ON THE JOIN OF SUBNORMAL ELEMENTS
 IN A LATTICE

Robert L. Kruse

Of fundamental importance to the study of subnormal subgroups is the following result of Wielandt:

Let A and B be subnormal subgroups of a group G such that A is normal in $A \cup B$. Then $A \cup B$ is subnormal in G.

The usual proof of Wielandt's result depends on the construction by conjugation of a special subnormal series from A to G. It would be of interest to obtain a proof which uses only the given subnormal series, without explicit dependence on conjugation, and valid in algebraic systems other than groups.

This note presents, in the more general context of a lattice with the normality relation introduced by R. A. Dean, a proof of the analogous result in case either A or B has defect three or less.

We begin with the definition of a lattice normality relation from [1].

Definition. A reflexive relation \triangleleft on a lattice \mathfrak{Z} is called a normality relation if, for all $a, b, c, d \in \mathbb{R}$:
(1) $a \triangleleft b$ implies $a \leqq b$,
(2) $a \triangleleft b, c \triangleleft d$ implies $a \cap c \triangleleft b \cap d$,
(3) $a \triangleleft b, a \triangleleft c$ implies $a \triangleleft b \cup c$,
(4) $a \triangleleft b, c \triangleleft d$ implies $a \cup c \triangleleft a \cup c \cup(b \cap d)$,
(5) $a \leqq b$ and either $a \triangleleft a \cup c$ or $c \triangleleft a \cup c$ implies

$$
a \cup(b \cap c)=b \cap(a \cup c)
$$

An element a of a lattice \mathfrak{Z} is called subnormal in $b \in \mathscr{Z}$, denoted $a \triangleleft \triangleleft b$, if there exists a chain of elements $a_{i} \in \mathbb{R}, i=0,1, \cdots, n$, such that

$$
a=a_{n} \triangleleft a_{n-1} \triangleleft \cdots \triangleleft a_{0}=b
$$

The length of the shortest such chain is called the defect of a in b.
Suppose $a \triangleleft \triangleleft u$ and $b_{3} \triangleleft b_{2} \triangleleft b_{1} \triangleleft u$. We shall prove:
Theorem 1. If $b_{3} \triangleleft a \cup b_{3}$, then $a \cup b_{3} \triangleleft \triangleleft u$.

Theorem 2. If $a \triangleleft a \cup b_{3}$, then $a \cup b_{3} \triangleleft \triangleleft u$.
The following results will be needed in the proofs.

Lemma A. If $x \triangleleft \triangleleft u, y \triangleleft \triangleleft u$, and x has defect 2 or less in u, then $x \cup y \triangleleft \triangleleft u$.

Lemma B. If $a \leqq x \leqq b$ and $a \triangleleft b$, then $a \triangleleft x$.
Lemma A is proved in [1], while Lemma B is an immediate consequence of (2).

Proof of Theorem 1. Since $b_{3} \triangleleft a \cup b_{3}$ and $b_{3} \triangleleft b_{2}$, by (3),

$$
b_{3} \triangleleft\left(a \cup b_{3}\right) \cup b_{2}=a \cup b_{2} .
$$

By intersection of subnormal chains $a \triangleleft \triangleleft a \cup b_{2}$. Then, by Lemma A, $a \cup b_{3} \triangleleft \triangleleft a \cup b_{2}$, and $a \cup b_{2} \triangleleft \triangleleft u$. Thus $a \cup b_{3} \triangleleft \triangleleft u$.

Proof of Theorem 2. Let the given subnormal chain from a to u be

$$
a=a_{n} \triangleleft a_{n-1} \triangleleft \cdots \triangleleft a_{0}=u
$$

Define, for $m=0,1, \cdots, n$,

$$
x_{m}=a \cup b_{3} \cup\left(a_{m} \cap b_{2}\right)
$$

By a finite induction it will be shown that $x_{m} \triangleleft \triangleleft x_{m-1}, 1 \leqq m \leqq n$. But $x_{n}=a \cup b_{3}$, and $x_{0}=a \cup b_{2}$, so, by Lemma A, $x_{0} \triangleleft \triangleleft u$. $a \cup b_{3} \triangleleft \triangleleft u$ thus follows from transitivity of subnormality. Since the relation $a \cup\left(a_{0} \cap b_{2}\right)=a_{0} \cap x_{0}$ is trivial, the proof of Theorem 2 will be complete upon verification of the induction step:

Lemma C. Suppose $a \cup\left(a_{m-1} \cap b_{2}\right)=a_{m-1} \cap x_{m-1}$. Then $x_{m} \triangleleft \triangleleft x_{m-1}$ and $a \cup\left(a_{m} \cap b_{2}\right)=a_{m} \cap x_{m}$.

Proof of lemma. Define

$$
\begin{equation*}
y=b_{1} \cap\left[a \cup\left(a_{m} \cap b_{2}\right)\right] . \tag{i}
\end{equation*}
$$

We shall begin by proving

$$
\begin{equation*}
b_{3} \cup y \triangleleft x_{m-1} \tag{ii}
\end{equation*}
$$

To prove (ii) let us first observe that, by (2),

$$
\begin{equation*}
y \triangleleft a \cup\left(a_{m} \cap b_{2}\right) . \tag{iii}
\end{equation*}
$$

From $b_{2} \triangleleft b_{1} \geqq y \cup b_{2}$ Lemma B gives $b_{2} \triangleleft y \cup b_{2}$. This, with

$$
a_{m} \cap b_{2} \leqq y \leqq a_{m}
$$

implies by (5)
(iv)

$$
y=y \cup\left(a_{m} \cap b_{2}\right)=a_{m} \cap\left(y \cup b_{2}\right)
$$

Since $a_{m} \triangleleft a_{m-1}$, (2) then gives $y \triangleleft a_{m-1} \cap\left(y \cup b_{2}\right)$, and (5) implies $a_{m-1} \cap\left(y \cup b_{2}\right)=y \cup\left(a_{m-1} \cap b_{2}\right)$. Next, by (3) let us combine

$$
y \triangleleft y \cup\left(a_{m-1} \cap b_{2}\right)
$$

with (iii) to obtain $y \triangleleft a \cup\left(a_{m-1} \cap b_{2}\right)$. Therefore, by the hypothesis of the lemma,
(v)

$$
y \triangleleft a_{m-1} \cap x_{m-1}
$$

Hence, with $b_{3} \triangleleft b_{2}$, (4) gives

$$
\begin{equation*}
b_{3} \cup y \triangleleft b_{3} \cup y \cup\left(b_{2} \cap a_{m-1}\right) . \tag{vi}
\end{equation*}
$$

In addition, $a \triangleleft a \cup b_{3}$ implies

$$
\begin{align*}
b_{3} \cup\left(a \cap b_{1}\right) & =b_{1} \cap\left(a \cup b_{3}\right) & & \text { by }(5) \tag{5}\\
& \triangleleft a \cup b_{3} & & \text { by (2). }
\end{align*}
$$

Since $a \cap b_{1} \leqq y$, (4) and (v) imply

$$
\begin{aligned}
b_{3} \cup y & =\left\{b_{3} \cup\left(a \cap b_{1}\right)\right\} \cup y \\
& \triangleleft b_{3} \cup y \cup\left[\left(a \cup b_{3}\right) \cap a_{m-1} \cap x_{m-1}\right] \geqq a
\end{aligned}
$$

so Lemma B gives $b_{3} \cup y \triangleleft b_{3} \cup y \cup a$. Finally, by (3), let us combine this with (vi) to obtain

$$
b_{3} \cup y \triangleleft b_{3} \cup y \cup a \cup\left(a_{m-1} \cap b_{2}\right)=x_{m-1} .
$$

Thus (ii) is proved.
We next establish $x_{m} \triangleleft \triangleleft x_{m-1}$. From $b_{1} \triangleleft u \geqq a \cup b_{1}$ Lemma B yields $b_{1} \triangleleft a \cup b_{1}$. Hence

$$
\begin{aligned}
x_{m} & =b_{3} \cup a \cup\left(a_{m} \cap b_{2}\right) & & \\
& =b_{3} \cup\left\{\left[a \cup\left(a_{m} \cap b_{2}\right)\right] \cap\left(a \cup b_{1}\right)\right\} & & \text { by absorption } \\
& =b_{3} \cup\left\{a \cup\left\{b_{1} \cap\left[a \cup\left(a_{m} \cap b_{2}\right)\right]\right\}\right\} & & \text { by (5) } \\
& =a \cup b_{3} \cup y & & \text { by (i). }
\end{aligned}
$$

But $b_{3} \cup y \triangleleft x_{m-1}$ and $a \triangleleft \triangleleft x_{m-1}$, so Lemma A gives

$$
x_{m}=a \cup\left(b_{3} \cup y\right) \triangleleft \triangleleft x_{m-1} .
$$

Finally, we prove $a \cup\left(a_{m} \cap b_{2}\right)=a_{m} \cap x_{m} . \quad$ By (ii) $b_{3} \cup y \triangleleft x_{m-1}$, and $a \cup\left(a_{m} \cap b_{2}\right) \leqq x_{m} \leqq x_{m-1}$, so Lemma B gives

$$
b_{3} \cup y \triangleleft\left(b_{3} \cup y\right) \cup\left[a \cup\left(a_{m} \cap b_{2}\right)\right] .
$$

Thus,

$$
\begin{aligned}
a_{m} \cap x_{m} & =a_{m} \cap\left\{b_{3} \cup a \cup\left(a_{m} \cap b_{2}\right)\right\} & & \text { by definition of } x_{m} \\
& =a_{m} \cap\left\{\left(b_{3} \cup y\right) \cup\left[a \cup\left(a_{m} \cap b_{2}\right)\right]\right\} & & \text { since, by (i), } y \leqq a \cup\left(a_{m} \cap b_{2}\right) \\
& =\left[a \cup\left(a_{m} \cap b_{2}\right)\right] \cup\left\{a_{m} \cap\left(b_{3} \cup y\right)\right\} & & \text { by (5) } \\
& \leqq a \cup\left[a_{m} \cap\left(b_{2} \cup y\right)\right] & & \\
& =a \cup y & & \text { by (iv) } \\
& \leqq a \cup\left(a_{m} \cap b_{2}\right) & & \text { by (i). }
\end{aligned}
$$

The reverse containment is obvious. Thus $a_{m} \cap x_{m}=a \cup\left(a_{m} \cap b_{2}\right)$, and the proof is complete.

The author wishes to thank the Sandia Corporation for the use of an electronic computer by which partial results pertaining to this paper were first found, and the referee for suggesting the inclusion of several details to clarify the proofs.

References

1. R. A. Dean and R. L. Kruse, A normality relation for lattices, Journal of Algebra 3 (1966), 277-290.
2. H. Wielandt, Eine Verallgemeinerung der invarianten Untergruppen, Math. Zeit. 45 (1939), 209-244.

Received March 19, 1968. The author wishes to thank the United States Atomic Energy Commission for financial support.

Sandia Laboratory
Albuquerque, New Mexico

