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BOUNDS FOR THE NUMBER OF DEFICIENT
VALUES OF ENTIRE FUNCTIONS WHOSE

ZEROS HAVE ANGULAR DENSITIES

Kl-CHOUL OϋM

Let f(z) be an entire function of finite order λ. Arakeljan
has shown that, for every λ > 1/2, f(z) may have infinitely
many deficient values in the sense of R. Nevanlinna. We
prove here that this cannot happen if (i) the zeros of f(z)
have an angular density (in the sense of Pfluger and Levin)
and (ii) λ is not an integer. Under these two assumptions
the number of deficient values cannot exceed 21 + 1. If f(z)
is of completely regular growth (in the sense of Levin), the
result also holds for integral values of the order.

We use systematically the fundamental concepts of Nevanlinna's
theory of meromorphic functions and take for granted the meaning
of the following well established symbols of this theory

log+, M(r, / ) , m(r, / ) , n(r, τ), N(r, r), T(r, f) .

Since n(r, ό) is the only one of the functions n(r, τ) which concerns
us, we set n(r) = n(r, o), and use the more detailed notation

( 1 ) n(r; φ19 φ2) (o < φ2 - φγ ^ 2π) ,

to indicate the number of zeros of f(z) lying in the sector

{z: I z I ̂  r , φx ^ φ < φ2} (φ = arg z) .

Multiple zeros are counted in (1) as often as indicated by their mul-
tiplicities.

The deficiency δ(τ, f) of the value τ (of the function /) is defined

by

I confine my study to entire functions of finite order λ:

(2) λ = limsup loglogMfo/)
r~>+eo log r

and always denote by v(f)(^ + ©o) the number of distinct values of
τ for which δ(τ,f) > 0. Since f(z) is entire, δ(ooff) = 1 and hence

( 3 ) 1 ^ v(f) ^ + - .
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Before the important discovery of Arakeljan [1], it had been
conjectured, for a long time, that, in the case of entire functions,
X < + oo implies v{f) < + oo.

The erroneous conjecture was based on the intuitive idea that the
link between the notions of deficient and asymptotic values is strong
enough to imply

( 4 ) v{f) ^ 2λ + 1

(in complete analogy with Ahlfors' sharp bound for the number of
asymptotic values, including oo, of an entire function of order λ).

The main result of the present paper may be stated as

THEOREM 1. Let f(z) be an entire function of finite nonintegral
order λ, and let the zeros of f(z) have an angular density in the
sense of Pfluger and Levin.

Then the number of deficient values of f(z) is necessarily finite
and cannot exceed 2λ + 1. // 2λ is a positive integer, the number
of deficient values cannot exceed 2λ.

The notion of angular density, which appears in the above state-
ment, requires the preliminary introduction of a positive, continuous,
nondecreasing function V(r) whose growth is:

(i) regular enough to lead to manageable asymptotic computa-
tions;

(ii) so "close" to the growth of log M(r, f) that

(5) l .

V(r)

Following a well established pattern, we shall always take

( 6 ) V(r) = rλir) ,
where λ(r) is any one of the Lindelof proximate orders of f(z).

We say that the function V(r) = V(r, f) thus chosen is a Valiron
growth function of f(z).

The definition of λ(r) (and hence also the definition of V{r)), its
existence and elementary properties are well-known and will be taken
for granted. Proofs and a detailed account of the relevant results
will be found in [2; pp. 54 — 58].

Following Pfluger [7; p. 204], we say that the zeros of f(z) have
an angular density, ivith respect to V(r) = V(r,f), if, with every
ε > o, it is possible to associate a finite number k — k(ε) of arguments:

Φi,Φ*f-- fΦk (0 £ Φ, < Φz < < φk < 2π)
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such that

φi+ί -φs<e (j = 1, 2, . , k; φk+1 = φx + 2π) ,

and such that the limits

lim
; φj> φj+ί)

)Λn)
r

exist (and are finite) for j = 1, 2, , k.
In Theorem 1 we assume that "the zeros of f(z) have an angular

density" and make no reference to the corresponding V(r). This is to
be understood as follows: the zeros of f(z) have an angular density
with respect to some Valiron growth function of f(z).

We conclude this Introduction by pointing out that Edrei and Fuchs
[3] proved the inequality

( 7 ) v(f) ^ 2λ + 2

for entire functions of order λ satisfying conditions quite different
from the ones considered here. Their remarkable Theorems 3 and 4,
in conjunction with our Theorems 1 and 2, show that, although the
bound in (7) is not general, it is very likely to hold for all the entire
functions, arising "naturally" in the course of an analytical investiga-
tion.

1* Functions of completely regular growth; statement of The-
orem 2* The indicator function h(φ), of Phragmen-Leindelof, plays an
important role in our proofs. We define

(1.1) Mrt = Mm
r^+oo V(r)

and remind the reader that, in view of (5) and (6), h(φ) is a continuous
function; it is always finite, does not vanish identically, and satisfies
the fundamental inequality [2; pp. 41 — 46 and p. 54]

(1.2) hiφ,) sin X(φ3 - φ2) + h(φ2) sin X(φ, - φz) + h(φd) sin λ(^2 - &) ^ 0 ,

valid for

(1.3) φ, < φ2 < φ3, φ2 - φ, < — , & - 92 < -^ λ - limλ(r) .

It will be noticed that Theorem 1 makes no assertions concerning
functions of integral order. This is due to the fact that, if λ is an
integer, the connections between the zeros of f(z) and its indicator
h(φ) are not simple. In all other respects our proof of Theorem 1
requires no modifications when λ is a positive integer. This leads us
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to adopt the notion of function of completely regular growth system-
atically investigated by Levin [5; Chap. Ill], and to prove [Theorem 2]
a generalization of Theorem 1.

Definition of completely regular growth* Put

and let §f be some set of values of r, of density zero. Following
Levin, we say that f(z) is of completely regular growth, with respect
to V(r), if the following convergence

(1.5) h(r, φ) -> h(φ)

takes place, uniformly in φ, as r —> + co and avoids some possible
exceptional set if, of density zero.

For sake of completeness we remind the reader that a set g7 is
of density zero if (i) it is measurable and (ii) the portion &r, of g7,
which falls in the interval [0, r] satisfies the condition

(1.6) lim m e a s ^ = 0 .
r->co γ

From now on, we shall always denote by i? the exceptional set
(of values of r) which appears in the definition of completely regular
growth, and by C the set of all arguments φ:

0 ^ φ £ 2π .

Since we are only interested in the circular arrangement of the
elements of C, the points φ = 0 and φ = 2π will be "identified" and,
more generally, all the values

Φ + 2kπ (k = 0, ± 1, ±2, •)

will be considered as different numerical representation of a single
element of C.

Consider the subset of C defined by

(1.7) Co = {φ: h(φ) = 0} ,

where h(φ) is the indicator of an entire function of finite order λ,
and of completely regular growth.

In § 7 we shall prove

LEMMA 1. The set Co is the union of finitely many isolated
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points and of q disjoint closed intervals which do not reduce to
points:

(1.8) 0 ^ q ^ 2λ .

Lemma 1 is stated at this early stage because it clarifies the
assertions of our most general result:

THEOREM 2. Let f(z) be an entire function of order λ,

0 < λ < + co .

Assume that f(z) is of completely regular growth with respect
to one of its Valiron growth functions and let q be the number of
component intervals, which do not reduce to points, of the set Co.

Then the number of deficient values of f(z)9 other than 0 and °o,
cannot exceed q and

(1.9) v(f) ^ 2λ + 1 .

If 2λ is a positive integer, (1.9) is to be replaced by the sharper
inequality

(1.10) v(f) ^ 2λ

In the case of functions of finite, nonintegral order, the existence
of an angular density of zeros implies complete regularity of the
growth. (This was shown by Pfluger [7; p. 206, Th. 3] and Levin
[5; p. 90].) Hence Theorem 1 follows immediately from Theorem 2.

We finally remark that the well known function [6; p. 170]

Jo
exp(- P)dt ( ϊ ^ 2 ) ,

of order q, is of completely regular growth and shows that the first
assertion of Theorem 2 is "best possible". The inequalities (1.9) and
(1.10) are perhaps less satisfactory and all the examples known to
the author do not preclude the sharper form

v(f) ^ λ + 1 .

2* Notational conventions and statement of known results*
Closed intervals such as a <Ξ x ^ 6 (a <Ξ b) are denoted by [α, &]. All
the sets which appear in this note are measurable. Following Edrei
and Fuchs, we define

log+ fire4*) dφ ,
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where J{aC) is measurable.
It is convenient to introduce systematically

h+(φ) = \h{φ) i f h(φ) - ° '
1 0 if h(φ) < 0 ,

(2.1) H = -l-\2zh(φ)dφ, H+ = Λ-\2πh+(φ)dφ .
2π Jo 2π Jo

We denote positive constants depending on one or several para-
meters by K. Most of our inequalities are only valid for sufficiently
large values of r. We indicate this fact by writing, immediately after
the relevant inequality, (r > r0). The quantities K and r0 are not
necessarily the same ones each time they occur.

For the convenience of the reader we state two lemmas of Edrei
and Fuchs which are of particular importance in our proofs.

LEMMA A [4; p. 322, Lemma III]. Let g(z) be meromorphic. With
each r(>0) we associate a set Λ{r) (of values of φ) such that

meas Λ(r) — μ(r) .

Then, for 1 < r < R', we have

(2.2) m(r, g; Λ(r)) ^ ^}R T(R, g) μ(r)\l + L
Rf — r L μ(r)

LEMMA B [4; p. 321, Lemma I]. Let W(z) be regular, except for
poles

in the sector

s: -2— ^ I 2 I <̂  0τ, I arg z — ξ \ ^ h ,
σ

where ξ is real and

r > 0 , σ > l , 0 < τ ^ 7 Γ , 2 log σ ^ πy .

Let

I W(z) I ̂  1

on the boundary of S. Write J for the intervals of φf s

J: I φ - ξ I ̂  (1 - 2δ)j (0<δ<i).

Then, for φεj,
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log I Wire**) | ^ - - ^ - exp - . „ - . . . . . , , — ,
log σ \ log σ J V VK

+ log

(2.4) Q(z) = Π (s - c5)
3=1

(if there are no poles of W(z) in S, then the last term on the right-
hand side of (2.3) is to be omitted).

3* Evaluation of <5(0, /) for functions of completely regular
growth* We first prove an elementary lemma which shows that it
is frequently possible to eliminate exceptional sets of density zero.

LEMMA 2. Let χ(r) and V(r) be positive, nondecreasing func-
tions of r (r > r0 ^ 0) and let

(3.1) lim V}°r} =σ> (0 < λ < + oo)
r-oo V(r)

for every fixed σ > 1.
Denote by ^0 a possible exceptional set of density zero. Then

(3.2) lim χ ( r ) = B (0 ^ B < + oo)
r-oo V(r)

implies

(3.3) V(r)

Proof. Let σ > 1 be given. The fact that g?0 has density zero
implies the following: with each r (r > r0) it is possible to associate
two values r1 — rx(r) and r2 = r2(r) such that

(3.4) n g gf0, r2 e ĝ o ,

and

(3.5) — < rx < r < r2 < σr .

σ

Since χ(r) and V(r) are nondecreasing functions of r ( > r 0 ),

χ(r) χ(r 2) F(σr) , ,

" V(r2) V(r) V °; -
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Let r—+ oo in the latter inequalities; then, by (3.5), rι—> oo and r
In view of (3.1), (3.2) and (3.4), we find 2

Bσ~λ < lim inf _ l ί r L < l i m sup
~ r-H- F(r) ~ -co F

Letting σ—>1 + , we obtain (3.3).

LEMMA 3. Le£ f(z) be an entire function of finite order and of
completely regular growth with respect to one of its Valiron growth
functions V(r).

Then (with the notation introduced in (2.1)),

(3.6) 0 < H+ < + - ,

(3.7) T(r, f) ~ H+ V(r) (r - + oo) ,

and

(3.8) a(o,/)= H H

a(o,/) .

Proof. The function h(ψ) is continuous on C (this well known
property of the indicator holds in view of the conditions (5) and (6)).
Hence there exists 7 e C such that

h(y) = sup h(φ) ,

and, by the uniformity of the convergence in (1.5),

log I fire'?) I ^ log M(r, f) ^ (h(j) + e ) V(r) (r > r0, r £ if) .

This implies

, by (5) and Lemma 2,

(3.9) lim
1

V(r)
The inequalities (3.6) follow from the continuity of h+(φ), (2.1) and
(3.9).

From (1.5) we deduce that

(3.10) \h(r,φ)\ >\h(φ)\ ( rg g7, r >+ oo) ,

uniformly in ^. Adding (1.5) and (3.10), we obtain
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uniformly in φ; hence, by integration

(3 n ) ι^^wr = H-
In view of Lemma 2, the restriction r g g 7 may be omitted and

(3.7) follows from (3.11).
By Jensen's formula and (1.5)

lim W °) = H

once more Lemma 2 enables us to omit the restriction r g g 7 because
N(r, o) is nondecreasing. Hence, in view of (3.7),

lim

which implies (3.8). This completes the proof of Lemma 3.
We conclude this section by noticing that, if f(z) is of completely

regular growth, (3.6) and (3.7) are valid and (3.1) holds (by (6) and
one of the properties of proximate orders). Hence

(3.12) lim T ( 2 r ' f ) = 2λ .
-co T(r,f)

This relation is needed in the proof of Theorem 2.

4* Statement and proof of the main lemma* From Lemma B
we now deduce

LEMMA 4. Let f(z) be entire and of finite order and let h(φ) be
its Phragmen-Lindelϋf indicator with respect to a Valiron growth
function V(r).

Assume that

(4.1) h(φ) EE 0

throughout the interval [a, β] (0 < β — a < 2π).
Then, for

(4.2) φeJ=[a + η,β-η]

we have
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(4.3) \og\f(re**) - a\ £ - Kom(r, o(V(r))
/ — α

where a denotes any fixed, finite, complex quantity and

(4.4) Ko = 4η« π~7(β - a)~ι exp ( - 64τr/(/3 - a)) > 0

Moreover, if f(z) is of completely regular growth with respect to
V(r) and if

(4.5)

then

(4.6)

m (V, - A — j ) ^ /To Γ(r, /) (r > r0> 0 < tc0 = const.)
^ f — a I

log I f{reiφ) - a (r > r0) .

Proof. Let e > 0 be given. In view of a classical result [2; p.
46, Theorem 31], (4.1) yields

l o g | / ( r β ^ ) l < | - F ( r ) ( r > r o ( e ) ) ,

uniformly for all φ in [a, β].
Hence, by the elementary inequality

log I f(reίφ) - a | ^ log+ | f(re**) \ + log+ | a \ + log 2 ,

we find, for α fixed,

(4.7) log I f(re**) - a \ < e V(r) (r > r0 ( e )) ,

uniformly for all ^ in [α:, β].
In order to apply Lemma B we first define the sector S to be

the set

σ
argz -

a + β

where

(4.8) = exp
π(β - a)

The parameter d of Lemma B is defined by

The restrictions imposed by Lemma B on the quantities 7, a and



DEFICIENT VALUES OF ENTIRE FUNCTIONS 197

δ are satisfied; moreover the choice of these quantities (and of η) is
independent of e .

Now let

zeS, A > r o (e ) .
σ

Then, by (4.7),

log |/(s) - a I ̂  G V(σR) <e(σλ + 1) V{R) ,

so that the function

(4.9) W(z) = (/(s) - α) exp(- e (σ> + 1) F(i2))

is regular and its modulus does not exceed one on the set S. Hence
the inequality (2.3) of Lemma B yields

(4.10) log I W(Re**) \ ̂  - Km(R, 1/W; J) ,

where K may be chosen equal to

Ko - 64 f-2-Y exp (- 16 Ί

 π* ) /log σ .
\ 2π / \ log σ /

In view of (4.8) this value of Ko coincides with the one given in
(4.4)

By (4.9)

1

W(z) \M-a\

and therefore

(4.11) m(R, — 1 _ ; j)^m (R, - i — j) (R > σro( e )) .
\ W(z) J \ f — a J

Using (4.9) and (4.10) in (4.11), we find

(4.12) log I f(Re**) - α | ^ - Kom(lϊ, — i — j
V f — a

+ e (σλ + 1) V(R) (R > σr0 (e )) .

Writing r instead of JB and noticing that 6 > 0 is arbitrary, we
see that (4.12) implies (4.3).

Assume now that f(z) is of completely regular growth with respect
to F(r). Then (3.6) and (3.7) are valid and we may replace, in (4.3),
o(V(r)) by o(Γ(r,/)). Hence, in view of (4.5), we obtain (4.6). This
completes the proof of Lemma 4.



198 KI-CHOUL OUM

5* Proof of Lemma 1* Consider the subset of C defined by

C+ = {φ: h(φ) > 0} .

Since h(φ) is continuous, C+ either coincides with C or is the union
of disjoint open intervals; moreover one of the properties of h(φ) [2;
p. 47, Th. 32] asserts that each of these intervals has a length greater
than or equal to min(τr/λ, 2π). Hence, if p+ denotes the number of
components of C+ we have

ίp+ ^ 2λ (i ^ λ)

\p+ ^ 1 (λ < i)

and also, by (3.6),

It is now obvious that the set

C = C -C+

is the union of p(<,p+) closed intervals some of which may reduce to
points. Let there be p intervals of C which have a positive length;
clearly

(5.1) p ^ p g 2λ .

We prove

LEMMA 5. Let [a, β] (a < β < a + 2π) be any one of the p non-

degenerate intervals of C. Then either (i) h(φ) < 0 throughout the
interval a < φ < β or (ii) h(φ) = 0 in [a, β].

Proof. Assume the lemma to be false. Then there must exist
two interior points φf and φ" of [a, β] such that

h(φ') - 0, K{φ") < 0 .

This would imply the existence of three values φu φ2, φz such that

Φl < Φi < Φi9 Φz — Φl < —

and such that either

h{φx) ^ 0, h(φ2) - 0, h(φ3) < 0 ,

or

h(φ,) < 0, h(φ2) = 0, h(φ3) ^ 0 .
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Since each of these cases contradicts (1.2), Lemma 5 is proved.
By the assumptions of Lemma 1, there are exactly q intervals of

positive length on which h(ψ) = 0 and, by Lemma 5 and (5.1),

(5.2) q £ p ^ 2λ .

We thus obtain (1.8) and Lemma 1 is proved.

6. Proof of Theorem 2* Let [aj9 βj] (j = 1, 2, 3, . - , q) be the
q intervals of positive length on which h(φ) =0.

Consider the finite set X formed by all the following points:
( i ) the 2q points alf β13 a2, β2, , aq, βq;

q

( i i ) the points, if they exist, where h{φ) = 0 and φ£\J [ad1 βj].
j = l

Assume that X has P distinct elements; by (5.1), we clearly have

P ^ p + p ^ 4λ.

If P = 0 then h(ώ) > 0 for all φ. This implies q = 0 and, in view of
the complete regularity of the growth of /, we also have <5(τ, /) = 0
for all finite values of τ. Theorem 2 is obvious in this case and, from
now on we may assume P ^ 1.

Let

0i, θ*,-~,θp (θ, < θ2 < < θp < θ, + 2π = θp+1)

be some circular arrangement of all the elements of X and let

(6.1) 0 <η < i - min {θj+1 - θό) .
4 l^J^

U

Put

(6.2) A = y [θd - Ί), θd + η\ .

The set C — A is the union of three disjoint subsets:
I. A "positive set" 0+ on which h(φ) > 0.

II. A "negative set" 0_ on which h(φ) < 0.
III. A "neutral set"

(6.3) ft = U (ak + V , β k - V ) .

Assume that there exist q + 1 distinct values

(6.4) r l f r 2 , . - . , r f f + 1 ,

none of which is 0 or c>o, and such that
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δ(ri,/)>0

Put

(6.5) 3ic = imm+ i{ί(τ i f/)}

and select η in (6.2) so small that

(6.6) m (r, ^ Λ) < κT(r, f) (r > r0> i = 1, 2, . . . , g + 1) .

This is certainly possible because by Lemma A, Nevanlinna's first
fundamental theorem, and (3.12), we find

m(r, * ^ Λ) ^ 23Γ(2r, /) μ(l + log+ J ^ )

where

g 23(2; + 1) T(r, f) μ(l + log+ — ) (r > r0) ,
V μ)

μ = meas /ί = 2Pη .

The continuity of h(ψ), (1.4) and (1.5) yield immediately

(6.7) m(r, — * {0+ U 0_}) = 0(1)

( r — + oo, f g ξ?,j = 1,2, . . .

The definition of δ(τ, / ) , (6.5), (6.6) and (6.7) imply

(6.8) m(r, ^ ic) > *Γ(r, /)

( r > r 0 , r ^ g7, j = 1, 2, . . . , q + 1) .

Comparing (6.3) and (6.8) we see that, given an integer j, and an
r, such that

1 £ j ^ q + 1, r > r0, r g g7 ,

we can find an integer k = /c(i, r) (1 ^ A: ̂  g) such that

(6.9) m(r, f ^ ; [ak + y, βk - η\) > — Γ(r, /) .

Hence, since there are q + 1 acceptable values of ^ and only q
acceptable values of k, it is possible to associate with each r > r0,
r ί g7, two distinct values of j, say j1 = j\(r)f j2 — j2(r) such that

(6.10) feίi,, r) = fe(i2f r) (i, Φ j2) .
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For a value of k thus determined, we consider the sector

Sk: ak <, φ ^ βk, r ^ r0,

and apply Lemma 4 twice: with

a = akJβ = βk, tco = -ϊ-
q

and first with a = τh then with a — τJ2. Our choice of η, restricted
by (6.1), certainly satisfies

η < — (βk — ak) .
4

In view of (6.9) and (6.10), the inequality (4.6) implies two distinct
consequences:

(6.11) log I /(re**) - τh | ^ - - i p - Γ(r, /) (r > ro; r g g7) ,

and

(6.12) log I /(re**) - τh \ ̂  - - f ^ Γ(r, /) (r > ro; r g g-) .

Both relations are valid for all φ in the interval [ak + 7], βk — 77]
and therefore

I τh - τh I ̂  |/(rβ^) - τh I + I /(re**) - τh \

< 9 pirn ί T(τ fY\ (r ^> r T & 9*?\

Letting r—> 00 ( r ^ ) , we find

τh = τh

This contradiction shows that the set (6.4) has too many elements.
Hence the number of deficient values of f(z), other than 0 and 00,
cannot exceed q. If δ(0, /) = 0, (1.9) follows immediately from (1.8).

If <?(0, /) > 0, (3.8) shows that we must have

(6.13) q < p .

Hence, by (5.1),

q ^ 2λ - 1

and (1.9) follows again.

If 2λ is a positive integer, we return to (5.1) and notice that
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(6.14) p+ = 2λ

would imply p = 0; therefore

v(f) = 1 ^ 2λ ,

and (1.10) follows in this case.

If (6.14) does not hold, then

(6.15) p ^ p+ ^ 2λ - 1

and (1.10) follows immediately if δ(0, /) = 0. If δ(0, /) > 0, (1.10)

follows from (6.13) and (6.15).

This completes the proof of Theorem 2.

REFERENCES

1. N. U. Arakeljan, Entire functions of finite order with an infinite set of deficient
values, Dokl. Akad. Nauk SSSR 170 (1966), 999-1002.
2. M. L. Cartwright, Integral functions, Cambridge, 1956
3. A. Edrei and W. H. J. Fuchs, On meromorphic functions with regions free of poles
and zeros, Acta Mathematica 108 (1962), 113-145.
4. A. Edrei and W. H. J. Fuchs, Bounds for the number of deficient values of certain
classes of meromorphic functions, Proc. London Math. Soc. 12 (1962), 315-344.
5. B. Ja. Levin, Distribution of zeros of entire functions (English translation), New
York, 1964.
6. R. Nevanlinna, Eindeutige Analytische Funktionen, second edition, Berlin, 1953.
7. A. Pfluger, Die Wertverteilung und das Verhalten von Betrag und Argument einer
speziellen Klasse analytischer Funktionen I, Commentarii Math. Helv. 18 (1938), 180-214.

Received April 22, 1968. The research of the author was supported in part by
a grant from the National Science Foundation GP-7407. It was done, under the
guidance of Professor Edrei, in partial fulfillments of the Ph. D. requirements at
Syracuse University.

SYRACUSE UNIVERSITY, SYRACUSE, NEW YORK, AND

STATE UNIVERSITY COLLEGE AT BUFFALO, BUFFALO, NEW YORK




