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F-SPACES AND THEIR PRODUCT WITH P-SPACES

W. W. COMFORT, N E I L HINDMAN, AND S. NEGREPONTIS

The F'-spaces studied here, introduced by Leonard Gill-
man and Melvin Henriksen, are by definition completely regular
Hausdorff spaces in which disjoint cozero-sets have disjoint
closures. The principal result of this paper gives a sufficient
condition that a product space be an F1 -space and shows that
the condition is, in a strong sense, best possible. A fortuitous
corollary in the same vein responds to a question posed by
Gillman: When is a product space basically disconnected (in
the sense that each of its cozero-sets has open closure)?

A concept essential to the success of our investigation was sug-
gested to us jointly by Anthony W. Hager and S. Mrowka in response
to our search for a (simultaneous) generalization of the concepts
"Lindelof" and "separable." Using the Hager-Mrowka terminology,
which differs from that of Frolίk in [3], we say that a space is weakly
Lindelδf if each of its open covers admits a countable subfamily with
dense union. §1 investigates .P'-spaces which are (locally) weakly
Lindelof § 2 applies standard techniques to achieve a product theorem
less successful than that of § 3; § 4 contains examples, chiefly elemen-
tary variants of examples from [5] or Kohls' [8], and some questions.

1* i^'-spaces and their subspaces* Following [5], we say that a
(completely regular Hausdorff) space is an jP-space provided that dis-
joint cozero-sets are completely separated (in the sense that some
continuous real-valued function on the space assumes the value 0
on one of the sets and the value 1 on the other). It is clear that
any F-space is an .P'-space and (by Urysohn's Lemma) that the con-
verse is valid for normal spaces. Since each element of the ring
C*(X) of bounded real-valued continuous functions on X extends con-
tinuously to the Stone-Cech compactification βX of X, it follows that
X is an F-space if and only if βX is an .P-space. These and less
elementary properties of .P-spaces are discussed at length in [5] and [6],
to which the reader is referred also for definitions of unfamiliar
concepts.

jP-spaces are characterized in 14.25 of [6] as those spaces in which
each cozero-set is C*-embedded. We begin with the analogous charac-
terization of jP'-spaces. All hypothesized spaces in this paper are un-
derstood to be completely regular Hausdorff spaces.

THEOREM 1.1. X is an F1'space if and only if each cozero-set in
X is C*-embedded in its own closure.
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Proof. To show that coz / (with / e C(X) and / ^ 0, say) is
C*-embedded in clx coz / it suffices, according to Theorem 6.4 of [6],
to show that disjoint zero-sets A and B in coz / have disjoint closures
in clx coz / . There exists g e C*(coz /) with g > 0 on A, g < 0 on B.
It is easily checked that the function h, defined on X by the rule

(fg on coz/
= (0 on Zf

lies in C*(X), and that the (disjoint) cozero-sets pos/?,, neg h, contain
A and B respectively. Since clx pos h Π clx neg h = 0 , we see that
A and B have disjoint closures in X, hence surely in clx coz / .

The converse is trivial: If U and V are disjoint cozero-sets in X9

then the characteristic function of £7, considered as function on U U V,
lies in C*(?7U V), and its extension to a function in C*(clx(U \J V))
would have the values 0 and 1 simultaneously at any point in
c\ΣUf]c\xV.

The "weakly Lindelof" concept described above allows us to show
that certain subsets of i^'-spaces are themselves Ff, and that certain
.F'-spaces (for example, the separable ones) are in fact i^-spaces. We
begin by recording some simple facts about weakly Lindelof spaces.

Recall that a subset S of X is said to be regularly closed if
S = clx intx S.

LEMMA 1.2. (a) A regularly closed subset of a weakly Lίndelb'f
space is weakly Lindelof;

(b) A countable union of weakly Lindelof subspaces of a (fixed)
space is weakly Lindelof\

(c) Each cozero-set in a weakly Lindelof space is weakly Lin-
delof.

Proof, (a) and (b) follow easily from the definition, and (c) is
obvious since for / e C*(X) the set coz / is the union of the regularly
c l o s e d s e t s clx{x e X : \ f ( x ) \ > 1/n}.

Lemma 1.2(c) shows that any point with a weakly Lindelof neigh-
borhood admits a fundamental system of weakly Lindelδf neighborhoods.
For later use we formalize the concept with a definition.

DEFINITION 1.3. The space X is locally weakly Lindelδf at its
point x if x admits a weakly Lindelδf neighborhood in X. A space
locally weakly Lindelδf at each of its points is said to be locally
weakly Lindelδf.

THEOREM 1.4. Let A and B be weakly Lindelof subsets of the
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space X, each missing the closure (in X) of the other. Then there
exist disjoint cozero-sets U and V for X for which

A c dx(A n U) , δ c clz(J5 n V) .

Proof. For each xeA there exists fxeC*(X) with fx(x) = 0,

fx = l on c\xB. Similarly, for each yeB there exists gyeC*(X)
with gv(y) = 0, gy = 1 on c\AA. Taking 0 £ fx ^ 1 and 0 ̂  ^ ^ 1
for each x and y, we define

J7α = /-'[0, 1/2) , 7, - flr-l[0f 1/2) ,

TF. = / Π O , 1/2] , Zy - flr-^O, 1/2] .

Then, with {a;n}n=i and {2/n}Γ=i sequences chosen in A and β respectively
so that An(\JnUXn) is dense in A and S Π ί U n ^ J is dense in Z?,
we set

and, finally, t ^ = U . ^ , V= \JnVz.
The theorem just given has several elementary corollaries.

COROLLARY 1.5. Two τveakly Lindelδf subsets of an F'-space,
each missing the closure of the other, have disjoint closures (which
are weakly Lindelof).

COROLLARY 1.6. Any weakly Lindelof subspace of an F'-space
is itself an Fr-space.

Proof. If A and B are disjoint cozero-sets in the weakly Lindelof
subset Y of the .F'-space X, we have from 1.2(c) that A and B are
themselves weakly Lindelof, and that

A Π clxS = Af] c\γB = 0 and B n clxA = βfl clr A = 0 .

From 1.5 it follows that

0 = c\λA Π clxB z> clFA Π clFβ .

COROLLARY 1.7. £7αcΛ weakly Lindelof subspace of an Fr-space
is C*-embedded in its own closure.

Proof. Disjoint zero-sets of the weakly Lindelδf subspace Y of
the F'-space X are contained in disjoint cozero subsets of Y, which
by 1.2(c) and 1.5 have disjoint closures in X.

Corollaries 1.6 and 1.7 furnish us with a sufficient condition that
an F'-space be an F-space.
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THEOREM 1.8. Each F'-space with a dense Lindelof subspace is
an F-space.

Proof. If Y is a dense Lindelof subspace of the .F'-space X, then
Y is Fr by 1.6, hence (being normal) is an F-space. But by 1.7 Y is
C*-embedded in X, hence in βX, so that βY = βX. Now Y is an
i^-space, hence βY, hence βX, hence X.

COROLLARY 1.9. A separable F'-space is an F-space.

The following simple result improves 3B.4 of [6]. Its proof, very
similar to that of 1.4, is omitted.

THEOREM 1.10. Any two Lindelof subsets of a (fixed) space,
neither meeting the closure of the other, are contained in disjoint
cozero-sets.

An example given in [5] shows that there exists a (nonnormal)
.F'-space which is not an jF-space. For each such space X the space
βX, since it is normal, cannot be an .F'-space; for (as we have observed
earlier) X is an .F-space if and only if βX is an jF-space. Thus not
every space in which an F'-space is dense and C*-embedded need be
an F'-space. The next result shows that passage to C*-embedded
subspaces is better behaved.

THEOREM 1.11. If Y is a C *-embedded subset of the F'-space X,
then Y is an F'-space.

Proof. Disjoint cozero-sets in Fare contained in disjoint cozero-sets
in X, whose closures (in X, even) are disjoint.

We shall show in Theorem 4.2 that the F' property is inherited
not only by C*-embedded subsets, but by open subsets as well.

2. On the product of a (locally) weakly Lindelof space and
a P-space. A P-point in the space X is a point x with the property
that each continuous real-valued function on X is constant throughout
some neighborhood of x. If each point of X is a P-point, then X is
said to be a P-space. The P-spaces are precisely those spaces in which
each Gδ subset is open.

The following diagram, a sub-graph of one found in [5] and in
[8], is convenient for reference.

/ P \
discrete v * basically disconnected —+F-^F' .

^ extremally disconnected '
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In the interest of making this paper self-contained, we now include
from [2] a proof of the fact that if a product space X x Y is an F'-
space, then both X and Y are F'-spaces and either X or Y is a P-
space. Indeed, the first conclusion is obvious. For the second, let x0

and y0 be points in X and Y respectively belonging to the boundary of
the sets coz / and coz g respectively (with / e C(X) and g eC(Y) and
/ ^ 0 and g ^ 0). Then the function h, defined on X x Y by the rule
h(x, y) = f(x) — g(y), assumes both positive and negative values on each
neighborhood in X x Y of (x0, y0). Thus pos h and neg h are disjoint
cozero-sets in X x Y each of whose closure contains (xQ, y0).

We are going to derive, in 2.4, a simple condition sufficient that
a product space be an jF

THEOREM 2.1. Let X be a P-space, let Y be weakly Lindelof,
and let f e C*(X x Y). Then the real-valued function F, defined on
X by the rule

F(x) = sup{f(x, y):yeY} ,

lies in C*(X).

Proof. To check the continuity of F at x0 e X, let ε > 0 and first
find yoe Y such that f(x0, y0) > F(x0) — ε. There is a neighborhood
U x V of (xQ, yQ) throughout which / > F(x0) — ε, and for x e V we
have F(x) ̂  f{x, yQ) > F(x0) - ε.

To find a neighborhood U' of x0 throughout which F ^ F(x0) + ε,
first select for each y e Y a neighborhood Uy x Vy of (x0, y) throughout
which / < F(xQ) + ε/2. Because Y is weakly Lindelof there is a se-
quence {yk}ΐ=1 in Y with U * ^ d e n s e i n Y With C/r = Π ^ ^ we
check easily that Uf is a neighborhood of x0 for which F(x) ^ (̂aJo) + ε
whenever x e U'.

COROLLARY 2.2. Let X be a P-space and Y a weakly Lindelof
space, and let π denote the projection from X x Y onto X. Then for
each cozero-set A in X x Y, the set πA is open-and-closed in X.

Proof. If A = coz / with / e C*(X x Y) and / ^ 0, then πA is
the cozero-set of the function F defined as in 2.1, hence is closed
(since X is a P-space).

The following lemma asserts, in effect, that for suitably restricted
spaces X and Y, the closure in X x Y of each cozero-set may be
computed by taking closures of vertical slices. When A c X x 7 w e
denote c\xxγA by the symbol A, and A Π ({x} x Γ) by i , .
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LEMMA 2.3. Let X be a P-space and let Y be locally weakly
Lindelof at each of its non-P-points. Then A — \JxeλΆx for each
cozero-set A in X x Y.

Proof. The inclusion z> is obvious, so we choose (x, y) e A. We
must show that {x} x V meets Ax for each neighborhood F in Y of
y. If y is a P-point of Y then (x, y) is a P-point of X x Y, so that
indeed

(x, 7/) G ({&} X F) Π Ax .

If 7/ is not a P-point of Y and F o is a weakly Lindelof neighborhood
of y in F with F o c F, then (X x Fo) Γί A is a cozero-set in X x F o

and 2.2 applies to yield: π[(X x Fo) Π A] is open-and-closed in X. Since
(ίc, y) € cl^x^JCX x Fo) Π A], we have

a = π(x, y)eπ clX X Γ o[(X x Fo) ί l i ] c clxπ[(X x Fo) Π A]

- τr[(X x Fo) n A] ,

so that ({#} x F) Π Ax z> ({x} x Vo) f] Ax ^ 0 as desired.
The elementary argument just given yields the following result,

which we shall improve upon in 3.2.

THEOREM 2.4. Let Y be an F'-space which is locally weakly
Lindelof at each of its non-P-points. Then X x Y is an Ff-space
for each P-space X.

Proof. If A and B are disjoint cozero-sets in X x Y, then from
2.3 we have

The theorem just given furnishes a proof for 2.5(b) below, an-
nounced earlier in [2], (In a letter of December 27, 1966, Professor
Curtis has asserted his agreement with the authors' beliefs that (a)
the argument given in [2] contains a gap and (b) this error does not
in any way affect the other interesting results of [2].)

COROLLARY 2.5. Let X be a P-space and let Y be an F'-space
such that either

(a) Y is locally Lindelof; or
(b) Y is locally separable.

Then X x Y is an Ff-space.

Note added September 16, 1968. The reader may have observed
already a fact noticed only lately by the authors: Each jF'-space in
which each open subset is weakly Lindelof is extremally disconnected
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(in the sense that disjoint open subsets have disjoint closures). [For
the proof, let U and V be disjoint open sets in such a space Y,
suppose that p e cl U Π cl V, and for each point y in U find a cozero-
set Uy of Y with y e Uy c U. The cover {Uy:y e U} admits a countable
subfamily <ĝ  whose union is dense in U. If 5*"* is constructed simi-
larly for V, then U *%S and U y are disjoint cozero-sets in X whose
closures contain p.] It follows that each separable jF'-space, and hence
each locally separable i^'-space, is extremally disconnected, and hence
basically disconnected. Thus the conclusion to Corollary 2.5(b) is un-
necessarily weak. In view of 3.4 we have in fact: If X is a P-space
and Y is a locally separable i^'-space, then X x Y is basically dis-
connected.

3* When the product of spaces is F'. It is clear that for each
collection { "Wa}aeA of open covers of a locally weakly Lindelof space
Y and for each y in Y one can find a neighborhood U of y and for
each a a countable subfamily 5^ of Ύ/^a such that £/ccly(U 9Q
(Indeed, the neighborhood U may be chosen independent of the collec-
tion { ΎSl}aeA.)

When, in contrast to this strong condition, such a neighborhood
U is hypothesized to exist for each countable collection of covers of
Y, we shall say that Y is countably locally weakly Lindelof (abbrevia-
tion: CLWL). The formal definition reads as follows:

DEFINITION 3.1. The space Y is CLWL if for each countable col-
lection { Wn) of open covers of Y and for each y in Y there exist a
neighborhood U of y and (for each n) a countable subfamily 5^ of
WZ with ?7cclF(U 5^).

A crucial property of CLWL spaces is disclosed by the following
lemma, upon which the results of this section depend.

For / in C(X x Y), we denote by fx that (continuous) function
on Y defined by the rule fx(y) = f(x, y).

LEMMA 3.2. Let f e C*(X x Y), where X is a P-space and Y is
CLWL. // (x0, y0) e X x Y, then there is a neighborhood U x V of
(not Vo) such that fx = fXQ on V whenever x e U.

Proof. For each y in Y and each positive integer n there is a
neighborhood Un(y) x Vn(y) of (x0, y) for which

I f(x', V') - f(%o, V) \ < l/n whenever (x\ y') e Un{y) x Vn(y) .

Since for each n the family {Vn(y) :y eY) is an open cover of Y,
there exist a neighborhood V of y0 and (for each n) a countable subset
Yn of Y for which Fcclr(U{FΛ(2/) :i/e Γn}).
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We define the neighborhood U of xQ by the rule

To check that neighborhood U x V of (xQ, yQ) is as desired, suppose
that there is a point (xf, yf) in U x V with f(x', yf) Φ f(χQ, y'). Choos-
ing an integer n and a neighborhood U' x V of ($', 7/') such that
I /(», 1/) — /(#<>, 2/') I > Vn whenever (x, y) e U' x F', we see that since
yfeVcicly(\j{V9u(y):yeYJtn}) and 7'n7,,(ί/') is a neighborhood of
2/' there exist points y in Y3n and p in [7 ' ί l V3n(y')] Π F3n(i7).

Since (a;', y) e Uf x F', we have

l/(*',^)-/(*<>, 2/') I > 1 M .

But since (a?', p) e £7 x VSn(y)czU3n(y) x F3n(έr), and (a?0, p) e Z73n(̂ ) x VZn(y)f

and (a?0, p) e UZn(y') x F3J2/'), we have

!/(* ' , 5) ~ /(»o, 2/')I ^ | / ( ^ , P) - /(«o, y)\

+ I/(a?o, ̂ ) ~ f(Xo, V)\ + \/(a?o, 5) ~ /(&<>, 2/')I
< 1/Zn + l/3w + l/3n = 1/rc .

We have seen in § 2 that if the product space X x F is an jP'-space
then both X and Y are i^'-spaces and either X or F is a P-space.
It is clear that every discrete space is a P-space, and that the product
of any i^'-space with a discrete space is an jF'-space; the example given
by Gillman in [4], however, shows that the product of a P-space with
an jP'-space may fail to be an F'-space. Thus it appears natural to
ask the question: Which i^'-spaces have the property that their product
with each P-space is an i^'-space? We now answer this question.

THEOREM 3.3. In order that X x Y be an F'-space for each P-
space X, it is necessary and sufficient that Y be an Fr-space which
is CLWL.

Proof. Sufficiency. Let feC*(Xx F), and let (xQ, y0) e X x F.
We may suppose without loss of generality that there is a neighborhood
V of y0 in F for which

0 = 0 .

But then, choosing U x V as in Lemma 3.2, we see that

u x (FnF')npos/ = 0 ,

so that (x0, yQ) £ cl pos / .
Necessity. (A preliminary version of the construction below—in

the context of weakly Lindelof spaces, not of CLWL spaces—was
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communicated to us by Anthony W. Hager in connection with a project
not closely related to that of the present paper. We appreciate pro-
fessor Hager's helpful letter, which itself profited from his collabora-
tion with S. Mrowka.)

We have already seen that Y must be an F'-space. If Y is not
CLWL then there are a sequence { Wl} of open covers of Y and a
point y0 in Y with the property that for each neighborhood U of y0

there is an integer n(U) for which the relation

ϊ7ccly(U3θ

fails for each countable subfamily y of ^ v ^ .
Let US denote the collection of neighborhoods of y0. With each

U e *%S we associate the family Σ( U) of countable intersections of sets
of the form Y\W with We W~nW), and we write

τ(U) = {(A,U):AeΣ(U)}.

From the definition of n{ U) it follows that (intr A) ΓΊ U Φ 0 whenever
AeΣ(U). The space X is the set {oo}\j\JUe^τ(U), topologized as
follows: Each of the points (A, U), for AeΣ{U), constitutes an open
set, so that X is discrete at each of its points except for oo; and a
set containing the point co is a neighborhood of oo if and only if it
contains, for each Ue^S, some point (A, U)eτ(U) and each point of
the form (B, U) with B e A and (B, U)eτ(U). Since Γ)?=iA& eΣ(U)
whenever each AkeΣ(U), it follows that each countable intersection
of neighborhoods of oo is a neighborhood of oo, so that X is a P-space.
Like every Hausdorff space with a basis of open-and-closed sets, X is
completely regular. It remains to show that X x Y is not an i^'-space.

Since for Ue^ there is no countable subfamily 5̂ ~ of 5^(Co
for which Z7cclF((J5O, the set (intFA) Π U is uncountable whenever
Ue%s and AeΣ(U). Thus whenever (A, U) e τ(U) we choose distinct
points pUtU) and q(A}U) in (intFA) Π U and disjoint neighborhoods FUtU) and
GUtU) of pUtU) and qU)U) respectively, with FUtU) U GUfϋ) a (intFA) n U.
Because Y is completely regular there exist continuous functions fu*u)
and gu> m mapping Y into [0, 1] such that

fu,u)(Pu,u)) = 1 9 fu,u) = 0 off FUtU) ,

9u,u)(Qu,u)) = 1 » 9u,u) = 0 off GκAiU) .

Now for each positive integer k we define functions fk and gk on
X x Y by the rules /Λ(a;, T/) = ̂ (x, y) = 0 if cc = co or if a? = (A, £7)
with & * n(J7); Λ((A, U), y) = /u,^(i/) if Λ = **(#); ^*((A, i7), i/) =
9u,τn(y) if k = n(U). Each function fk is continuous at each point
((A, U), y) = (α, 7/) G X x Γ (with tτ ̂  oo), since fk agrees either with
the function 0 or with the continuous function fUt u} o πγ on the open
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subset {(A, U)} x Y of X x F. Similarly, each function gk is con-
tinuous at each point (x, y) e X x Y with x Φ CO . To check the con-
tinuity (of fk, say) at the point ( o o j j e l x F, find We Wl for
which y e W and write

F = {-I u U w , r ( P ) U \Jk=«w{(B, U):Bcz Y\W} .

Then V x W is a neighborhood of (oo, y) on which /fc is identically 0: For
if {A, U) e τ{U) with k Φ n{U) we have fk((A, U), y) = 0, and if A e Σ{U)
with Aa Y\W and & = n(Z7), then (since ye TΓcF\intFAc Y\FUtϋ))
we have

fk((A, U),y)=fUtϋ)(y) = 0.

We notice next that if A* and m are positive integers then
cozΛ Π coz gm = 0 : Indeed, if /Λ((A, Z7), i/) ̂  0 and flrw((A, C/), ?/) ̂  0,
then k = w(Z7) and m = n(ί7), so that yeFU)U) Π GUtϋ), a contradic-
tion. Thus, defining

and g = ±gk/2*
kk=l

we have / G C*(X X F) and 0 e C*(X x Y) and coz/Π coz g = 0 . Nev-
ertheless for each neighborhood V x i70 of (°°, y0) we have (Ao, 27O) e F
for some AQeΣ(U0), so that

= l/2-(^o) > 0

and (V x UQ) f] coz f Φ 0 . Likewise (F x Uo) Πcozg Φ 0 , and it
follows that (00, yQ) G cl coz / π cl coz ̂ . Thus X x F is not an ί7'-
space.

The proof of Theorem 3.3 being now complete, we turn to the
corollary which we believe responds adequately to Gillman's request
in [4] for a theorem characterizing those pairs of spaces (X, Y) for
which X x F is basically disconnected.

COROLLARY 3.4. In order that X x F be basically disconnected
for each P-space X, it is necessary and sufficient that Y be a basi-
cally disconnected space which is CLWL.

Proof. Sufficiency. Let (xQ9 y0) e cl coz / , where / G C*(X X F),
and let V be a neighborhood of y0 in F for which V c cl cozfXQ.
Choosing U xV as in Lemma 3.2, we see that U x (FΠ V) is a
neighborhood in X x Y of (xQ, y0) for which

U x (FΠ F ' ) c c l c o z / .
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Necessity. That Y must be basically disconnected is clear. That
Y must be CLWL follows from 3.3 and the fact that each basically
disconnected space is an jF'-space.

4* Some examples and questions* If the point x of the topo-
logical space X admits a neighborhood (X itself, say) which is an
.F-space, then each neighborhood U of x in X contains a neighborhood
V which is an F-space: Indeed, if / e C(X) with x e coz f aU and
we set V = coz / , then each pair (A, B) of disjoint cozero-sets of V
is a pair of disjoint cozero-sets in X, which accordingly may be com-
pletely separated in X, hence in V.

The paragraph above shows that any point with a neighborhood
which is an î -space admits a fundamental system of jP-space neighbor-
hoods. The statement with "F" replaced throughout by "ί 7" ' follows
from the implication (b) => (d) of Theorem 4.2 below. The following
definitions are natural.

DEFINITION 4.1. The space X is locally F (resp. locally Ff) at
the point x e X if x admits a neighborhood in X which is an F-space
(resp. an F'-space).

Clearly each F-space is locally F, and each locally F space is
lo sally F'. Gillman and Henriksen produce in 8.14 of [5] an jF'-space
which is not an F-space, and their space is easily checked to be locally
F. In the same spirit we shall present in 4.3 an F'-space which is
not locally F. We want first to make precise the assertion that the
Ff property, unlike the F property, is a local property.

THEOREM 4.2. For each space X, the following properties are
equivalent:

(a) X is an F'-space;
(b) X is locally F';
(c) each cozero-set in X is an F'-space;
(d) each open subset of X is an F'-space.

Proof. That (a) ==> (b) is clear. To see that (b) => (c), let U be
a cozero-set in X and let A and B be disjoint (relative) cozero subsets
of U. Then A and B are disjoint cozero subsets of X. Suppose
p e c\σA Π cl^S. Then, if V is the hypothesized i^'-space neighbor-
hood of p, we have pe c\v(A n V) Π clF(ΰ n V). This contradicts the
fact that V is an i^'-space.

If (c) holds and A and B are disjoint (relative) cozero-sets of an
open subset U of X, then for any point p in cl̂ A Π cl^B there exists
a cozero-set V in X for which p e V c U. It follows that

p e clv(A n V) Π dv(B n V) ,
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contradicting the fact that V is an i^'-space. This contradiction shows
that (d) holds.

The implication (d) => (a) is trivial.

EXAMPLE 4.3. An i^'-space not locally F. Let X be any Ff-
space which is not an i^-space, let D be the discrete space with
|Z)| = y$i, and let Y = (X x D) U {°°}, where oo is any point not in
X x D and Y is topologized as follows: A subset of X x D is open
in Y if it is open in the usual product topology on X x D, and co
has an open neighborhood basis consisting of all sets of the form
{00} u (X x E) with \D\E\ <: y$0. Then co admits no neighborhood
which is an F-space, since each neighborhood of 00 contains (for some
de D) the set X x {d}, which is homeomorphic to X itself, as an open-
and-closed subset. Yet Y is an .F'-space since ~ is a P-point of Y
and each other point of Y belongs to an F'-space, X x D, which is
dense in Y.

We have observed already that a Lindelof F'-space, being normal,
is an .F-space. We show next that the Lindelof condition cannot be
replaced by the locally Lindelof property.

EXAMPLE 4.4. A locally Lindelof F'-space which is not F. The
space X = U x L\{ω21 ω^} U \Ja<ωiDa defined in 8.14 of [5] does not
fill the bill here because the space U of ordinals ^o)2 (with each
7 < ω2 isolated and with neighborhoods of ω2 as in the order topology)
is not Lindelof. When the space is modified by the replacement of U
by βUj the resulting space {Xr say) fails to be an F-space just as in
[5] Yet U is a P-space, so that βU is a compact F-space, and
therefore (by Theorem 3.3 above, or by Theorem 6.1 of [9]) βU x L
is a Lindelof F'-space. Thus X' is a locally Lindelof space which is
locally Fr, hence is a locally Lindelof F'-space.

The condition that a space be locally weakly Lindelof at each of
its non-P-points is more easily worked with then the condition that
it be CLWL. A converse to Theorem 2.4 would, therefore, be a wel-
come replacement for the "necessity" part of Theorem 3.3. The fol-
lowing example shows that the converse to Theorem 2.4 is invalid.

EXAMPLE 4.5. A CLWL F'-spaee with a non-P-point at which it is
not locally weakly Lindelof. Let Y be the space D x D (J {°°} with D the
discrete space for which \D\ = fc^ and (after the fashion of 8.5 of [5])
adjoin t o 7 a copy of the integers N so that cχ> becomes a point in βN\N.
The resulting space Yf = Y U N is topologized so that each point
y φ co contitutes by itself an open set, while a set containing 00 is
a neighborhood of 00 if it contains both a set drawn from the ultra-
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filter on N corresponding to oo and a set of the form D x E with
\D\E\ ^ y$0. Then oo is not a P-point of Y', since the function whose
value at the integer ne NaY' is 1/n and whose value at each other
point of Y' is 0 is constant on no neighborhood of oo; and Y' is not
locally weakly Lindelof at oo since each neighborhood of oo contains
as an open-and-closed subset a homeomorph of the uncountable discrete
space D. The only nonisolated point of Y', oo, can belong to a set
of the form (clcoz /)\coz / only when oo e cl(coz/ Π iV), so that Yr is
an F'-space. If, finally, WΊ is a sequence of open covers of Yr and
a neighborhood U of oo in Y is chosen so that for each n we have
UdWn for some Wne

 <Wn (as is possible, since Y is a P-space),
then evidently U U N is a neighborhood of oo in 7 ' contained in
clF'(U 3Q for a suitable countable subfamily ^ of ^ ς . Thus Y'
is CLWL.

Theorem 1.8 does not provide an answer to the following problem,
which we have been unable to solve.

QUESTION 4.6. Is each weakly Lindelof F'-space an F-space?

On the basis of Theorem 3.3 and Corollary 3.4 and the fact that
the class of F-spaces is nestled properly between the classes of Fr-
and of basically disconnected spaces, one wonders whether the obvious
F-space analogue of 3.3 and 3.4 is true. We have not been able to
settle this question, though one of us hopes to pursue it in a later
communication. We close with a formal statement of this question,
and of a related problem.

QUESTION 4.7. In order that X x Y be an F-space for each P-
space X, is it sufficient that Y be an jP-space which is CLWL?

QUESTION 4.8. Do there exist a P-space X and an F-space Y
such that X x Y is an F'-space but not an .F-space?

This paper has benefited, both mathematically and grammatically,
from an unusually thoughtful and instructive referee's report. It is
a pleasure to thank the referee for his helpful criticism.
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