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A - P CONGRUENCES ON BAER SEMIGROUPS

B. J. THORNE

In this paper a coordinating Baer semigroup is used to
pick out an interesting sublattice of the lattice of congruence
relations on a lattice with 0 and 1. These congruences are
defined for any lattice with 0 and 1 and have many of the
nice properties enjoyed by congruence relations on a relatively
complemented lattice.

These results generalize the work of S. Maeda on Rickart (Baer)
rings and are related to G. Gratzer and E. T. Schmidt's work on
standard ideals.

In [7] M. F. Janowitz shows that lattice theory can be approached
by means of Baer semigroups. A Baer semigroup is a multiplicative
semigroup S with 0 and 1 in which the left and right annihilators,
L(x) = {y 6 S : yx = 0} a n d R(x) — {y e S :xy = 0}, of a n y xe S a r e

principal left and right ideals generated by idempotents. For any
B a e r s e m i g r o u p S, £ f ( S ) = {L(x) : x e S } a n d & ( S ) = { R ( x ) : x e S } ,

ordered by set inclusion, are dual isomorphic lattices with 0 and 1.
The Baer semigroup S is said to coordίnatize the lattice L if J^f(S)
is isomorphic to L. The basic point is Theorem 2.3, p. 1214 of [7],
which states : a partially ordered set P with 0 and 1 is a lattice if
and only if it can be coordinatized by a Baer semigroup.

It will be convenient to introduce the convention that S will
always denote a Baer semigroup and that for any x e S, xι and xr will
denote idempotent generators of L(x) and R(x) respectively. Also the
letters β, /, g, and h shall always denote idempotents of S.

Some background material is presented in § 1. In § 2, A — P
congruences are defined and it is shown that every A — P congruence
p on S induces a lattice congruence Θp on J*f(S) such that ^?(S)/ΘP =
J5f(S/p). In § 3 congruences which arise in this manner are charac-
terised as the set of all equivalence relations on j£?(S) which are
compatible with a certain set of maps on Jί?(S). These congruences
are called compatible with S. They are standard congruences and are
thus determined by their kernels.

The ideals of £f(S) which are kernels of congruences compatible
with S are characterised in § 4. In § 5 it is shown that a principal
ideal, [(0), Se], is the kernel of a congruence compatible with S if
and only if e is central in S. In § 6 this is applied to complete Baer
semigroups to show that, in this case, the congruence compatible with
S form a Stone lattice.
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1* Preliminaries* We shall let L(M) = {y e S : yx — 0 for all
x e M} and R(M) = {y e S :xy = 0 for all x e M} for any set M £ S.
The following is a summary of results found on pp. 85-86 of [8].

LEMMA 1.1. Let x,yeS.
( i ) xS £ yS implies L(y) £ L(x) Sx ^ Sy implies R(y) £
( i i) So? S Li2(^) #S £ i2L(^).
(iii) L(x) = U?L(α?) #(.τ) - BLR(x).
(iv) Sfa? e J S ^ ( S ) ΐ / απd cmίy if Sx = Li2(α;) α S e ^ ( S ) i/

only if xS = RL(x).
( v ) The mappings eS-+L(eS) and Sf-+R(Sf) are mutually

inverse dual isomorphisms between &(S) and Jΐf(S).
(vi) Let Se, Sfe ^f(S) and Sh = L(efr). Then he = (he)\

SeΠSf= She e £f(S), and Sey Sf= L(erS Γ) frS).
(vii) Let eS,fSe^(S) and gS = R(fιe). Then eg = (eg)2,

eSΓ)fS = egS e £P(S), and eS V fS = R(Seι n Sfι).

Note that the meet operation in J*f(S) and «^(S) is set intersection
and that the trivial ideals, S and (0), are the largest and smallest
elements of both £?(S) and &(S).

We shall be interested in a class of isotone maps introduced by
Croisot in [2].

DEFINITION 1.2. Let P be a partially ordered set. An isotone
map φ of P into itself is called residuated if there exists an isotone
map φ+ of P into P such that for any p e P, pφ+φ ^ p ^ pφφ+. In this
case φ+ is called a residual map.

Clearly ^+ is uniquely determined by 9 and conversly. The pair
(Φ, φ*) sets up a Galois connection between P and its dual. Thus we
can combine results from [2], [3], and [11] to get.

LEMMA 1.3. Let P be a partially ordered set and φ and ψ maps
of P into itself.

( i ) If φ and ψ are residuated then φψ is residuated and
(φψ)+ = ψ V+

(ii) If φ is residuated then φ = ΦΦ+Φ and φ+ = φ+φφ+.
(iii) Let φ be residuated and {xa} be any family of elements of

P. If yaxa exists then ya(xaφ) exists and V« (X«Ψ) — (V« X<*)Φ
Dually if A« χa exists then A« (%aΦ+) exists and Λ« (%aΦ+) = (Λ« ^«)^+

(iv) A necessary and sufficient condition that φ be residuated
is that for any xe L, {z : zφ ^ x} has a largest element x*. In this
case φ+ is given by xφ+ = x*.
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According to Lemma 1.3 (i) the set of residuated maps forms a
semigroup for any partially ordered set P. We shall denote the
semigroup of residuated maps on P by S(P). In [7], Theorem 2.3,
p. 1214, it is shown that P is a lattice if and only if S(P) is a Baer
semigroup. In this case S(P) coordinatizes P.

In [8], pp. 93, 94, it is shown that any Baer semigroup S can be
represented as a semigroup of residuated maps on ^f(S). We shall
be interested in the maps introduced to achieve this.

LEMMA 1.4. For any xeS define φx : ^f(S) —>^f(S) by Seφz =
LR(ex).

( i ) φx is residuated with residual φt given by Seφ£ = L(xer).
(ii) // LR(y) = Se then Seφx = LR(yx).
(iii) Let So — {φx :xeS}. Then So is a Baer semigroup which

coordinatizes £?(S).
(iv) The mapx—>φx is a homomorphism, with kernel {0}, of S

into So.

We shall now develop an unpublished result due to D. J. Foulis
and M. F. Janowitz.

DEFINITION 1.5. A semigroup S is a complete Baer semigroup if
for any subset M of S there exist idempotents β, / such that L(M) = Se
and B(M) = fS.

In proving Lemma 2.3 of [7] the crucial observation was [7]
Lemma 2.1, p. 1213, where it is shown that for any lattice L and
any a e L there are idempotent residuated maps θa and ψa given by :

(X x ίg a (
Xθa = \ Xψa = <

la otherwise la y a otherwise.

THEOREM 1.6. Let P be a partially ordered set with 0 and lβ

Then the following conditions are equivalent.
( i ) P is a complete lattice.
(ii) S(P) is a complete Baer semigroup.
(iii) P can be coordinatized by a complete Baer semigroup.

Proof, (i) ==> (ii) Let P be a complete lattice and M fi S(P) with
m = y {lφ :φeM} and n = A W + Φ e M}. It is easily verified that
L(M) - S(P)θn and R(M) = ψmS(P).

(ii) => (iii) follows from [7], Theorem 2.3.
(iii) => (i) Let S be a complete Baer semigroup coordinatizing P

and &*(S) the complete lattice of all subsets of S. Define a and β
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mapping &*(S) into &*(S) by Ma = L(M) and Mβ = R(M). Clearly
(a, β) sets up a Galois connection of ^(S) with itself. Since S is a
complete Baer semigroup ^(S) is the set of Galois closed objects of
(α, β). Thus Jίf(S) is a complete lattice.

We conclude this section with some relatively well known facts
about lattice congruences. An equivalence relation Θ on a lattice is
a lattice congruence if aΘb and cθd imply (a V c)θ(b V d) a n ( i
(α A c)0(δ A d). We shall sometimes write a = b(θ) in place of aΘb.
With respect to the order Θ <k Θr if and only if aΘb implies aΘ'b, the
set of all lattice congruences on a lattice L is a complete lattice,
denoted by Θ(L), with meet and join given as follows :

THEOREM 1.7. Let L be a lattice and Γ a subset of Θ(L).
(i) a == b(A .Γ) i/ αmί owfo/ i/ ατί> /or αiϊ y e Γ.
(ii) α = 6(V Γ) if and only if there exist finite sequences

α0, di, , an of elements of L and τx, , Ύn of elements of Γ, such
that a = α0, an = b, and a^ 7Λ for i = 1, , π.

The largest element * of Θ(L) is given by αrδ for all a,beL and
the smallest element ω is given by aωb if and only if a = 6.

In [4] it is shown that Θ(L) is distributive. In fact we have :

THEOREM 1.8. Let L be a lattice. The Θ(L) is a distributive
lattice such that for any family {Θa} gΞ Θ(L)

for any ¥ eΘ(L).

Thus by Theorem 15, p. 147, of [1] we have :

THEOREM 1.9. For any lattice L, Θ(L) is pseudo-complemented.

Finally we mention that if Θ e Θ(L) then aΘb if and only if xΘy
for all x, y e [a A b, a V &].

2 A — P congruences* In [10] S. Maeda defines annihilator
preserving homomorphisms for rings. We shall take the same defini-
tion for semigroups with 0.

DEFINITION 2.1. A homomorphism ψ of a semigroup S with 0 is
called an annihilator preserving (A — P) homomorphism if for any
x e S, R(x)φ = R{xφ) Π Sψ and L(x)φ = L(a^) n S^. A congruence re-
lation p on a semigroup S is called an A — P congruence if the natural
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homomorphism induced by p is an A — P homomorphism.

For any congruence p on a semigroup S and any xe S let x/p
denote the equivalence class of S/p containing x. Similarly for any
set A g S , let A/p = {x/peS/ρ:xe A}. If S has a 0 then R(x)/ρ S
R(x/p) and L(x)/p §i L(x/p). Thus a congruence /) is an A - P con-
gruence if and only if R(x/p) S R(x)/p and L(x/p) S L(x)/p. Note
that we are using L and iϋ to denote the left and right annihilators
both in S and in S//0.

THEOREM 2.2. Lβί |0 δe cm A — P congruence on a semigroup S.
If e and f are idempotents of S such that Se = L(x) and fS = R(y)
for some x,yeS, then (S/ρ)(e/ρ) = L(x/ρ) and (f/ρ)(S/ρ) = R(y/p).
Thus if S is a Baer semigroup so is S/p.

Proof. Since p is an A — P congruence L(x/ρ) = L(x)/p. Thus
L(x) = Se gives L(x/ρ) = L(x)/ρ = (Se)/ρ = (S/ρ)(e/ρ). Similarly R(x) =
fS gives R(x/p) = (f/p)(S/p).

We now use an A — P congruence p on S to induce a homomor-
phism of £f(S) onto

THEOREM 2.3. Lei p be an A — P congruence on S. Then
Op : J*?(S) —> Jzf(S/p) by L(x)θp = L(x/ρ) is a lattice homomorphism
of Se(S) onto Sf(S/ρ).

Proof. Let Se, Sfej^(S) and note that, by Theorem 2.2,

Seθp = (S/p)(e/p) and Sfθp = (S/p)(f/p) .

Clearly 6̂  is well defined since if L(x) = L(y) then

L(x/p) = L(x)/p = Ld/V/o = L(y/p) .

By Lemma 1.1 (vi), She = Se Π Sf where Sh = L(efr). Applying
Theorem 2.2 gives (fr/p)(S/p) = R(f/p) and (S/p)(h/p) = L((e/p)(Γ/p)).
Thus applying Lemma 1.1 (vi) to S/p yields

(S/p)(e/p) Π (Slp)(f/p) - (S/p)(k/p)(e/p) = (S/p)(he/p) .

Therefore, Seθp n S/6>̂  = (Sβ Π S/)6>̂ . By a dual argument Θ*&(S)
&(S/p) by R{x)θ* = R(x/p) is also a meet homomorphism.

By Lemma 1.1 (vi) Se y Sf = L(R(e) n J?(/)). Let ^S = JB(β) Π
so that Se\/ Sf = S#*. Since ^* is a meet homomorphism,

n Λ(//|θ) = (g/p)(S/p).
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Noting that L(g/p) = (S/p)(gι/ρ) and applying Lemma 1.1 (vi) to S/p
gives

(S/p)(e/p) V (S/p)(f/p) = {SIpWIp) .

Thus Seθp V Sfθp = (Se V Sf)θp and θp is a lattice homomorphism.
Clearly θp is onto.

For any A — P congruence p on S let Θp denote the lattice con-
gruence Θpoθ~ι induced on £f(S) by θp.

COROLLARY 2.4.

3* Compatible congruences* In this section we shall charac-
terise lattice congruence which are induced by an A — P congruence
on a coordinatizing Baer semigroup in the manner given in Theorem
2.3. Since L = J*?(S) for any Baer semigroup S coordinatizing L,
we shall lose no generality by considering only lattices of the form

The residuated maps φx9 x e S, defined in Lemma 1.4, play a central
role in the theory of Bear semigroups. We shall be interested in
equivalence relations on £?(S) which are compatible with φx and φ+,
considered as unary operations on

DEFINITION 3.1. An equivalence relation E on J*f(S) is called
compatible with S if for any xe S,

SeESf=>(Seφx)E(Sfφx) and (Seφϊ)E(Sfφi) .

By [7] Lemma 3.1 and 3.2, pp. 1214-1215, Se Π Sf = Se Π Sφf = Seφjφf.
Dually Se V Sf = Seφfrφ}r. Thus we have :

LEMMA 3.3. Any equivalence relation compatible with S is a
lattice congruence.

We now consider an A — P congruence p on S and θp, the lattice
congruence induced on £f(S) by p as in Theorem 2.3.

THEOREM 3.4. Let p be an A — P congruence on S. Then Θp is
compatible with S.

Proof. Since SeΘpSf if and only if (S/p)(e/p) = (S/p)(f/p), SeΘpSf
implies (e/p) = (e/ρ)(f/ρ) and (f/ρ) = (f/ρ)(e/ρ). Note that for any
yeS, LR(y)θp = LR(y/ρ). If SeθPSf we have
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(Sβφ,)θf = LR{{ex)lp) = LR((e/p)(x/p))

= LR((e/p)(f/p)(x/p)) S LR((f/p)(x/p)) = (Sfφx)θp .

By symmetry (Sfφ.)θP = (Seφm)θp ie. SeφβPSfφx.
NowR(e/p) = R((β/p)(f/p)) 3 R(ffp) = R((f/p)(e/p)) 3 R(e/p). Thus

(er/ρ)(S/p) = (Γ/p)(S/p). But

(Seφi)θp = L(xer)θp = L{(xe*)lp) = L((x/p)(e'/p))

and similarly (SfΦi)θp = L((x/p)(fr/p)). Clearly y/p e L((x/p)(er/p)) if
and only if (y/ρ)(x/ρ) e L((er/ρ)(S/ρ)) = L((fr/ρ)(S/ρ)). Thus we have
(Seφt)θp = (Sfφt)θP. Therefore, SeφtΘpSfφϊ and Θp is compatible with
S.

By the following theorem every congruence compatible with S is
determined by its kernel in a very nice way.

THEOREM 3.5. Let Θ be a congruence compatible with S. Then
the following are equivalent.

( i ) SeΘSf.
(ii) Seφfr V Sfφer 6 her Θ.
(iii) There is an Sg e ker Θ such that Se \f Sf = Se \f Sg =

SfVSg.

Proof (i) => (ii) Since Θ is compatible with S, SeΘSf gives
SeφfrΘSfφfr = (0), i.e., Seφfrekeγθ. By symmetry Sfφerβ ker Θ so we
have (ii).

(ii) — (iii) Let Sg = Seφfr V £/^er e ker 0 and claim Se\f Sg =
SfVSg, i.e.,

By Lemma 1.1 (v) this is equivalent to

R(e) Π R(efr) Π β(/βr) = Λ(/) Π R{efr) Π

Let x G i2(e) Π R(efr) Π ̂ (/βr) Then a; = er£ and /x - ferx - 0 so
x e iί(/) Π R(efr) Π i2(/βr) By symmetry

R(e) Π β(β/r) Π R(fer) = R(f) Π i2(e/r) ΓΊ

so we have Sey Sg = Sf\/ Sg. To show that Sey Sf= Se\fSg =
Sf V Sflr we need only show that Sg C Sβ V S/. This is equivalent
to i2(e) Π i2(/) S R{efr) Π i2(/er) But if x G iί(e) ΓΊ i2(/) then x = erx =
frx, so efrx = ex = 0 and /βrx = /x = 0, i.e., xeR(efr) Π

(iii) =- (i) If Se\/ Sg = SfV Sg and Sflrβ(O) then
S/ V
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A congruence Θ on a lattice is called standard if there is an ideal
S such that aΘb if and only if a V & = (α A 6) V s f ° r some s e S.

COROLLARY 3.6. A^τ/ congruence Θ compatible with S is a standard
congruence.

Proof. Since Θ is a lattice congruence SeΘSf if and only if
(Se V Sf)Θ(Se Π S/). By Theorem 3.5 this is equivalent to

(Se V Sf) V (Sβ n Sf) = Se V S/ = (Se n S/) V Sg

for some Se

Thus by Lemma 7, p. 36, of [5] we have :

COROLLARY 3.7. Compatible congruences are permutable.

By Theorem 3.5 every congruence compatible with S is determined
by its kernel. Since, by Theorem 3.4, Θp is compatible with S for
any A — P congruence p on S we know that Θp is determined by its
kernel. By the following lemma, Θp is also uniquely determined by
ker p.

LEMMA 3.8. Let p be an A — P congruence on S. Then x e ker p
if and only if LR(x) e ker Θp.

Proof. Let x e ker p. Then xpO ==> xypO for any y e S. Thus
R(x/ρ) = S/ρ so that LR(x/ρ) = L(S/ρ) =(0/ρ), i.e., LR(x) e keτΘp. If
we let LR(x) e ker Θp then LR(x/ρ) = (0/ρ). Thus i2(α//θ) = RLR(x/ρ) =
R(0/p) = S//0 which gives x/̂ o = O/̂o and we have # e ker ô.

That 0 should be determined completely by ker p is unexpected
since an A — P congruence need not be determined by its kernel.
For clearly the congruence ω given by xωy if and only if x — y is
an A — P congruence with kernel {0} as is the congruence p0 given
by xpoy if and only if ψx = φy. Clearly p0 is not generally equal to
ω. It turns out that p0 is the largest A — P congruence with kernel
{0}. Our next project shall be to start with a congruence Θ com-
patible with S and determine the existance of an A — P congruence
λ on S, such that Θ = Θλ. By lemma 3.8 we shall have to construct
λ so that ker X = {xeS : LR(x) eker Θ}.

For any congruence Θ on J*f(S) let Se/Θ denote the equivalence
class of j5f(S)/θ containing Se.
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LEMMA 3.9. Let Θ be a congruence compatible with S. For each
xeS define Φx £?(S)/θ — jz?{S)/Θ by (Se/θ)Φx = (Seφx)/Θ. Then Φx

is residuated with residual Φi given by (Se/Θ)Φi = (Seφi)/Θ.

Proof. Clearly Φx and Φi are well defined since Θ is compatible
with S. We shall use Lemma 1.3 (iv), i.e., we shall show that the
inverse image of a principal ideal is principal. Let Sf/Θ e [(0)/Θ,
Se/θ]Φ7ι. Then (Sf/Θ)Φx = (Sfφx)/Θ = (Sfφx)/Θ n Se/Θ = (Sfφx Π Sβ)/θ.
This gives Sfφβ(Sfφx Π Se) so by compatibility with S,

SfQSfφxφiΘ(Sfφx n Se)ψΐS Seφt .

Thus in £f(S)/θ, Sf/Θ £ (Sfφxφi)/Θ = (S/0β n Se)<*ί/0 S (Se/Θ)Φi, i.e.,
[(0)/<9, Sβ/Θ)]^-1 S [(0)/β, (Sβ/0)Φί]. Now let Sf/Θ E (Se/θ)Φi. Then

Π [(Sβ/β)Φί] - S//β ΓΊ (Se^ί)/β = (S/n Seφi)/Θ

i.e., Sfθ(SfΓ) Seφt). By compatibility with S

SfΦ*θ[(Sfn Seφi)φx] s S # x

+ ^ E Sβ .

Hence (S//β)Φβ = (S/^J/Θ - (S/Π Seφi)φx/Θ S Sβ/β. Therefore,

and by Lemma 1.3 (iv), Φx is residuated with residual Φi.

For any equivalence relation E on J*?(S) we can define a left
congruence λ# on S by taking x λ ^ if and only if (Seφx)E(Seφy) for
all See^(S). Similarly, xρEy if and only if (Seφi)E(Seφi) for all
Se e J^f(S), defines a right congruence on S.

LEMMA 3.10. If Θ is a congruence compatible with S then
^Θ = PΘ* Thus Xθ is a congruence on S.

Proof. By definition xXθy if and only if Φx = Φy. But Φx == Φy

if and only if Φi — Φ+ which is equivalent to xpθy.

THEOREM 3.11. Let Θ be a congruence compatible with S. Then
Xθ is an A — P congruence on S.

Proof. We know that Xθ is an A — P congruence if and only if
L(y/Xθ) E L(y)/Xθ and R(y/Xθ) E R(v)fcθ for all yeS. We shall start
with x/Xθ e L(y/Xθ) and show that x/Xθ — xe/Xd where Se = L(y). This,
of course, is equivalent to Φx = Φxe.

Let x/Xθ e L(y/Xθ) so that xy e ker Xθ. Thus SfφxyΘSfφ0 = (0) for
all Sfe^f(S). In particular, S^<9(0) so for any SfeSf(S),
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Sfφx s Sφx s Sφ,φvφ} = (Sφxy

Thus Sfφx = (Sfφx n Sφxyφi)Θ(Se Π S/&,). Now if Sg g Se then # = ge
so Scjτ̂ e = LR(ge) = LJR(#) = Sflr. Thus applying 0e to both sides of
the above gives Sfφxe = Sfφxφβ(Se n Sjfy,)^ = Se Π Sfφx. By trans-
itivity SfφxeΘSfφx and so xekex. Since xe e L(y) this gives x/Xθ e

The argument to show R(y/Xθ) = R(y)/Xθ is exactly dual to the
above but will be included. We have x/XθeR(y/Xθ) if and only if
τ/#ekerλ θ . By Lemma 3.10 and the definition of ρθ this is equivalent
to SfΦtβSfφi = L(0) - S for all Sfe^f(S). In particular (0)φ+xΘS.
By Lemma 1.3 (i) φ+x = φiφ+ so for any Sfs^f(S) we have

3 (0)<*ί 3 (0)φiΦϊΦ,\=\(0)φϊxφyΘSφy .

Thus Sfφi = (SfΦi V (0)ΦΪ*Φy)θ(Sφy V S/^ί). Let eS - R(y) and note
that Sφy = LR(y) = L(β). Now L(e) S Sg implies βS = EL(e) 3 Λ(flf) =
grS so ^ r - egr. Thus S^^ί = L(β^r) = L(gr) = LR(g) = Sg. Since
L(e) = S^y ϋ S^y V S/^ί, applying φt to both sides of the above
gives Sfφt = SfφtφtΘ(Sφy V $fφt)φt = >% V S/0ί. By transitivity
SfΦiΘSfφtx so by Lemma 3.10 xXθex. Since e$ G JB(?/) this gives
x/Xθ e R(y)/Xθ. Thus Xθ is an A — P congruence.

By Theorem 3.11 every congruence Θ compatible with S gives
rise to an A — P congruence XΘ on S.

LEMMA 3.12. Let Θ he a congruence compatible with S. Then
x e ker λθ if and only if LR(x) e ker Θ.

Proof. Let α;ekerλ0, i.e., SeφβSeφ, = (0) for all See^(S).
Taking Se = S gives LR(x) e ker θ. Let LR(x) e ker θ. The for any
See £f(S) Seφx g S^x = LR(x)θ(0) = SeφQ so xe ker λθ.

THEOREM 3.13. Let θ be a congruence compatible with S and
p = Xθ. Then Θp = Θ.

Proof. By Theorem 3.11 p is an A — P congruence so by Theorem
3.4 θp is compatible with S. By Lemma 3.8 and 3.12 keγθp = ker©.
Thus by Theorem 3.5 θp = θ.

We now show that Xθ is the largest A — P congruence which
induces Θ.

COROLLARY 3.14. Let Θ be a congruence compatible with S. If
p is an A — P congruence on S such that ker p = ker Xθ, then p ^ Xθ.
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Proof. Let xpy. Then for any See^f(S), expey so

(Seφx)θp = LR{{ex)lp) = LR((ey)/p) = {Seφy)θp .

Thus SeφβpSeφy and since Θp — Θ this gives xXθy.

4* Compatible ideals* In this section ideals which are kernels
of congruences compatible with S are characterised. Clearly if θ is
a congruence compatible with S and J = ker Θ then Jφx <Ξ J for all
a? 6 S. Since ^ preserves join (Lemma 1.3 (iii)) the following is clear.

LEMMA 4.1. Let J be an ideal of J*f(S) such that Jφx S J for
all xe S. Define a relation R on J*f(S) by Se R Sf if and only if
there is an Sg e J such that Se \/ Sg = Sfy Sg. Then R is an
equivalence relation and SeR Sf=> (Seφx) R (Sfφx) for all x e S.

In order to find an additional condition on J which will assure
that the relation R defined in Lemma 4.1 is compatible with S, it will
be valuable to look at certain residuated maps on the lattice
of all ideals of

LEMMA 4.2. For each xeS let φx: I(£f(S)—>l(£f(S)) be given
by Iφx = {See£f(S):SeQ Sfφx for some Sfel}. Then φx is re-
siduated with residual φi given by Iφi = {Se e J*f(S) : Se S Sfφt for
some Sfe I}.

Proof. Clearly Iφx and Iφi are ideals. Also ψx and φ+ are clearly
isotone. Now since Sf S Sfφxφx', Sfel implies Sfelφxφi. Thus
I^Iφxφt. Similarly Sfe Iφi φ implies SfQSgφiφx for some Sg e I.
Thus Sf C Sgφiφx C Sg e I so we have Iφxφx s L

We will make use of the residuated maps φx to characterise ideals
which are kernels of congruences compatible with S.

LEMMA 4.3. Let J be an ideal of ^f(S) such that Jφx s J.
Then for any Ie I(^(S))9 Iφi V ^ S (/ V fe

Proof. Recall that by Lemma 1.3 (iv), for any residuated
on a lattice L and any a, be L, aφ g b if and only if a ^ bφ+. Now
(Iφi V J)Φ, = IφiΦ* V Jφx^IV J since Iφiφx Q I and Jφx c J. Thus
iφi y j ^ $

COROLLARY 4.4. Let J be an ideal of £f(S) such that Jφx c J.
Then J £ Jφi and for any Ie I(J5f(S)) we have
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iφi v JQiΦi V Jφt ε (/V J)Φi.

The next theorem indicates what all of this has to do with con-
gruences compatible with S.

LEMMA 4.5. Let Θ be a congruence compatible with S and J =
ker0. Then for any IeI(^f(S)), and any xeS,

iφi v J = iφi V Jφi =

Proof. By Corollary 4.4 we need only show that (I V J)ΦΪ =
Iφt V J Thus let Seeiy J. Then there is an Sfel and an Sge J
such that Se^Sfy Sg. Since SgΘ(0) we have Sf V SβrβS/ Thus,
by compatibility with S, Se^ί ε (S/ V Sg)ΦiΘSfφi. By Theorem 3.5
there is an Sλ e J such that (Sf V S^)^ί V Sh = Sfφi V Sh. This
gives Sβ^ί C (SfV Sg)φi V Sh = Sfφi V Sh so that Sβ^ί e Iφi V ^
Thus (I V J)ΦΪ S /^ί V ̂ .

Without further justification we make the following definition.

DEFINITION 4.6. An ideal J of J*f(S) is called compatible with
S if for all xeS, JφxQJ and, for all Ie I{£f(S)), Iφi yj=(iy J)φi.

THEOREM 4.7. An ideal J of ^f(S) is compatible with S if and
only if it is the kernel of a congruence compatible with S.

Proof. By Lemma 4.5 the kernel of a congruence compatible with
S is an ideal compatible with S. Conversly let J be an ideal com-
patible with S and define Θ by SeΘSf if and only if there is an Sge J
such that Se y Sg = Sf V Sg. By Lemma 4.1 Θ is an equivalence
relation such that SeΘSf implies SeφβSfφx for all xeS. Let Se V Sg =
S/V Sgr, S^e J, i.e., let SeΘS/. Note that

(Sf V SW# e ([(0), Sf] V J)& = [(0), Sfφi] V

and (Se V S ^ ί e ([(0), Se] V /)& = [(0), Seφi] V J. Thus there are
Sh, Sh' e J such that

Seφi S (Se V &/)^+ S Se^ί V Sh

and

S (Sf V SflO# ε S/W V Sh'

Thus Sβ^ί y Sh = (Se V Sfo)0ί V Sh and fiffc' V (S/V Sg)φi - S/̂ + V Sλ'.
It follows that Sfφi V (Sh V SΛ') = S^+ V (Sh V SΛ') and since
Sh y Sh'eJ we have SeφiΘSfΦi. Thus by Lemma 3.3 Θ is a con-
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gruence compatible with S.

Note that in the proof of Theorem 4.7 the only use made of the
hypothesis (I V J)Φt = Iφt V J w a s f° r I a principal ideal. This ob-
servation together with Lemma 4.5 gives.

COROLLARY 4.8. Let J be an ideal such that Jφx S J for all
x e S. Then J is compatible with S if and only if for any principal
ideal Ie I(£?(S)) (I V J)ΦΪ = Iφt V J for all x e S.

By Corollary 4.8 the situation with ideals compatible with S is
analogus to that with standard ideals. An ideal J of a lattice L is
standard if (/ V J) A K = (I A K) V (J A K) for all I,Ke I(L). By
Theorem 2, p. 30, of [5] an ideal is standard if and only if the above
holds for all principal ideals I,KeI(L). This similarity is not sur-
prising since by Corollary 3.6, Theorem 4.7, and Theorem 2 of [5]
any ideal compatible with S is a standard ideal. In fact the definition
of ideal compatible with S is closely related to the definition of
standard ideal. To see this we need the following :

LEMMA 4.9. For any IeI(^f(S)) and any See^(S),

Proof. Clearly I n [(0), Se] - {Sfe £Γ(S) : Sf S Sg Π Se, for some
Sg e I}. But Sg n Se = SgφΐΦ, so IΠ [(0), Se] = Iφtφe.

For any ideal for which Jφx £ J Corollary 4.4 gives

iΦi V J s /& V e/̂ ί s (/ V

for all /€ /(L). Now Iφi V ^ ί = (/ V J)Φt implies

(i^ί v JΦi)Φ« = iφiΨx V JΦiΦr = (/ V «/)̂ + χ̂

Taking α; = e with See r_Sf(S) and applying Lemma 4.9 this becomes

(/ n [(0), se\) V(Jn [(0),

Thus if we had required only Iφt V Jφϊ = (̂  V ^)0ί for all β such
that Seej^(S) we would have J a standard ideal. However, to
define an ideal compatible with S we require the stronger condition
that Iφi V J — (I V ^O ί̂ a n d n °t o n ly f° r all idempotents x such that
iSίc G J2^(S) but for all ^ e S.

5. Compatible elements* An element a of a lattice L is called
standard if # A (α V V) = (̂  A a) V (χ A V) for all x, y e L. By Lemma
4, p. 32 of [5] an element is standard if and only if the principal



694 B. J. THORNE

ideal it generates is a standard ideal.
DEFINITION 5.1. An element Se of ^f(S) is compatible with S

if [(0), Se] is an ideal compatible with S. Let ΘSe denote the con-
gruence compatible with S having [(0), Se] as kernel.

Note that by Corollary 3.6 every element compatible with S is a
standard element of £/F(S).

It will be convenient to look at co-kernels of congruences com-
patible with S.

LEMMA 5.2. Let Θ be a congruence compatible with S. Then
LR(x) e ker Θ if and only if L(x) e co-ker Θ.

Proof. Let Sf = LR(x)ekerθ. Then Sfφϊθ(0)φ: = L(x). But
Sfφt = L(xfr) and since frS = R(f) = R(Sf) = RLR(x) = R(x) we have
Sfφi = L(0) = S. Thus L(x) e co-ker Θ. Conversly let L(x)ΘS and note
that L(x)φx = LRL(x)φx = LR(xι)φx = LR(xιx) = (0). Thus

(0) = L{x)φβSφx = LR(x), i.e., LR(x) e ker Θ .

LEMMA 5.3. Let Se be compatible with S. Then Se1 is a com-
plement of Se and [Se1, S] — co-ker ΘSe.

Proof. Clearly Se Π Se1 = (0). By Lemma 5.2, SeιΘSeS so, by
Theorem 3.5, Se1 V Se = S. Thus we clearly have [Se1, S] S co-ker ΘSe.
Let Sfe co-ker ΘSe. Then Sf\/Se — S and since Se is standard we
have Se1 = Se1 Π (Sf V Se) = (Se1 f] Sf) V (Se1 Π Se) = Se1 Π Sf. Thus
Se1 S Sf, i.e., co-ker ΘSe = [Se1, S].

We now wish to characterise elements compatible with S.

LEMMA 5.4. Let Se be compatible with S. Then e is central in
S and eS = RL(e).

Proof. By Lemma 5.2, Se1 e co-ker ΘSe. Since Se1 = LR(eι) = L(elr)
applying Lemma 5.2 again gives LR(elr) e ker ΘSe, i.e., LR(elr) £ Se.
Thus elr = elre. But β*e = 0 implies e e R(eι) so e = βZrβ. Thus β =
βZr so βS = i?(βz) = jRL(e). By Lemma 5.3, Seιφt 3 Sβz and Setyί =

(a;eIr) = L(α β). Thus RL(xe) £ i2(β3) = J?L(β) = βS so α β = exe. But
£ Se so ex = βxβ = xe, i.e., e is central in S.

We can use any central idempotent of £ to induce an A — P
congruence on S as follows :

LEMMA 5.5. Let e be central in S and define a relation p on S
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by xpy if and only if xe = ye. Then p is an A — P congruence on
S and ker p = Seι.

Proof. Clearly p is a congruence on S. Let y/peL(x/p). Then
0//° = (v/p)(χ/P) = (V%)/P s o l/ffe = ° But 2/a e = (τ/e)# so ye e L(x).
Thus 7/e = (ye)e gives #/jθ = (ye)/ρ e L(x)/ρ. Similarly R(x/ρ) gΞ R(x)/ρ.
Clearly x/p = O/̂o if and only if x e L(e) = Sβz.

LEMMA 5.6. // 0 is central in S then Seι is compatible with S.

Proof. Since e is central xpy if and only if xe = ye is an A — P
congruence with kernel Seι. By Lemma 3.8, LR(x) e ker Θp if and only
if x e Seι. But x e Seι if and only if x = xe1 if and only if LR(x) g Sβ*.
Thus ker0, = [(0), Seι] so that Seι is compatible with S.

We can now characterise elements compatible with S as follows :

THEOREM 5.7. Let See^ζf(S). Then Se is compatible with S
if and only if e is central in S.

Proof. Let e be central in S. By Lemma 5.6, Se1 is compatible
with S. Now L(e) = R(e) so Se1 = erS. Thus βz = ereι = er. By
Lemma 5.6, Se1 = Sβr compatible with S gives SerZ compatible with
S. But Sβw = LR(erl) = LR(e) = Se. Thus Se is compatible with S.
The converse is Lemma 5.4.

Note that Se is compatible with S if and only if Se1 is compatible
with S. Thus, by Lemma 5.3, if either Se or Se1 is compatible with
S then Se and Sβ* are standard elements of J2f'(S) which are com-
plements. Thus by Theorem 7.3, p. 300, of [6] we have.

THEOREM 5.8. // either Se or Se1 is compatible with S then :
( i ) Both Se and Se1 are compatible with S.
(ii) Both Se and Se1 are central in
(iii) ΘSe and ΘSeι are complements in

COROLLARY 5.9. Let SeeS^(S). Then if β is central in S, Se
is central in S^y

5* The lattice of compatible congruences* From the formula
for meet and join in Θ(L) (see Theorem 1.7) it is clear that both the
meet and the join of any family of congruences compatible with S
are congruences compatible with S. Thus, applying Theorem 1.8, we
have.
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THEOREM 6.1. The lattice Θs(^f(S)) of all congruence compatible
with S is a subcomplete sublattice of θ(£f(S)). Thus θs(j*f(S)) is
an upper continuous distributive lattice.

It follows from [1], Theorem 15, p. 147, that θs(£f(S)) is pseudo-
complemented. If Θ e Θs(J*f(S)) we shall use Θ* to denote the pseudo-
complent of Θ in Θ(£f(S)) and Θr to denote the pseudo-complement
of Θ in θ8(£f(S)).

In [9], Theorem 4.17 (iii), it is shown that for a complete rela-
tively complemented lattice L, Θ(L) is a Stone lattice in the sense
that every pseudo-complement has a complement. The remainder of
this section is devoted to showing that for suitable choice of S,
θs(£f{S)) is a Stone lattice.

We first look at the left and right annihilators of the kernel of
an A — P congruence.

LEMMA 6.2. Let p be an A — P congruence on S and J = ker p.
Then L(J) = R(J).

Proof. Let xe J and y e L(J). If ze J then xyz = 0. Thus
J £ R(xy) so that L(J) a LR(xy). Let LR(xy) = Sf and note that
feL(J). Since J is an ideal, xyeJ, i.e., xy/p = 0/p. Thus

f/peLR(xy)/p = LR(xy/p) = LR(0/p) = (0/p)

so feJ. But then we have feJΓ) L(J) so / = f2 = 0. This gives
LR(xy) = (0) which implies #2/ = 0. Thus L(J) £ ϋ?(J). By symmetry

£ L(J) so

Recall that a semigroup S is a complete Baer semigroup if the
left and right annihilators of an arbitrary subset of S are principal
left and right ideals generated by idempotents. Also (Theorem 1.6)
as S ranges over all complete Baer semigroups J*f(S) ranges over all
complete lattices.

LEMMA 6.3. Let S be a complete Baer semigroup, θ a congruence
compatible with S, and Se = Π co-ker<9. Then Se is compatible with
S.

Proof. Let J ^ k e r λ g , . By Lemmas 5.2 and 3.12, xeJ iΐ and
only if L(x) e co-ker θ. Thus L(J) £ Se since L(J) £ L(x) for all
x e J. But Se £ L(x) for all xeJ gives Se £ L(J) . Thus Se = L( J ) .
Now by Lemma 6.2, L(J) — R(J) and since S is a complete Baer
semigroup there is an idempotent feS such that fS = i?(/). Then
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/S = Se so e = /e = f. Since Se = eS is an ideal we have ex = exe =
xe for all sc e S. Thus e is central in S so by Theorem 5.7, Se is
compatible with S.

We can now characterise the kernel of the pseudo-complement of
a congruence compatible with a complete Baer semigroup.

THEOREM 6.4. Let S be a complete Baer semigroup and Θ a
congruence compatible with S. Then ker©* is a principal ideal
generated by an element of Jίf(S) which is compatible with S.

Proof. Let Se = Π co-ker<9 and / = kerλθ. By Lemma 6.3, Se
is compatible with S. But Se = L(J) = R(J) and x e J if and only if
LR(x) e ker Θ gives Se n Sf = (0) for all Sfe ker 0. Thus ker
ΘSe Π kerθ = (0) so by Theorem 3.5, ΘSe A θ = ω. By definition of
pseudo-complement we have ΘSe <̂  0* so [(0), Se] = ker^^e S ker 0*.
Now let Sg e co-ker Θ and S/e ker β*. Then (Sf Γ) Sg)Θ(Sf Π S) = Sf
and (Sff)Sg)θ*(0). Since (0)β*S/ we have (SfΠ Sg) = S/(β A β*).
This gives Sff]Sg = Sf so S / £ Sflr. Thus SfS Se and ker/9* S
[(0), Se]. We, therefore, have kerΘ* = [(0), Se] and since Se is com-
patible with S this completes the proof.

We clearly have θ ' g θ * . Since ker0* is a principal ideal gene-
rated by an element Se compatible with S, it is clear that θ' — θSe.
By Theorem 5.8, Se* is compatible with S and θSeι is a complement
of θs. in ΘS(J?(S)).

THEOREM 6.5. Let S be a complete Baer semigroup. Then
θs(jέf(S)) is a Stone lattice.

BIBLIOGRAPHY

1. G. Birkhoff, Lattice theory, Amer. Math. Soc. Colloq. Publ. XXV, 2nd ed., Provi-
dence, R. I., 1948.
2. R. Croisot, Applications residuees, Paris, Ecole normale Superieure, Annales Sci-
entifiques 7 3 (1956), 453-474.
3. C. J. Everett, Closure operators and Galois theory in lattices, Trans. Amer. Math.
Soc. 55 (1944), 514-525.
4. N. Funayama and T. Nakayama, On the distributivity of a lattice of lattice con-
gruences, Proc. Imp. Acad. Tokyo 18 (1942), 553-554.
5. G. Gratzer and E. Schmidt, Standard ideals in lattices, Acta. Math. Acad. Sci.
Hung. 12 (1961), 17-86.
6. M. F. Janowitz, A characterisation of standard ideals, Acta. Math. Acad. Sci.
Hung. 16 (1965), 289-301.
7. , A semigroup approach to lattices, Canad. J. Math. 18 (1966), 1212-1223.
8. , Baer semigroups, Duke Math. J. 2 3 (1963), 85-95.



698 B. J. THORNE

Section semicomplemented lattices (to appear)
10. S. Maeda, On a ring whose principal right ideals generated by idempotents form
a lattice, Hiroshima J. of Sci. 24 (1960), 509-525.
11. 0. Ore, Galois connexions, Trans. Amer. Math Soc. 55 (1944), 493-513.

Received June 21, 1968. The results presented here were included in the author's
doctoral dissertation presented at the University of New Mexico and were obtained
while a member of the faculty of Smith college. The author wishes to express his
gratitude to M. F. Janowitz for his generous help and guidance.

SANDIA CORPORATION




