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A UNIQUENESS THEOREM FOR WEAK SOLUTIONS OF
SYMMETRIC QUASILINEAR HYPERBOLIC SYSTEMS

A. E. HURD

The essentially bounded measurable (vector) function
u(x, t) = (ui{%, t), ", ur(x, t)) is called a weak solution of the
initial-value problem for the system

du dS/(x, t, u) = 0

ot dx

in the upper half-plane t ^ 0 if it satisfies the usual integral
identity (defining "weak") together with the condition that,
given a compact set D in t ^ 0, there exists a function
Kit) e Lϊoc([0, oo)) such that

Ui(xut)—ut(x2,t)
Xί — X2

holds a.e. for xu x2εD and 0 < t < oo. It is shown that, if
the matrix dJZf/du is symmetric and positive definite (a con-
vexity condition), then weak solutions are uniquely determined
by their initial conditions.

In [1] 0. A. Oleίnik established a uniqueness theorem for a rather
general class of weak solutions of a quasilinear equation of the form

du + dφ(x,t,n)
ot dx

where the function φ(x, t, u) was subject to a convexity condition in
u, namely, <puu ^ 0. The purpose of this note is to generalize Oleiniks
uniqueness result (in the case ψ = 0) to certain quasilinear systems
which are subject to a symmetry condition (assumption III below) as
well as a convexity condition (assumption IV below). In the case of
one equation our uniqueness result is slightly less general than Oleiniks
in that she does not require the function K{t) occurring in (2) to be
locally integrable on [0, oo), The method is the standard variation of
Holmgren's method which is employed by Oleinik and others, except
that we work with mean square rather than sup-norm estimates.
Oleinik [2] has also established a uniqueness result for a special sys-
tem of two equations which, however, is not symmetric. Rozhdest-
venskii [3] has established a uniqueness theorem for piece wise smooth
solutions of certain quasilinear systems but his methods are entirely
different from those employed here.

2* In D — {(x,ί):—°°<^<co,0^ί<oo} we consider the quasi-

555



556 A. E. HURD

linear system of r equations

/-|x du dj&jx, t,u) _ Q

dt dx

for the (vector) function u(x, t) = (u^x, t), , ur(x, t)) where

(x9t, u) = (a^x, t,u), , ar(x, t, u)) .

The following assumptions will be made:
I. The functions a^x, t, u) possess derivatives ddi/duj, d2aijdxduj

and d2ai/3ujduk which are bounded subsets of (x, t, w)-space.
II. Let

daA*> *> U) = aiS(x9 t, u) .
3U

Then, if u is bounded, i.e., X u\ ^ M2, there exists a constant c, de-
pending only on M, such that

r r r

for all vectors ί = (ίx, • , ί r ) .

III (Symmetry). For all a?, ί, and %,

α^ ίa?, t, u) = α^(α;, ί, w) (i, jf = 1, , r)

IV (Convexity), For all %, t, and u, and each & = 1, , r, we have

for all vectors f = (flf , ζr).

DEFINITION. Let ψ(x) be an essentially bounded measurable func-
tion defined on — oo < x < oo. An essentially bounded measurable
function u(x, t) is called a weak solution of (1) in D with initial con-
ditions φ(x) if,

(a) for every test function φ(x, t) which is continuously differenti-
able with compact support in the (x, ί)-plane we have

, ̂  + (Ait, x, u), &)]dxdt + \_j:<p(x, 0), ψ(x)}dx = 0

where <(,)> is the inner product in Euclidean r-space;
(b) given any compact subset of D there is a corresponding func-

tion K(t) e Lίoc([0, oo)) such that
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nt ίrv» 4\ ni i/γ -f \

O ) ^ Λ.^C/

(i = l, « , r ) holds a.e. for x1 and x2 in the compact subset, and
0 < t < oo,

THEOREM. Weak solutions of (1) are uniquely determined by
their initial conditions.

Proof. Let u1(xf t) and u2(x, t) be two weak solutions of (1) with
the same initial conditions ψ(x). We will show that, if F(x, t) =
(Fλ(x, ί), , Fr(x, t)) is any smooth (vector) function with compact
support contained in t > 0, then

(ut - u2, Fydxdt = 0 ,

thus proving that uγ = u2 a.e. in D.
Let α>% be the usual Gaussian averaging kernel with support con-

tained in the sphere x2 -f t ^ l/^2. Given a function ^?(^, ί) e L2

l0C(D)
we define the averaged function φn(x, t) by convolution; φn = φ*ωn. By
a familiar argument we see that u™ik—*uik (i = 1, 2 and A: = 1, , r)
in mean square on compact subsets of D. From (3) it follows (see [1])
that

( 4 ) - ^ L ^ ϋΓ(ί) (i = 1, 2 and fc = 1, . . , r)

on compact subsets of D.
We now define the functions

Qtijix, t) = \ ai:j(x, t, τuλ + (1 — τ)u2)dτ
Jo

a?ά(x, t) = I aid(x91, τul + (1 - τ)uζ)dt

(ΐ, i — 1, , r and w = 1, 2, •) and the associated matrices A(#, t) =
(α^ία?, ί)) and Aw(α;, ί) = « (α;, ί)).

It is immediate that

, ί, t6χ) — J^(a?, ί, u2) = A(x, t)(Ui — u2) .

Also

<i(^, ί) - α*i(a?, ί) I ̂  const. [| ul - ^ | + | u2

w - u21]

on compact subsets of JD, from which it follows that an

{ύ —> α^ in mean
square on compact subsets of D. From II we see that
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( 5) - c<ί, £> ̂  <A'(x, ί)f, O 5

for some constant c > 0 and all real vectors ξ. Finally we note that

(*, ί, r < + (1 - τ)ul)
ox

+ Σ ^-{x, t, τul + (1 - τ)ul)\τdu'tΛ + (1 - τ)^ί
h—i OΊlrfc L OX OX

Using I, IV and (4) it follows that

dx /

on compact subsets of D for every vector ξ, where Kt{t) e Lίoc([0, ̂ )
We now construct for each n = 1, 2, the vector function φn(x,

satisfying the linear system

and vanishing on t = Γ, where the support of ί7 is assumed to be below
t = T. This is achieved by solving the system

dφn ~ A"{x, T - t)^l = F(x, T-t)
dt v dx

for the vector function φn(x, t) in i), with the initial conditions
φn(x, 0) = 0, and then putting φn(x, t) = φ(x, T — t). The classical ex-
istence theory guarantees that φn(x, t) exists, is smooth, and, by (5),
has support contained in a compact set which is independent of n, and
so is a legitimate test function.

Using (2) we obtain

\ / , t, uλ) - jy(x, t, uz),, ̂ -Sdxdt = \/j^(x, t, uλ) - jy(x, t, uz), ̂
ϋt / J \ OX

( , ) ( i t ) ,

dx
Thus

~ u2, Fydxdt = \ /uγ - u2, (An -
3x

Using the facts that (i) the supports of the φn lie in a fixed compact
subset of JD, (ii) the u{ are essentially bounded and (iii) the coefficients
of An converge in the mean square on compact subsets of D to the
coefficients of A, we see immediately that the right hand side of (6)
approaches zero as n—>cof as long as the mean square norms of the



A UNIQUENESS THEOREM FOR WEAK SOLUTIONS 559

dcpi/dx (on compact subsets of D) are uniformly bounded. The proof
will be completed by establishing this fact.

Let dφn/dx = vn, An(x, Γ - t) = Άn(x, t) and F(x, T - ί) = F(x, t). Then
vn satisfies the equation

dvn χ%d£ SA^vn = dF
dt dx dx dx

in 0 <£ t <* T, and the initial conditions vn(x, 0) = 0. We may suppose
that the supports of the vn(n = 1, 2, •) in 0 <£ t ^ T are all strictly
contained in some interval a < x <b. Then

dt dx \ dx / \ dx

Using Green's formula

<v*(x, ί), V(α?, ί)>dτ ^ Γ ( δ 2 / - ^ , vn\dxdt (
Jojα \ 3X / Jθjα

from which it follows by Gronwall's Lemma that

S TΓb

\ <vn, vnydxdt ^ constant ,
0 Ja

the constant depending on the ZΛnorm of dF/dx and I K^Vjdt, but not
Jo

on n. This completes the proof.
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