame, then A is tame.

Proof. Since $h(A)$ is tame, A is locally tame in S^{3} except possibly at p. Hence, by [11; Lemma 5], it suffices to show that $S^{3}-A$ is 1-LC at p. Suppose $\varepsilon>0$. Let U be an open set in S^{3} such that $p \in U \subset B\left(p, S^{3} ; \varepsilon\right)$ and $U \cap S$ is an open 2-cell T. Since h is a homeomorphism, and since $S^{3}-h(A)$ is 1-LC at $h(p)$, there exists $\rho>0$ such that each loop in $B(p, K-A ; \rho)$ is contractible in $(U \cap K)-A$ $(\bmod T-p)$. Choose $\mu>0$ so that each loop in $B\left(p, K^{*} ; \mu\right)$ is contractible in $B\left(p, K^{*} ; \rho\right)$. Finally, let $\delta>0$ be such that each pair of points in $B(p, S ; \delta)$ can be joined by an arc in $B(p, S ; \mu)$.

Now let a loop in $B\left(p, S^{3}-A ; \delta\right)$ be given. We give here an outline of the proof that this loop is contractible in $B\left(p, S^{3}-A ; \varepsilon\right)$. The details are left to the reader. There are three steps:

1. After performing a small homotopy in $B\left(p, S^{3}-A ; \delta\right)$, we assume that this loop is a simple closed curve J such that $J \cap K^{*}$ consists of a finite number of disjoint $\operatorname{arcs} L_{1}, L_{2}, \cdots, L_{k}$, with $L_{i} \cap$ $S=\mathrm{Bd} L_{i}$, for each i.
2. For each i, let Z_{i} be an arc in $B(p, S ; \mu)-p$ joining the endpoints of L_{i}. Then L_{i} is homotopic in $B\left(p, K^{*} ; \rho\right)$, with end-points fixed, to Z_{i}. Since $K^{*}-p$ is 1-LC at p, Lemma 2 allows us to adjust this homotopy to give one in $B\left(p, K^{*} ; \rho\right)-p$ between L_{i} and Z_{i}. Hence, by piecing together these homotopies, we see that the given loop is homotopic in $B\left(p, S^{3}-A ; \rho\right)$ to the loop

$$
\left[J-\bigcup \operatorname{Int} L_{i}\right] \cup \cup Z_{i}
$$

in $B(p, K-A ; \rho)$.
3. This last loop is contractible in $(U \cap K)-A(\bmod T-p)$. Hence, by Lemma 3, it is contractible to a point in $B\left(p, S^{3}-A ; \varepsilon\right)$. This completes the proof.

Remark. Using the same techniques, and Lemma 3, we could prove this lemma with "tame" replaced consistently by "cellular" or "has a simply-connected complement in S^{3} " everywhere in its statement. In these two alternate formulations, we could permit A to be any compact absolute retract, and p any point of A.

Theorem 2. Let K be a crumpled cube in S^{3}, and p a point of $S=\operatorname{Bd} K . \quad$ If p is a piercing point of K, then there is a tame arc A in $K^{*}=S^{3}-\operatorname{Int} K$ having p as an end-point such that $A \cap S=p$.

Proof. By Lemma 4, it suffices to show that there is an arc A in K^{*} having p as an end-point such that $A \cap S=p$, and such that for some embedding $h: K^{*} \rightarrow S^{3}, h(A)$ is tame. We choose h so that the closure of $S^{3}-h\left(K^{*}\right)$ is a 3 -cell ([8] and [9]). Hence, the theorem will follow as stated above if we can prove it in the special case when K is a closed 3-cell. We make this assumption to simplify the notation.

Let f be a homeomorphism of the closed unit ball B in E^{3} onto K, with $f((0,0,1))=p$. Let $T_{i}(i=1,2, \cdots)$ be the 2 -cell which is the f-image of the intersection of B with the plane $z=1-1 / i$. Let the 3 -cell $C_{i}(i=1,2, \cdots)$ be defined inductively as follows: C_{1} is the closure of the component of $K-T_{1}$ not containing $p ; C_{i}(i \geqq 2)$ is the closure of the component of

$$
K-T_{i}-\bigcup_{j<i} C_{j}
$$

not containing p. Finally, let A^{*} be a tame arc in S^{3} having p as one end-point and the other end-point not in K. We assume that $A^{*} \cap C_{1}=\phi$.

According to Lemma 1 , there is for each $i>1$, a homeomorphism $g_{i}: S^{3} \rightarrow S^{3}$ which is the identity outside a small neighborhood U_{i} of T_{i} and which is such that $g_{i}\left(A^{*}\right) \cap T_{i}=\phi$. In particular, the $U_{i}^{\prime} \mathrm{s}$ may be chosen to form a null sequence of disjoint sets. Let g be the homeomorphism of S^{3} onto itself which agrees with g_{i} on U_{i}, for each i, and otherwise is the identity. Then $g\left(A^{*}\right) \cap T_{i}=\phi$, for each i, and $g(p)=p$.

Again using Lemma 1, there is, for each $i>1$, a compact set $E_{i} \subset C_{i}-\left(T_{i} \cup T_{i-1}\right)$ (by the previous paragraph, there is a 2 -cell in $\operatorname{Bd} C_{i}$ containing $T_{i} \cup T_{i-1}$ and missing $g\left(A^{*}\right)$) and a homeomorphism $k_{i}: S^{3} \rightarrow S^{3}$ which is the identity outside an arbitrarily small neighborhood V_{i} of E_{i} and which is such that $k_{i} g\left(A^{*}\right) \cap C_{i}=\phi$, for each i. We choose V_{i} so close to E_{i} that the V_{i} 's form a null sequence of disjoint sets, and so that V_{i} misses the closure of $K-C_{i}$. Let k be the homeomorphism of S^{3} onto itself which agrees with k_{i} on V_{i}, for each i, and reduces to the identity otherwise. Then $A=k g\left(A^{*}\right)$ is the required arc.

Corollary (Bing). A topological 2-sphere in S^{3} is arcwise accessible at each point by a tame arc from at least one of its complementary domains.

Proof. Let K and K^{*} be the two crumpled cubes into which the 2 -sphere S decomposes S^{3}. If $p \in S$, then either p is a piercing point of K, or p is a piercing point of $K^{*}([10$; Theorem $])$. The result
then follows from the preceding theorem.

Theorem 3. Let K be a crumpled cube in S^{3}, and p a point of $S=\operatorname{Bd} K$. If there is a tame arc A in $K^{*}=S^{3}$ - Int K having p as an end-point and such that $A \cap S=p$, then p is a piercing point of K.

Proof. It suffices to establish the condition given in the corollary to Theorem 1. Thus, take $\varepsilon>0$. We assume that ε is less than the distance between p and q, where q is the other end-point of A. Choose $\delta>0$ so that $B(p, S ; \delta)$ lies interior to a closed 2-cell $D \subset$ $B(p, S ; \varepsilon)$.

Since A is locally tame at p, there is a tame 2 -sphere

$$
Z^{*} \subset B\left(p, S^{3} ; \delta\right)
$$

which separates p from q in S^{3} and which meets A at precisely one point $r \in \operatorname{Int} A$, at which A pierces Z^{*}. Let T be a small closed 2 cell in Z^{*} missing K and such that $r \in \operatorname{Int} T$. Note that, by linking considerations, $\mathrm{Bd} T$ is not contractible in $B\left(p, K^{*} ; \varepsilon\right)-A$.

Appealing to [2; Th. 1] and [4; Th. 1], we obtain, for each $\rho>0$, a tame Sierpinski curve $X \subset S$ such that each component U_{i} ($i=1,2, \cdots$) of $S-X$ has diameter less than ρ, and a homeomorphism $h: S^{3} \rightarrow S^{3}$ which moves each point of S^{3} less than ρ, which is the identity outside $B\left(Z^{*} \cap S, S^{3} ; \rho\right)$, and which is such that $h\left(Z^{*}\right) \cap X$ consists of a finite disjoint collection of simple closed curves each in the inaccessible part of X. Let $Z=h\left(Z^{*}\right)$. By choosing ρ sufficiently small, we may ensure that h is the identity on T and that Z retains all the properties originally required of Z^{*}. A final requirement on ρ is that $\rho<\varepsilon-\delta$ and that the component of $S-X$ containing p should not meet Z (if $p \in X$, then S can be pierced with a tame arc at p, by [6; Th. 6]).

We assert that there is at least one component of $Z \cap S$ separating p from $\mathrm{Bd} D$ in D (this component is necessarily a simple closed curve). If not, then $Z \cap X$ consists of a finite number of simple closed curves each of which is contractible in $D-p$, and $Z \cap(S-X)$ can be covered by the null sequence of disjoint open 2-cells of diameter less than ρ in $S: U_{1}, U_{2}, \cdots$. Note that $U_{i} \cap Z$ is compact. It is now easy, using the homotopy extension theorem on each of the inclusions $U_{i} \cap Z \rightarrow U_{i}$ as in the proof of Lemma 3, to construct a mapping contracting Bd T in

$$
\left[K^{*} \cap(Z-\operatorname{Int} T)\right] \cup[B(p, S-p ; \varepsilon)] \subset B\left(p, K^{*} ; \varepsilon\right)-A
$$

a contradiction.

By the preceding paragraph, we may let L be an innermost (in $Z-T$) one of the components of $S \cap Z$ which separates p from Bd D in D. Let L bound the 2-cell $F \subset Z-T$. Note that L is not contractible in $B\left(p, K^{*} ; \varepsilon\right)-A$ and that no component of $S \cap \operatorname{Int} F$ separates p from $\mathrm{Bd} D$ in D. Hence, by the argument of the preceding paragraph, the "large" component of $F-S$ lies in Int K, and L is contractible in

$$
[K \cap F] \cup[B(p, S-p ; \varepsilon)] \subset B(p, K-p ; \varepsilon)
$$

Since each simple closed curve in $B(p, S-p ; \delta)$ is homotopic in $D-p$ to L, the proof is complete.

4. Some applications,

Theorem 4. Let S be a 2-sphere topologically embedded in S^{3}, and let K and K^{*} be the two crumpled cubes into which S divides S^{3}. Then S can be pierced with a tame arc at a point $p \in S$ if and only if p is a piercing point of K and a piercing point of K^{*}.

Proof. The "only if" part of the theorem follows from Theorem 3. For the converse, suppose that p is a piercing point of each of K and K^{*}, and let A be an arc in S such that A is locally tame except possibly at the end-point p. By [6; Th. 6], S can be pierced with a tame arc at p if A is tame.

To show that A is tame, we proceed in essentially the same manner as in the proof of [6; Lemma 6.1]. That is, let S^{\prime} be a 2 -sphere in S^{3} which contains A and is locally tame at each point of $S^{\prime}-A$, and which is homeomorphically so close to S that p is a piercing point of each of the crumpled cubes L and L^{*} into which S^{\prime} divides S^{3} (use Theorems 2 and 3). It suffices to show that $S^{\prime \prime}$ is tame.

Exactly as in [6], S^{\prime} is locally tame at each point of $A-p$. Hence, S^{\prime} is locally tame except possibly at p. It follows easily, since $L-p$ and $L^{*}-p$ are each 1-LC at p, that $S^{3}-S^{\prime}$ is 1-LC at each point of S^{\prime} and hence that S^{\prime} is tame by [1; Th. 6]. This completes the proof.

In [7], Hempel studied the properties of a surface $S(=\mathrm{Bd} K)$ which is free relative to one of its complementary domains (Int K) in S^{3} (i.e., S satisfies the mapping condition stated in the following theorem). It is not known whether the crumpled cube of this theorem is necessarily a 3 -cell.

Theorem 5. Let K be a crumpled cube, and let $S=\mathrm{Bd} K . \quad$ Suppose that for each $\varepsilon>0$ there exists a mapping $f: S \rightarrow$ Int K which
moves each point of S less than ε. Then each point of S is a piercing point of K.

Proof. We shall verify the condition given in the corollary to Theorem 1. Suppose $p \in S$ and $\varepsilon>0$. Choose $\delta>0$ so that there is a closed 2 -cell $D \subset S$ such that

$$
B(p, S ; \delta) \subset D \subset B(p, S ; \varepsilon)
$$

Then, if J is a simple closed curve in $B(p, S-p ; \delta)$ bounding a 2 cell $D^{*} \subset D$, there is a $\rho>0$ such that ρ is less than the distance from D to the complement of $B(p, K ; \varepsilon)$ and such that each mapping of J into K which moves each point of J less than ρ is homotopic in $B(p, K-p ; \delta)$ to the inclusion of J into $B(p, K-p ; \delta)$.

Suppose $f: S \rightarrow$ Int K is a mapping which moves each point of S less than ρ. Then J is homotopic in $B(p, K-p ; \delta)$ to $f(J)$, and $f(J)$ bounds the singular 2 -cell

$$
f\left(D^{*}\right) \subset B(p, K ; \varepsilon)-S
$$

This completes the proof.
Remark. If $S \subset S^{3}$ is a topological 2-sphere which is free relative to each of its complementary domains, then it follows from the foregoing theorems that S can be pierced with a tame arc at each of its points.

References

1. R. H. Bing, A surface is tame if its complement is 1-ULC, Trans. Amer. Math. Soc. 101 (1961), 294-305.
2. ——, Each disk in E^{3} contains a tame arc, Amer. J. Math. 84 (1962), 583-590.
3. ——, Pushing a 2-sphere into its complement, Michigan Math. J. 11 (1964), 33-45.
4. Improving the intersections of lines and surfaces, Michigan Math. J. 14 (1967), 155-159.
5. S. Eilenberg and R. L. Wilder, Uniform local connectedness and contractibility, Amer. J. Math. 64 (1942), 613-622.
6. D. S. Gillman, Side approximation, missing an arc, Amer. J. Math. 85 (1963), 459-476.
7. John Hempel, Free surfaces in S^{3} (to appear).
8. N. Hosay, The sum of a real cube and a crumpled cube is S^{3} (corrected title), Abstract 607-17, Notices Amer. Math. Soc. 10 (1963), 666.
9. L. L. Lininger, Some results on crumpled cubes, Trans. Amer. Math. Soc. 118 (1965), 534-549.
10. Joseph Martin, The sum of two crumpled cubes, Michigan Math. J. 13 (1966), 147-151.
11. D. R. McMillan, Jr., Local properties of the embedding of a graph in a 3-manifold, Canad. J. Math. 18 (1966), 517-528.
12. -, A criterion for cellularity in a manifold, II, Trans. Amer. Math. Soc. 126 (1967), 217-224.

Received July 25, 1966. This research was supported in part by Grant NSF GP-4125. The author is an Alfred P. Sloan Fellow.

The University of Virginia
Charlottesville, Virginia

