SOME TOPOLOGICAL PROPERTIES OF PIERCING POINTS

D. R. MCMILLAN, JR.

Let K be the closure of one of the complementary domains of a 2-sphere S topologically embedded in the 3-sphere, S^3 . We give first (Theorem 1) a characterization of those points $p \in S$ with the following property: there exists a homeomorphism $h: K \to S^3$ such that h(S) can be pierced with a tame arc at h(p). The topological property of K which distinguishes such a "piercing point" p is this: K - p is 1-ULC. Using this result, we find (Theorems 2 and 3) that p is a piercing point of K if and only if S is arcwise accessible at p by a tame arc from $S^3 - K$ (note: perhaps S cannot be pierced with a tame arc at p, even if p is a piercing point of K). Thus, the "tamely arcwise accessible" property is independent of the embedding of K in S^3 . The corollary to Theorem 2 gives an alternate proof of an as yet unpublished fact, first proven by **R.** H. Bing: a topological 2-sphere in S^3 is arcwise accessible at each point by a tame arc from at least one of its complementary domains.

In the last section of the paper, we give two applications of the above theorems. First, we show in Theorem 4 that Scan be pierced with a tame arc at p if and only if p is a piercing point of both K and the closure of $S^3 - K$. Finally, we remark in Theorem 5 that S can be pierced with a tame arc at each of its points if it is "free" in the sense that for each $\varepsilon > 0$, S can be mapped into each of its complementary domains by a mapping which moves each point less than ε . It is not known whether each 2-sphere S with this last property is tame.

A space homeomorphic to such a set K in S^3 (as described at the beginning of the Introduction) is called a *crumpled cube*. We write Bd K = S and Int K = K - Bd K. An arc A in S^3 is said to *pierce* a 2-sphere S in S^3 if $A \cap S$ is an interior point p of A and the two components of A - p lie in different components of $S^3 - S$. The *piercing points of a crumpled cube* are defined as above and were first considered by Martin [10]. It follows from Lemmas 2 and 3 of [10] and [6; Th. 11] that the nonpiercing points of a crumpled cube K form a O-dimensional F_q subset of Bd K.

If C and D are subsets of a space Y with metric d, and $\varepsilon > 0$, we use $B(C, D; \varepsilon)$ to denote the set of all points $x \in D$ such that for some $y \in C$, $d(x, y) < \varepsilon$. The metric on E^3 and S^3 is always assumed to be the ordinary Euclidean one. Let $\Delta^n (n \ge 1)$ denote a closed nsimplex. If Y is a metric space and $A \subset Y$, we say that A is *n*-LC $(n \ge 0)$ at $p \in \operatorname{Cl} A \subset Y(\operatorname{Cl} A = \operatorname{the closure of } A)$ if for each $\varepsilon > 0$ there is a $\delta > 0$ such that each mapping of $\operatorname{Bd} \varDelta^{n+1}$ into $B(p, A; \delta)$ extends to a mapping of \varDelta^{n+1} into $B(p, A; \varepsilon)$. We say that A is *n*-ULC $(n \ge 0)$ if for each $\varepsilon > 0$ there is a $\delta > 0$ such that each mapping of $\operatorname{Bd} \varDelta^{n+1}$ into a subset of A of diameter less than δ extends to a mapping of \varDelta^{n+1} into a subset of A of diameter less than ε . We refer to a mapping $f : \operatorname{Bd} \varDelta^2 \to Y$ as a loop.

By a null sequence of subsets of a metric space, we mean one such that the diameters of its elements converge to zero. A Sierpinski curve X is (uniquely) defined as any space homeomorphic to $[\operatorname{Bd} \Delta^{\mathfrak{s}}] - \bigcup \operatorname{Int} D_{\mathfrak{i}}$, where $D_{\mathfrak{l}}, D_{\mathfrak{l}}, \cdots$, is a null sequence of disjoint 2-cells whose union is a dense subset of $\operatorname{Bd} \Delta^{\mathfrak{s}}$. The inaccessible part of X corresponds to $[\operatorname{Bd} \Delta^{\mathfrak{s}}] - \bigcup \operatorname{D}_{\mathfrak{i}}$. For a more detailed discussion of Sierpinski curves, see [3].

2. Preliminary lemmas. The following is Theorem 1 of [12], stated here for the reader's convenience.

LEMMA 1. Let C be a q-cell (q = 1, 2, or 3) topologically embedded in E^3 , and let $D \subset Bd C$ be a (q - 1)-cell. Let A_1, A_2, \dots, A_k be a finite disjoint collection of tame arcs in $E^3 - D$ with each $Bd A_i \subset E^3 - C$. Then, there exists a compact set $E \subset C - D$ such that, for each $\varepsilon > 0$, there is a homeomorphism $h : E^3 \to E^3$ with each $h(A_i) \subset E^3 - C$ and h is the identity outside the ε -neighborhood of E.

We shall also need the following [5; Th. 2].

LEMMA 2. Let B be a closed subset of Δ^2 ; let A be a subset of the separable metric space Y and suppose that A is O-LC and 1-LC at each point of Y. Let $\varepsilon > 0$ and a mapping $f: \Delta^2 \rightarrow \text{Cl } A$ be given. Then, There is a mapping $f^*: \Delta^2 \rightarrow \text{Cl } A$ such that

$$f^*(\varDelta^2 - B) \subset A, f^* \mid B = f \mid B, and d(f^*(x), f(x)) < \varepsilon$$

for each $x \in \Delta^2$, where d is the metric for Y.

Let X be a topological space, and Y a closed subset of X. A loop $f: \operatorname{Bd} \Delta^2 \to X$ will be said to be *contractible in* X (mod Y) if there exists a connected open set N in Δ^2 such that $\operatorname{Bd} \Delta^2 \subset N$, and a mapping $F: \operatorname{Cl} N \to X$ such that $F | \operatorname{Bd} \Delta^2 = f$, and F maps the (point-set) boundary of N (in Δ^2) into Y.

LEMMA 3. Let K be a crumpled cube in S^3 , and let U be an

open subset of K such that $U \cap Bd K$ is an open 2-cell T. Let A be a compact subset of K such that $A \cap Bd K$ consists of a single point p in T, where $K^* - p$ is 1-LC at p and K^* is the crumpled cube $S^3 - Int K$. Then, if a loop in U - A is contractible in U - A(mod T - p), it is contractible to a point in $(U - A) \cup (W - A)$, where W is any open set in S^3 containing p.

Proof. Let N be a connected open set in Δ^2 containing Bd Δ^2 , let W be an open set in S^3 containing p, and let

$$F: \operatorname{Cl} N \to U - A$$

be a mapping which takes the boundary B of N in Δ^2 into T - p. By the homotopy extension theorem, $F | B : B \to T$ extends to a mapping $G : \Delta^2 \to T$. Hence, by Lemma 2, and the fact that $K^* - p$ is 1-LC at p, F | B extends to

$$G^*: \varDelta^2 \rightarrow [T-p] \cup [(W \cap K^*) - p]$$
.

Finally, define $H: \Delta^2 \to (U - A) \cup (W - A)$ by $H | \operatorname{Cl} N = F | \operatorname{Cl} N$ and $H | \Delta^2 - N = G^* | \Delta^2 - N$. Then H is the required contraction of $F | \operatorname{Bd} \Delta^2$.

REMARK. Given the notation of the lemma, and a loop $f: \operatorname{Bd} \Delta^2 \to U - A$, a necessary condition for f to be contractible to a point in $(U - A) \cup (W - A)$, where W is a small neighborhood of p in S^3 , is that f be contractible in U - A (mod T - p).

3. Characterizations of piercing points.

THEOREM 1. Let K be a crumpled cube and p a point of Bd K. Then p is a piercing point of K if and only if K - p is 1-LC at p.

Proof. We may assume, by [8] and [9], that K is embedded in S^3 in such a manner that there exists a homeomorphism h of C, the closure of $S^3 - K$, onto the closed unit ball in E^3 . Let A be the inverse image under h of the straight line segment in E^3 from the origin to h(p). Then A is an arc which is locally tame in S^3 except possibly at p, and according to Martin [10], p is a piercing point of K if and only if A is tame. By [11, Lemma 5], A is tame if and only if $S^3 - A$ is 1-LC at p. Hence the problem is reduced to showing that $S^3 - A$ is 1-LC at p if and only if K - p is 1-LC at p.

We shall give the details of the "if" part of the above assertion. The converse is merely a rearrangement of the same ideas. Suppose K-p is 1-LC at p, and let ε be a positive number. We must find a $\delta > 0$ such that each loop in $B(p, S^3 - A; \delta)$ is contractible in $B(p, S^3 - A; \varepsilon)$. We assume that ε is less than the distance from p to $h^{-1}((0, 0, 0))$. Since K - p is 1-LC at p, there exists $\rho > 0$ such that each loop in $B(p, K - p; \rho)$ is contractible in $B(p, K - p; \varepsilon)$. Let U be an open subset of S^3 such that $p \in U \subset B(p, S^3; \rho)$ and such that there is a homeomorphism of $U \cap C$ onto the set of points in E^3 having nonnegative z-coordinates which takes $U \cap A$ into the z-axis. Finally, choose $\delta > 0$ so that $B(p, S^3; \delta) \subset U$.

Now, a given loop in $B(p, S^3 - A; \delta)$ is homotopic in U - A to a loop in

$$(U \cap K) - p \subset B(p, K - p; \rho)$$
,

and this loop in turn is contractible to a point in $B(p, K - p; \varepsilon)$, as required.

REMARK. Since K is compact and locally contractible, the condition "K - p is 1-LC at p" is equivalent to "K - p is 1-ULC".

COROLLARY. Let K be a crumpled cube, and p a point of S =Bd K. Then p is a piercing point of K if and only if the following condition holds: For each $\varepsilon > 0$, there is a $\delta > 0$ such that each simple closed curve in $B(p, S - p; \delta)$ is contractible in $B(p, K - p; \varepsilon)$.

Proof. The condition is necessary by the preceding theorem. To show sufficiency, assume the notation of the preceding proof and let $\varepsilon > 0$ be given as before. Let $\delta > 0$ be chosen to satisfy the above condition and so that only the component of $A - B(p, S^3; \delta)$ which contains $h^{-1}((0, 0, 0))$ fails to lie in $B(p, S^3; \varepsilon)$. We also assume that A is locally polyhedral at each point of A - p. Then, each piecewise-linear homeomorphism

$$f: \operatorname{Bd} \Delta^2 \to B(p, S^3 - A; \delta)$$

extends to a piecewise-linear mapping F of \varDelta^2 into $B(p, S^3 - p; \delta)$ such that F is in general position relative to A. Hence $F^{-1}(A)$ is finite. If $x \in F^{-1}(A)$, then F restricted to a sufficiently small curve enclosing x represents a loop in $B(p, S^3 - A; \delta)$ which is homotopic in $B(p, S^3 - A; \epsilon)$ to a loop in $B(p, S - p; \delta)$, and hence is contractible in $B(p, K - p; \epsilon)$. This permits us to redefine F in a small neighborhood of each $x \in F^{-1}(A)$, and thus obtain an extension of f mapping \varDelta^2 into $B(p, S^3 - A; \epsilon)$. Hence $S^3 - A$ is 1-LC at p and the result follows.

LEMMA 4. Let K be a crumpled cube in S^3 , and p a piercing

point of the crumpled cube $K^* = S^3 - \text{Int } K$. Suppose A is an arc in K having p as an end-point, such that $A \cap S = p$, where S = Bd K. If there exists a homeomorphism $h: K \to S^3$ such that h(A) is tame, then A is tame.

Proof. Since h(A) is tame, A is locally tame in S^3 except possibly at p. Hence, by [11; Lemma 5], it suffices to show that $S^3 - A$ is 1-LC at p. Suppose $\varepsilon > 0$. Let U be an open set in S^3 such that $p \in U \subset B(p, S^3; \varepsilon)$ and $U \cap S$ is an open 2-cell T. Since h is a homeomorphism, and since $S^3 - h(A)$ is 1-LC at h(p), there exists $\rho > 0$ such that each loop in $B(p, K - A; \rho)$ is contractible in $(U \cap K) - A$ (mod T - p). Choose $\mu > 0$ so that each loop in $B(p, K^*; \mu)$ is contractible in $B(p, K^*; \rho)$. Finally, let $\delta > 0$ be such that each pair of points in $B(p, S; \delta)$ can be joined by an arc in $B(p, S; \mu)$.

Now let a loop in $B(p, S^3 - A; \delta)$ be given. We give here an outline of the proof that this loop is contractible in $B(p, S^3 - A; \varepsilon)$. The details are left to the reader. There are three steps:

1. After performing a small homotopy in $B(p, S^3 - A; \delta)$, we assume that this loop is a simple closed curve J such that $J \cap K^*$ consists of a finite number of disjoint arcs L_1, L_2, \dots, L_k , with $L_i \cap S = \operatorname{Bd} L_i$, for each i.

2. For each *i*, let Z_i be an arc in $B(p, S; \mu) - p$ joining the endpoints of L_i . Then L_i is homotopic in $B(p, K^*; \rho)$, with end-points fixed, to Z_i . Since $K^* - p$ is 1-LC at *p*, Lemma 2 allows us to adjust this homotopy to give one in $B(p, K^*; \rho) - p$ between L_i and Z_i . Hence, by piecing together these homotopies, we see that the given loop is homotopic in $B(p, S^3 - A; \rho)$ to the loop

$$[J - \bigcup \operatorname{Int} L_i] \cup \bigcup Z_i$$

in $B(p, K - A; \rho)$.

3. This last loop is contractible in $(U \cap K) - A \pmod{T-p}$. Hence, by Lemma 3, it is contractible to a point in $B(p, S^3 - A; \varepsilon)$. This completes the proof.

REMARK. Using the same techniques, and Lemma 3, we could prove this lemma with "tame" replaced consistently by "cellular" or "has a simply-connected complement in S^{3} " everywhere in its statement. In these two alternate formulations, we could permit A to be any compact absolute retract, and p any point of A.

THEOREM 2. Let K be a crumpled cube in S^3 , and p a point of S = Bd K. If p is a piercing point of K, then there is a tame arc A in $K^* = S^3 - \text{Int } K$ having p as an end-point such that $A \cap S = p$.

Proof. By Lemma 4, it suffices to show that there is an arc A in K^* having p as an end-point such that $A \cap S = p$, and such that for some embedding $h: K^* \to S^3$, h(A) is tame. We choose h so that the closure of $S^3 - h(K^*)$ is a 3-cell ([8] and [9]). Hence, the theorem will follow as stated above if we can prove it in the special case when K is a closed 3-cell. We make this assumption to simplify the notation.

Let f be a homeomorphism of the closed unit ball B in E^3 onto K, with f((0, 0, 1)) = p. Let $T_i (i = 1, 2, \cdots)$ be the 2-cell which is the f-image of the intersection of B with the plane z = 1 - 1/i. Let the 3-cell $C_i (i = 1, 2, \cdots)$ be defined inductively as follows: C_1 is the closure of the component of $K - T_1$ not containing $p; C_i (i \ge 2)$ is the closure of the component of

$$K - T_i - \bigcup_{j < i} C_j$$

not containing p. Finally, let A^* be a tame arc in S^3 having p as one end-point and the other end-point not in K. We assume that $A^* \cap C_1 = \phi$.

According to Lemma 1, there is for each i > 1, a homeomorphism $g_i: S^3 \to S^3$ which is the identity outside a small neighborhood U_i of T_i and which is such that $g_i(A^*) \cap T_i = \phi$. In particular, the U'_i s may be chosen to form a null sequence of disjoint sets. Let g be the homeomorphism of S^3 onto itself which agrees with g_i on U_i , for each i, and otherwise is the identity. Then $g(A^*) \cap T_i = \phi$, for each i, and g(p) = p.

Again using Lemma 1, there is, for each i > 1, a compact set $E_i \subset C_i - (T_i \cup T_{i-1})$ (by the previous paragraph, there is a 2-cell in Bd C_i containing $T_i \cup T_{i-1}$ and missing $g(A^*)$) and a homeomorphism $k_i: S^3 \to S^3$ which is the identity outside an arbitrarily small neighborhood V_i of E_i and which is such that $k_ig(A^*) \cap C_i = \phi$, for each i. We choose V_i so close to E_i that the V_i 's form a null sequence of disjoint sets, and so that V_i misses the closure of $K - C_i$. Let k be the homeomorphism of S^3 onto itself which agrees with k_i on V_i , for each i, and reduces to the identity otherwise. Then $A = kg(A^*)$ is the required arc.

COROLLARY (Bing). A topological 2-sphere in S^3 is arcwise accessible at each point by a tame arc from at least one of its complementary domains.

Proof. Let K and K^* be the two crumpled cubes into which the 2-sphere S decomposes S^3 . If $p \in S$, then either p is a piercing point of K, or p is a piercing point of $K^*([10; \text{Theorem}])$. The result

then follows from the preceding theorem.

THEOREM 3. Let K be a crumpled cube in S^s , and p a point of S = Bd K. If there is a tame arc A in $K^* = S^s - \text{Int } K$ having p as an end-point and such that $A \cap S = p$, then p is a piercing point of K.

Proof. It suffices to establish the condition given in the corollary to Theorem 1. Thus, take $\varepsilon > 0$. We assume that ε is less than the distance between p and q, where q is the other end-point of A. Choose $\delta > 0$ so that $B(p, S; \delta)$ lies interior to a closed 2-cell $D \subset B(p, S; \varepsilon)$.

Since A is locally tame at p, there is a tame 2-sphere

$$Z^* \subset B(p, S^3; \delta)$$

which separates p from q in S^3 and which meets A at precisely one point $r \in \text{Int } A$, at which A pierces Z^* . Let T be a small closed 2cell in Z^* missing K and such that $r \in \text{Int } T$. Note that, by linking considerations, Bd T is not contractible in $B(p, K^*; \varepsilon) - A$.

Appealing to [2; Th. 1] and [4; Th. 1], we obtain, for each $\rho > 0$, a tame Sierpinski curve $X \subset S$ such that each component U_i $(i = 1, 2, \dots)$ of S - X has diameter less than ρ , and a homeomorphism $h: S^3 \to S^3$ which moves each point of S^3 less than ρ , which is the identity outside $B(Z^* \cap S, S^3; \rho)$, and which is such that $h(Z^*) \cap X$ consists of a finite disjoint collection of simple closed curves each in the inaccessible part of X. Let $Z = h(Z^*)$. By choosing ρ sufficiently small, we may ensure that h is the identity on T and that Z retains all the properties originally required of Z^* . A final requirement on ρ is that $\rho < \varepsilon - \delta$ and that the component of S - X containing p should not meet Z (if $p \in X$, then S can be pierced with a tame arc at p, by [6; Th. 6]).

We assert that there is at least one component of $Z \cap S$ separating p from Bd D in D (this component is necessarily a simple closed curve). If not, then $Z \cap X$ consists of a finite number of simple closed curves each of which is contractible in D - p, and $Z \cap (S - X)$ can be covered by the null sequence of disjoint open 2-cells of diameter less than ρ in $S: U_1, U_2, \cdots$. Note that $U_i \cap Z$ is compact. It is now easy, using the homotopy extension theorem on each of the inclusions $U_i \cap Z \to U_i$ as in the proof of Lemma 3, to construct a mapping contracting Bd T in

 $[K^* \cap (Z - \operatorname{Int} T)] \cup [B(p, S - p; \varepsilon)] \subset B(p, K^*; \varepsilon) - A$,

a contradiction.

By the preceding paragraph, we may let L be an innermost (in Z - T) one of the components of $S \cap Z$ which separates p from Bd D in D. Let L bound the 2-cell $F \subset Z - T$. Note that L is not contractible in $B(p, K^*; \varepsilon) - A$ and that no component of $S \cap \text{Int } F$ separates p from Bd D in D. Hence, by the argument of the preceding paragraph, the "large" component of F - S lies in Int K, and L is contractible in

$$[K\cap F]\cup [B(p,S-p;arepsilon)]\subset B(p,K-p;arepsilon)$$
 .

Since each simple closed curve in $B(p, S - p; \delta)$ is homotopic in D - p to L, the proof is complete.

4. Some applications.

THEOREM 4. Let S be a 2-sphere topologically embedded in S^3 , and let K and K* be the two crumpled cubes into which S divides S^3 . Then S can be pierced with a tame arc at a point $p \in S$ if and only if p is a piercing point of K and a piercing point of K^* .

Proof. The "only if" part of the theorem follows from Theorem 3. For the converse, suppose that p is a piercing point of each of K and K^* , and let A be an arc in S such that A is locally tame except possibly at the end-point p. By [6; Th. 6], S can be pierced with a tame arc at p if A is tame.

To show that A is tame, we proceed in essentially the same manner as in the proof of [6; Lemma 6.1]. That is, let S' be a 2-sphere in S^3 which contains A and is locally tame at each point of S' - A, and which is homeomorphically so close to S that p is a piercing point of each of the crumpled cubes L and L^* into which S' divides S^3 (use Theorems 2 and 3). It suffices to show that S' is tame.

Exactly as in [6], S' is locally tame at each point of A - p. Hence, S' is locally tame except possibly at p. It follows easily, since L - p and $L^* - p$ are each 1-LC at p, that $S^3 - S'$ is 1-LC at each point of S' and hence that S' is tame by [1; Th. 6]. This completes the proof.

In [7], Hempel studied the properties of a surface S (=Bd K) which is *free* relative to one of its complementary domains (Int K) in S^3 (i.e., S satisfies the mapping condition stated in the following theorem). It is not known whether the crumpled cube of this theorem is necessarily a 3-cell.

THEOREM 5. Let K be a crumpled cube, and let S = Bd K. Suppose that for each $\varepsilon > 0$ there exists a mapping $f: S \to \text{Int } K$ which

moves each point of S less than ε . Then each point of S is a piercing point of K.

Proof. We shall verify the condition given in the corollary to Theorem 1. Suppose $p \in S$ and $\varepsilon > 0$. Choose $\delta > 0$ so that there is a closed 2-cell $D \subset S$ such that

$$B(p, S; \delta) \subset D \subset B(p, S; \varepsilon)$$
 .

Then, if J is a simple closed curve in $B(p, S - p; \delta)$ bounding a 2cell $D^* \subset D$, there is a $\rho > 0$ such that ρ is less than the distance from D to the complement of $B(p, K; \varepsilon)$ and such that each mapping of J into K which moves each point of J less than ρ is homotopic in $B(p, K - p; \delta)$ to the inclusion of J into $B(p, K - p; \delta)$.

Suppose $f: S \to \text{Int } K$ is a mapping which moves each point of S less than ρ . Then J is homotopic in $B(p, K - p; \delta)$ to f(J), and f(J) bounds the singular 2-cell

$$f(D^*) \subset B(p, K; \varepsilon) - S$$
.

This completes the proof.

REMARK. If $S \subset S^{s}$ is a topological 2-sphere which is free relative to *each* of its complementary domains, then it follows from the foregoing theorems that S can be pierced with a tame arc at each of its points.

References

1. R. H. Bing, A surface is tame if its complement is 1-ULC, Trans. Amer. Math. Soc. 101 (1961), 294-305.

2. ——, Each disk in E³ contains a tame arc, Amer. J. Math. 84 (1962), 583-590.
3. —, Pushing a 2-sphere into its complement, Michigan Math. J. 11 (1964), 33-45.

4. ____, Improving the intersections of lines and surfaces, Michigan Math. J. 14 (1967), 155-159.

5. S. Eilenberg and R. L. Wilder, Uniform local connectedness and contractibility, Amer. J. Math. **64** (1942), 613-622.

6. D. S. Gillman, Side approximation, missing an arc, Amer. J. Math. 85 (1963), 459-476.

7. John Hempel, Free surfaces in S^3 (to appear).

8. N. Hosay, The sum of a real cube and a crumpled cube is S^3 (corrected title), Abstract 607-17, Notices Amer. Math. Soc. **10** (1963), 666.

9. L. L. Lininger, Some results on crumpled cubes, Trans. Amer. Math. Soc. 118 (1965), 534-549.

10. Joseph Martin, The sum of two crumpled cubes, Michigan Math. J. 13 (1966), 147-151.

11. D. R. McMillan, Jr., Local properties of the embedding of a graph in a 3-manifold, Canad. J. Math. 18 (1966), 517-528.

12. ____, A criterion for cellularity in a manifold, II, Trans. Amer. Math. Soc. **126** (1967), 217-224.

Received July 25, 1966. This research was supported in part by Grant NSF GP-4125. The author is an Alfred P. Sloan Fellow.

THE UNIVERSITY OF VIRGINIA CHARLOTTESVILLE, VIRGINIA