PACIFIC JOURNAL OF MATHEMATICS
Vol. 28, No. 3, 1969

F-SPACES AND THEIR PRODUCT WITH P-SPACES

W.W. CoMFORT, NEIL HINDMAN, AND S. NEGREPONTIS

The F'’-spaces studied here, introduced by Leonard Gill-
man and Melvin Henriksen, are by definition completely regular
Hausdorff spaces in which disjoint cozero-sets have disjoint
closures, The principal result of this paper gives a sufficient
condition that a product space be an F'/-space and shows that
the condition is, in a strong sense, best possible, A fortuitous
corollary in the same vein responds to a question posed by
Gillman: When is a product space basically disconnected (in
the sense that each of its cozero-sets has open closure)?

A concept essential to the success of our investigation was sug-
gested to us jointly by Anthony W. Hager and S. Mrowka in response
to our search for a (simultaneous) generalization of the concepts
“Lindelof” and “separable.” Using the Hager-Mrowka terminology,
which differs from that of Frolik in [3], we say that a space is weakly
Lindelof if each of its open covers admits a countable subfamily with
dense union. §1 investigates F'-spaces which are (locally) weakly
Lindelof; § 2 applies standard techniques to achieve a product theorem
less successful than that of §3; §4 contains examples, chiefly elemen-
tary variants of examples from [5] or Kohls’ [8], and some questions.

1. F’-spaces and their subspaces. Following [5], we say that a
(completely regular Hausdorff) space is an F-space provided that dis-
joint cozero-sets are completely separated (in the sense that some
continuous real-valued function on the space assumes the value 0
on one of the sets and the value 1 on the other). It is clear that
any F'-space is an F"’-space and (by Urysohn’s Lemma) that the con-
verse is valid for normal spaces. Since each element of the ring
C*(X) of bounded real-valued continuous functions on X extends con-
tinuously to the Stone-Cech compactification SX of X, it follows that
X is an F-space if and only if 8X is an F-space. These and less
elementary properties of F-spaces are discussed at length in [5] and [6],
to which the reader is referred also for definitions of unfamiliar
concepts.

F'-spaces are characterized in 14.25 of [6] as those spaces in which
each cozero-set is C*-embedded. We begin with the analogous charac-
terization of F’-spaces. All hypothesized spaces in this paper are un-
derstood to be completely regular Hausdorff spaces.

THEOREM 1.1. X s an F'-space if and only if each cozero-set in
X ts C*-embedded in its own closure.
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Proof. To show that coz f (with feC(X) and f = 0, say) is
C*-embedded in cly coz f it suffices, according to Theorem 6.4 of [6],
to show that disjoint zero-sets 4 and B in coz f have disjoint closures
in clycoz f. There exists g e C*(coz f) with g >0 on 4,9 < 0 on B.
It is easily checked that the function A4, defined on X by the rule

b — fg on coz f
_{0 on Zf }

lies in C*(X), and that the (disjoint) cozero-sets pos h, neg h, contain
A and B respectively. Since clyposh Neclynegh = @, we see that
A and B have disjoint closures in X, hence surely in cl, coz f.

The converse is trivial: If U and V are disjoint cozero-sets in X,
then the characteristic function of U, considered as function on U U V,
lies in C*(U U V), and its extension to a function in C*(clo(U U V)
would have the values 0 and 1 simultaneously at any point in
c,Uncl,V.

The “weakly Lindelof” concept described above allows us to show
that certain subsets of F'-spaces are themselves F', and that certain
F'’-gspaces (for example, the separable ones) are in fact F-spaces. We
begin by recording some simple facts about weakly Lindelof spaces.

Recall that a subset S of X is said to be regularly closed if
S = clyint, S.

LEMMA 1.2. (a) A regularly closed subset of a weakly Lindelof
space is weakly Lindeldf;

(b) A countable union of weakly Lindeldf subspaces of a (fized)
space 1s weakly Lindelof;

(¢) FEach cozero-set in a weakly Lindelof space is weakly Lin-
delof.

Proof. (a) and (b) follow easily from the definition, and (c) is
obvious since for f ¢ C*(X) the set coz f is the union of the regularly
closed sets cl,{xe X :|f(x)] > 1/n}.

Lemma 1.2(c¢) shows that any point with a weakly Lindelof neigh-
borhood admits a fundamental system of weakly Lindelof neighborhoods.
For later use we formalize the concept with a definition.

DEFINITION 1.3. The space X is locally weakly Lindelof at its
point « if x admits a weakly Lindelof neighborhood in X. A space
locally weakly Lindelof at each of its points is said to be locally
weakly Lindelof.

THEOREM 1.4. Let A and B be weakly Lindelof subsets of the
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space X, each maissing the closure (in X) of the other. Then there
exist disjoint cozero-sets U and V for X for which

Acel,(ANDT), Bcely(BnV).

Proof. For each xe A there exists f,eC*X) with f,(x) =0,
f.=1 on clyB. Similarly, for each ye B there exists g,e C*(X)
with ¢,(y) =0, 9,=1 on cl;A. Taking 0< f, <1 and 0=g, <1
for each x and y, we define

U. = r'[0,1/2) , V, =910, 1/2),
w. = r=10,1/2], Z, = g;'[0,1/2] .
Then, with {z,}7., and {y,};-, sequences chosen in A and B respectively

so that AN (U.U.,) is dense in A and BN (U,V,,) is dense in B,
we set

U; = U%L\ngnzyk ’ V';: = Vyn\ukénwrxk

and, finally, U = U, U;, V=U.Vs.
The theorem just given has several elementary corollaries.

COROLLARY 1.5. Two weakly Lindelof subsets of an F'’-space,
each missing the closure of the other, have disjoint closures (which
are weakly Lindeldf).

COROLLARY 1.6. Any weakly Lindelof subspace of an F’-space
is itself an F'-space.

Proof. If A and B are disjoint cozero-sets in the weakly Lindelof
subset Y of the F'-space X, we have from 1.2(c) that A and B are
themselves weakly Lindelof, and that

AnecB=Ancl;,B=@ and BNclyA=Bnchd=g.
From 1.5 it follows that
o =cliAnecB>ocl,Ancl,B.

COROLLARY 1.7. FEach weakly Lindeldf subspace of an F'’-space
18 C*-embedded in its own closure.

Proof. Disjoint zero-sets of the weakly Lindelof subspace Y of
the F’-space X are contained in disjoint cozero subsets of Y, which
by 1.2(¢) and 1.5 have disjoint closures in X.

Corollaries 1.6 and 1.7 furnish us with a sufficient condition that
an F'’-space be an F-space.
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THEOREM 1.8. Fach F'-space with a dense Lindeldf subspace is
an F-space.

Proof. If Y is a dense Lindelof subspace of the #’-space X, then
Y is F’ by 1.6, hence (being normal) is an F-space. But by 1.7 Y is
C*-embedded in X, hence in 8X, so that Y = 8X. Now Y is an
F-space, hence B8Y, hence £X, hence X.

COROLLARY 1.9. A separable F'-space is an F-space.

The following simple result improves 3B.4 of [6]. Its proof, very
similar to that of 1.4, is omitted.

THEOREM 1.10. Any two Lindelof subsets of a (fized) space,
neither meeting the closure of the other, are contained in disjoint
cozero-sets.

An example given in [5] shows that there exists a (nonnormal)
F’-space which is not an F-space. For each such space X the space
BX, since it is normal, cannot be an F'-space; for (as we have observed
earlier) X is an F-space if and only if X is an F-space. Thus not
every space in which an F’-space is dense and C*-embedded need be
an F’-space. The next result shows that passage to C*-embedded
subspaces is better behaved.

THEOREM 1.11. If Y s a C*-embedded subset of the F'-space X,
then Y 1s an F'-space.

Proof. Disjoint cozero-sets in Y are contained in disjoint cozero-sets
in X, whose closures (in X, even) are disjoint.

We shall show in Theorem 4.2 that the F' property is inherited
not only by C*-embedded subsets, but by open subsets as well.

2. On the product of a (locally) weakly Lindeldf space and
a P-space. A P-point in the space X is a point & with the property
that each continuous real-valued function on X is constant throughout
some neighborhood of x. If each point of X is a P-point, then X is
said to be a P-space. The P-spaces are precisely those spaces in which
each G; subset is open.

The following diagram, a sub-graph of one found in |5] and in
[8], is convenient for reference.

P

discrete N basically disconnected — F— F' .

extremally disconnected /
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In the interest of making this paper self-contained, we now include
from [2] a proof of the fact that if a product space X x Y is an F'-
space, then both X and Y are F’-spaces and either X or Y is a P-
space. Indeed, the first conclusion is obvious. For the second, let x,
and ¥, be points in X and Y respectively belonging to the boundary of
the sets coz f and coz g respectively (with feC(X) and ge C(Y) and
f =0 and g = 0). Then the function 4, defined on X x Y by the rule
h(z,y) = f(x) — g(y), assumes both positive and negative values on each
neighborhood in X x Y of (w, %). Thus pos% and neg h are disjoint
cozero-sets in X x Y each of whose closure contains (x,, ¥,).

We are going to derive, in 2.4, a simple condition sufficient that
a product space be an F'-space.

THEOREM 2.1. Let X be a P-space, let Y be weakly Lindelof,
and let f e C*(X x Y). Then the real-valued function F', defined on
X by the rule

F(x) = sup{f(z,y):ye Y},

lies in C*(X).

Proof. To check the continuity of F' at x,¢ X, let ¢ > 0 and first
find y,e Y such that f(x, ¥, > F(x,) —¢. There is a neighborhood
UxV of (x,¥,) throughout which f > F(x,) — ¢, and for e V we
have F(x) = f(x, y) > Fl(x,) — e.

To find a neighborhood U’ of x, throughout which F < F(x,) + ¢,
first select for each y € Y a neighborhood U, x V, of (w,, y) throughout
which f < F(x,) + ¢/2. Because Y is weakly Lindelof there is a se-
quence {y,};—, in Y with U,V,, dense in Y. With U’ = N,U,, we
check easily that U’ is a neighborhood of z, for which F(x) < F(x,) + ¢
whenever x ¢ U’.

COROLLARY 2.2. Let X be a P-space and Y a weakly Lindeldf
space, and let T denote the projection from X x Y onto X. Then for
each cozero-set A in X X Y, the set TA is open-and-closed in X.

Proof. If A=cozf with feC*(X X Y) and f =0, then w4 is
the cozero-set of the function F defined as in 2.1, hence is closed
(since X is a P-space).

The following lemma asserts, in effect, that for suitably restricted
spaces X and Y, the closure in X x Y of each cozero-set may be
computed by taking closures of vertical slices. When AC X X Y we
denote cl,,,A by the symbol 4, and AN (&} x Y) by A,.
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LeMMA 2.3. Let X be a P-space and let Y be locally weakly
Lindelof at each of its mon-P-points. Then A = ,..A, for each
cozero-set A in X X Y.

Proof. The inclusion O is obvious, so we choose (2, y)c 4. We
must show that {x} x V meets A, for each neighborhood ¥V in Y of
y. If y is a P-point of Y then (v, y) is a P-point of X x Y, so that
indeed

@, ez x V)NA,.

If v is not a P-point of Y and V, is a weakly Lindelof neighborhood
of y in Y with V,CV, then (X x V)N A is a cozero-set in X x V,
and 2.2 applies to yield: 7[(X x V,) N A] is open-and-closed in X. Since
(@, ¥) € el [(X x V) N A], we have

x =7n(@,y) €T cliy (X x V)N Al Celyn[(X x Vo) N A]
=7[(X x V)N A4},

so that ({a} x V)N A, Dz} x V)N A, = @ as desired.
The elementary argument just given yields the following result,
which we shall improve upon in 3.2.

THEOREM 2.4. Let Y be an F'-space which s locally weakly
Lindelof at each of its mon-P-points. Then X x Y is an F'-space
for each P-space X.

Proof. If A and B are disjoint cozero-sets in X x Y, then from
2.3 we have

ANB=(U.cx4) N (UeexB.) = U.ex(A.NB,) = U.ex@ = @ .

The theorem just given furnishes a proof for 2.5(b) below, an-
nounced earlier in [2]. (In a letter of December 27, 1966, Professor
Curtis has asserted his agreement with the authors’ beliefs that (a)
the argument given in [2] contains a gap and (b) this error does not
in any way affect the other interesting results of [2].)

COROLLARY 2.5. Let X be a P-space and let Y be an F'-space
such that either

(@) Y is locally Lindeldf; or

(b) Y s locally separable.
Then X x Y is an F'-space.

Note added September 16, 1968. The reader may have observed
already a fact noticed only lately by the authors: Each F’-space in
which each open subset is weakly Lindelof is extremally disconnected
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(in the sense that disjoint open subsets have disjoint closures). [For
the proof, let U and V be disjoint open sets in such a space Y,
suppose that pecl UNel V, and for each point v in U find a cozero-
set U, of Y with ye U, U. The cover {U,: y € U} admits a countable
subfamily % whose union is dense in U. If <¢” is constructed simi-
larly for V, then U%Z and U<~ are disjoint cozero-sets in X whose
closures contain p.] It follows that each separable F’-space, and hence
each locally separable F’-space, is extremally disconnected, and hence
basically disconnected. Thus the conclusion to Corollary 2.5(b) is un-
necessarily weak. In view of 3.4 we have in fact: If X is a P-space
and Y is a locally separable F’-space, then X x Y is basically dis-
connected.

3. When the product of spaces is F’. It is clear that for each
collection { %7.}... of open covers of a locally weakly Lindelof space
Y and for each % in Y one can find a neighborhood U of y and for
each a a countable subfamily <7, of 97, such that Ucel, (U #.).
(Indeed, the neighborhood U may be chosen independent of the collec-
tion { 7 }ucs)

When, in contrast to this strong condition, such a neighborhood
U is hypothesized to exist for each countable collection of covers of
Y, we shall say that ¥ is countably locally weakly Lindelof (abbrevia-
tion: CLWL). The formal definition reads as follows:

DEeFINITION 3.1. The space Y is CLWL if for each countable col-
lection { 97,} of open covers of Y and for each y in Y there exist a
neighborhood U of y and (for each n) a countable subfamily <7, of
7, with Ucel,(U 2,).

A crucial property of CLWL spaces is disclosed by the following
lemma, upon which the results of this section depend.

For f in C(X x Y), we denote by f, that (continuous) function
on Y defined by the rule f.(y) = f (=, v).

LEMMA 3.2, Let feC*(X x Y), where X its a P-space and Y is
CLWL. If (x,¥,)eX x Y, then there is a netghborhood U x V of
(%o, Yo) such that f, = f., on V whenever xe U.

Proof. TFor each y in Y and each positive integer n» there is a
neighborhood U,(y) x V,.(¥) of (x, ¥) for which

[ (@, y) — flx, y)| <1/n whenever (2/,%)eU,(y) x V.(¥).

Since for each n the family {V,(y) :y€ Y) is an open cover of Y,
there exist a neighborhood V of y, and (for each n) a countable subset
Y, of Y for which Vel (U{V,(y) :yeY.}.
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We define the neighborhood U of z, by the rule

U=N.N{U.»):yc Y.} .

To check that neighborhood U x V of (x, v,) is as desired, suppose
that there is a point (2’, ¥') in U x V with f(2', ') # f(x,, %'). Choos-
ing an integer n and a neighborhood U’ x V’ of (x/,%’) such that
| f(x, y) — f(x,, ¥')| > 1/n whenever (x,y)ec U’ x V', we see that since
yeVce (U{Va,):yeY,)) and V' N V,.(¥') is a neighborhood of
y' there exist points ¥ in Y,, and ¥ in [V’ N V,.(¥)] N V,.(5).

Since (¢',y)e U’ x V', we have

| f@,g) — f@o,y)] > 1/n.

But since (¢, ¥) € U X Vi, (7)) C Us(¥) X Viu(®), and (2, ¥) € Usn(¥) X Vinl¥),
and (., ¥) € U,,(¥') X V,.(¥'), we have

L@, y) — f(@, )] = 1@, Y) — f(@,7)]
+ [ f (@, ¥) — (@0, D] + | (0, H) — [ (2, ¥)]
<130+ 1/3n + 1/3n = 1n .

We have seen in § 2 that if the product space X x Y is an F'’-space
then both X and Y are F'’-spaces and either X or Y is a P-space.
It is clear that every discrete space is a P-space, and that the product
of any F'’-space with a discrete space is an F'’-space; the example given
by Gillman in [4], however, shows that the product of a P-space with
an F'’-space may fail to be an F'’-space. Thus it appears natural to
ask the question: Which F-spaces have the property that their product
with each P-space is an F"’-space? We now answer this question.

THEOREM 3.3. In order that X X Y be an F’'-space for each P-

space X, it s necessary and suffictent that Y be an F'-space which
is CLWL.

Proof. Sufficiency. Let feC*(X x Y), and let (,, ¥)e X x Y.
We may suppose without loss of generality that there is a neighborhood
V'’ of y, in Y for which

V'Nposf.,, =@ .
But then, choosing U x V as in Lemma 3.2, we see that
Ux(VnVh)npos f =09,

so that (x,, ¥,) € cl pos f.
Necessity. (A preliminary version of the construction below—in
the context of weakly Lindelof spaces, not of CLWL spaces—was
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communicated to us by Anthony W. Hager in connection with a project
not closely related to that of the present paper. We appreciate pro-
fessor Hager’s helpful letter, which itself profited from his collabora-
tion with S. Mrowka.)

We have already seen that Y must be an F’-space. If Y is not
CLWL then there are a sequence { 2#,} of open covers of Y and a
point %, in Y with the property that for each neighborhood U of ¥,
there is an integer n(U) for which the relation

Ucecl,(U¥)

fails for each countable subfamily 2~ of 9%%7.4).

Let % denote the collection of neighborhoods of ¥,. With each
U e Z we associate the family Y(U) of countable intersections of sets
of the form Y\W with We %7,,,, and we write

«(U) = {(4, U): Ae 3(U)} .

From the definition of n(U) it follows that (intyA) N U = @ whenever
Aec3(U). The space X is the set {o} U Uye27(U), topologized as
follows: Each of the points (4, U), for Ae 3(U), constitutes an open
set, so that X is discrete at each of its points except for o; and a
set containing the point o is a neighborhood of < if and only if it
contains, for each Ue %, some point (4, U) e t(U) and each point of
the form (B, U) with Bc A and (B, U)ec(U). Since N4, 3(U)
whenever each A,e X(U), it follows that each countable intersection
of neighborhoods of o is a neighborhood of o, so that X is a P-space.
Like every Hausdorff space with a basis of open-and-closed sets, X is
completely regular. It remains to show that X x Y is not an F'-space.

Since for Ue % there is no countable subfamily ¢~ of %,
for which Ucel,(U%"), the set (int,A) N U is uncountable whenever
UecZ and Ae3(U). Thus whenever (4, U) e t(U) we choose distinct
points p,, ) and g, in (intyA4) N U and disjoint neighborhoods F',, ,;, and
G,y Of Dy, vy and g4, 1) Tespectively, with Fy, 5 U G, 0 C (int,4) 0 U.
Because Y is completely regular there exist continuous functions f,,
and ¢4, mapping Y into [0, 1] such that

fu,o®@um) =1, Sfu,;m=0off Feyy,
I, (@) =1, g =0 off G -

Now for each positive integer & we define functions f, and g, on
X x Y by the rules fi(z, %) = g.(2, %) =0 if 2 = ~ or if v = (4, U)
with k= n(U); fi((4, U),v) = fu,n@) if k=nU); g.((4,U),y) =
g, @) if £ =n(U). Each function f, is continuous at each point
(4, U),y) = (x,y)e X x Y (with & # ), since f, agrees either with
the function 0 or with the continuous function f,, , 7y on the open
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subset {(4, U)} x Y of X x Y. Similarly, each function g, is con-
tinuous at each point (v, y)e X x Y with © = . To check the con-
tinuity (of f,, say) at the point («,y)e X x Y, find We 97; for
which ye W and write

V= {} U Uizncn?(U) U U= {(B, U) : BC Y\W}.

Then V x W is a neighborhood of (<o, %) on which f, is identically 0: For
if (4, U)ew(U) with k = n(U) we have f.((4, U),y) = 0, and if Ae 3(U)
with Ac Y\W and k = n(U), then (since ye Wc Y\int,AcC Y\F )
we have

Fil((A4,U0),y) = fu,n) =0.

We notice next that if ¥ and m are positive integers then
coz fr, N coz g, = @: Indeed, if fL.((4, U),y) = 0 and ¢.((4, U), y) = 0,
then k = n(U) and m = n(U), so that ye€ F,,,, N G, v, a contradic-
tion. Thus, defining

f= kZ:‘.lfk/z” and g = ;:31 g/2*

we have feC*(X x Y)and ge C*(X x Y) and coz fNcozg = @». Nev-
ertheless for each neighborhood V x U, of (<=, y,) we have (4, U)eV
for some A,e X(U,), so that

f((4,, Uy), 20“;0,@'0)) = fn(Uo)((Ao, Uy, D, UO))/zMUO)
= f(Ao» Uo‘r(p(Ao» UO.})/Zn(Uo)
= 1/2"%0 > 0

and (V x U)Necozf # @. Likewise (V x U)Ncozg = @, and it
follows that (oo, y,)eclcoz f Nclcozg. Thus X x Y is not an F'-
space.

The proof of Theorem 3.3 being now complete, we turn to the
corollary which we believe responds adequately to Gillman’s request
in [4] for a theorem characterizing those pairs of spaces (X, Y) for
which X x Y is basically disconnected.

COROLLARY 3.4. In order that X X Y be basically disconnected
for each P-space X, it is necessary and sufficient that Y be a basi-
cally disconnected space which 1s CLWL.

Proof. Sufficiency. Let (x,, ¥,) €clcoz f, where feC*X x Y),
and let V' be a neighborhood of y, in ¥ for which V’cclcozf,..
Choosing U xV as in Lemma 3.2, we see that U x (VN V') is a
neighborhood in X X Y of (x,, ¥,) for which

Ux(VnV')celcoz f .
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Necessity. That Y must be basically disconnected is clear. That
Y must be CLWL follows from 3.3 and the fact that each basically
disconnected space is an F’-space.

4. Some examples and questions. If the point x of the topo-
logical space X admits a neighborhood (X itself, say) which is an
F'-space, then each neighborhood U of z in X contains a neighborhood
V which is an F-space: Indeed, if feC(X) with xecoz f < U and
we set V = coz f, then each pair (4, B) of disjoint cozero-sets of V
is a pair of disjoint cozero-sets in X, which accordingly may be com-
pletely separated in X, hence in V.

The paragraph above shows that any point with a neighborhood
which is an F-space admits a fundamental system of F-space neighbor-
hoods. The statement with “F” replaced throughout by “F’” follows
from the implication (b) = (d) of Theorem 4.2 below. The following
definitions are natural.

DEeFINITION 4.1. The space X is locally F' (resp. locally F) at
the point ¢ X if 2 admits a neighborhood in X which is an F-space
(resp. an F'-space).

Clearly each F-space is locally F, and each locally F space is
locally F’. Gillman and Henriksen produce in 8.14 of [5] an F'-space
which is not an F-space, and their space is easily checked to be locally
F. In the same spirit we shall present in 4.3 an F’-space which is
not locally F. We want first to make precise the assertion that the
F" property, unlike the F' property, is a local property.

THEOREM 4.2. For each space X, the following properties are
equivalent:

(a) X vs an F'-space;

(b) X s locally F;

(c) each cozero-set in X vs an F'-space;

(d) each open subset of X is an F’'-space.

Proof. That (a) = (b) is clear. To see that (b)= (c), let U be
a cozero-set in X and let A and B be disjoint (relative) cozero subsets
of U. Then A and B are disjoint cozero subsets of X. Suppose
peclyAnel,B. Then, if V is the hypothesized F'’-space neighbor-
hood of p, we have pecl,(AN V)Ncl, (BN V). This contradicts the
fact that V is an F'-space.

If (¢) holds and A and B are disjoint (relative) cozero-sets of an
open subset U of X, then for any point p in cl,4 N cl,B there exists
a cozero-set V in X for which pe Vc U. It follows that

pec,(ANV)nel,(BNV),
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contradicting the fact that V is an F'’-space. This contradiction shows
that (d) holds.
The implication (d) = (a) is trivial.

ExAMPLE 4.3. An F'-space not locally F. Let X be any F'-
space which is not an F-space, let D be the discrete space with
|ID| =%, and let ¥ = (X x D) U {c}, where o is any point not in
X x D and Y is topologized as follows: A subset of X x D is open
in Y if it is open in the usual product topology on X x D, and
has an open neighborhood Dbasis consisting of all sets of the form
{=}U(X x E) with |D\E| < W,. Then o admits no neighborhood
which is an F-space, since each neighborhood of <o contains (for some
d e D) the set X x {d}, which is homeomorphic to X itself, as an open-
and-closed subset. Yet Y is an F'-space since o is a P-point of Y
and each other point of Y belongs to an F'’-space, X X D, which is
dense in Y.

We have observed already that a Lindelof F’-space, being normal,
is an F-space. We show next that the Lindelof condition cannot be
replaced by the locally Lindelof property.

ExAMPLE 4.4. A locally Lindelof F’-space which is not F. The
space X = L’ x L\{®,, ®,)} U Uuco, D, defined in 8.14 of [5] does not
fill the bill here because the space L’ of ordinals <w, (with each
v < , isolated and with neighborhoods of w, as in the order topology)
is not Lindelof. When the space is modified by the replacement of L’
by BL', the resulting space (X’ say) fails to be an F-space just as in
[5]. Yet L’ is a P-space, so that BL’ is a compact F-space, and
therefore (by Theorem 3.3 above, or by Theorem 6.1 of [9]) AL’ x L
is a Lindelof F’-space. Thus X’ is a locally Lindelof space which is
locally F, hence is a locally Lindelof F'’-space.

The condition that a space be locally weakly Lindelof at each of
its non-P-points is more easily worked with then the condition that
it be CLWL. A converse to Theorem 2.4 would, therefore, be a wel-
come replacement for the “necessity” part of Theorem 3.3. The fol-
lowing example shows that the converse to Theorem 2.4 is invalid.

ExampLE 4.5. A CLWL F'’-space with a non-P-point at which it is
not locally weakly Lindelof. Let Y be the space D x DU{e} with D the
discrete space for which |D| = W, and (after the fashion of 8.5 of [5])
adjoin to Y a copy of the integers N so that « becomes a point in SN\N.
The resulting space Y’ = Y U N is topologized so that each point
y #+ oo contitutes by itself an open set, while a set containing oo is
a neighborhood of o if it contains both a set drawn from the ultra-
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filter on N corresponding to o and a set of the form D x E with
|ID\E| £ Y. Then o is not a P-point of Y’, since the function whose
value at the integer ne Nc Y’ is 1/n and whose value at each other
point of Y’ is 0 is constant on no neighborhood of «; and Y’ is not
locally weakly Lindelof at oo since each neighborhood of < contains
as an open-and-closed subset a homeomorph of the uncountable discrete
space D. The only nonisolated point of Y’, «, can belong to a set
of the form (clcoz f)\coz f only when <o ecl(coz f N N), so that Y’ is
an F'-space. If, finally, 97, is a sequence of open covers of Y’ and
a neighborhood U of < in Y is chosen so that for each n we have
Uc W, for some W,e 97, (as is possible, since Y is a P-space),
then evidently U U N is a neighborhood of « in Y’ contained in
cly.(U ;) for a suitable countable subfamily <, of 9%,. Thus Y’
is CLWL.

Theorem 1.8 does not provide an answer to the following problem,
which we have been unable to solve.

QUESTION 4.6. Is each weakly Lindelof F'-space an F-space?

On the basis of Theorem 3.3 and Corollary 3.4 and the fact that
the class of F-spaces is nestled properly between the classes of F'-
and of basically disconnected spaces, one wonders whether the obvious
F-space analogue of 3.3 and 3.4 is true. We have not been able to
settle this question, though one of us hopes to pursue it in a later
communication. We close with a formal statement of this question,
and of a related problem.

QUESTION 4.7. In order that X x Y be an F-space for each P-
space X, is it sufficient that Y be an F-space which is CLWL?

QUESTION 4.8. Do there exist a P-space X and an F-space Y
such that X x Y is an F’-space but not an F-space?

This paper has benefited, both mathematically and grammatically,
from an unusually thoughtful and instructive referee’s report. It is
a pleasure to thank the referee for his helpful criticism.
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