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THE 2-CELL AS A PARTIALLY ORDERED SPACE

E. D. TYMCHATYN

In this paper we prove a Jordan Curve Theorem (Theorem
1) for certain two dimensional partially ordered spaces.

We use this result to give a new characterization of the
closed 2-cell (Theorm 2).

By a partially ordered space we X mean a Hausdorίf space X with
a partial order which is closed when regarded as a subset of X x X
(X x X has the product topology).

For x e X we set

L(x) = {y e X \ y ^ x)

M(x) = {y e X \ x ^ y]

and

T(x) = L(x) U M(x) .

If A c X we let

L(A) = U {L(x) I x e A} .

We define M(A) and Γ(̂ L) analogously. We let L (resp. M) denote the
set of minimal (resp. maximal) elements of X.

A chain is a totally ordered set. An order arc is a compact and
connected chain. A separable and nondegenerate order arc is home-
omorphic to [0, 1]. A continuum is a compact, connected, Hausdorff
space. An arc is a continuum with exactly two noncutpoints. A
circle is a continuum such that every pair of points separates it.

DEFINITION. If X is a partially ordered space and A c X let

C(A) = L(A) Π M(A) .

A subset A of X is convex if and only if A =

L. Nachbin proved the following result ([4], p. 48).

LEMMA 1.1. (Nachbin). A compact partially ordered space X
has a basis of convex open sets.

The following three lemmas appear in [5]. For completeness we
sketch their proofs here.

LEMMA 1.2. Let X be a compact partially ordered space such
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that L is closed. If for each x e X L(x) has a unique minimal
element p(x) then the function p: X-^L is a retraction.

Proof. We need only show p is continuous. Let (Xi be a net
converging to a; in X and let y be a cluster point of p(Xi)). Then
y e L since L is closed. Since the partial order on X is closed y e L(x).
Hence y — p(x).

LEMMA 1.3. Let X be a compact partially ordered space such
that L is closed and for each xe X L(x) is an order arc. Let 2X

denote the space closed subsets of X with the finite topology [3].
Then the function f: X-+2X defined by f(x) = L(x) is continuous.

Proof. It is well known (Michael [3]) that 2X is a compact
Hausdorίf space and that the family of closed and connected subsets
of X is closed in 2X. Let (xt be a net converging to x in X and let
A be a cluster point of L(^)). Since the partial order on X is closed
A(zL(x). Clearly xeA and A meets L since L is compact. Since
A is connected and no proper connected subset of L(x) contains both
x and L(x) Π L, A = L(x).

LEMMA 1.4. Let X be a compact partially ordered space such
that L and M are closed and for each xe X Γ(x) is an order arc.
Then the projection π\X—>M defined by letting π(x) e M(x) Π M is
continuous and open.

Proof. By Lemma 1.2 we need only show that π is open. By
Lemma 1.3 the function /: ikf-+2Γ defined by letting /(m) = L(m) is
a homeomorphism onto f(M) c 2X.

Let xe X and let U be a neighborhood of x. Then the pair
<Ϊ7, Xy is a basic open neighbourhood of L(m) in 2X (Michael [3]).
Hence

π(U)=f-%U,X>Πf(M))

is a neighbourhood of π(x) in M.

LEMMA 1.5. // X is as in Lemma 1.4 then X is locally connected
if and only if M is locally connected.

Proof. By Lemma 1.2 M is a retract of X so M is locally con-
nected if X is locally connected.

Suppose M is locally connected and let π be as in Lemma 1.4.
Let xe X and let U be a neighborhood of x. By Lemma 1.1 we may
suppose U is a convex open neighbourhood of x. By Lemma 1.4 π(U)
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is an open neighbourhood of π(x) in M. Since M is locally connected
there exists a connected open set V in M such that π(x) e Vaπ(U).
Then

π~\V)ΐ] U= L(V)Π U

is a convex open neighbourhood of x. lί L(V) Γ) U = A \J B where A
and B are nonvoid and open in X then π(A) and π(B) are open in M
and V = 7r(A) U π(jβ). Since F is connected π(A) Π π(i?) is nonvoid.
Let zeπ(A) Π π(J5). Then L(z) f) U = π~\z) Π U is a connected set
such that L(z) Π Z7c A U JB and L(z) Γ) 27 meets both A and B. Thus
A (Ί B is nonvoid and L( V) ΓΊ Z7 is connected.

LEMMA 1.6. Let X be a compact partially ordered space such
that L and M are closed and for each xe X L(x) is an order arc.
If M is locally connected then X is locally connected.

Proof. Define a set Y by

Y = {(m, x)\meM and x e L(m)} .

Give Y the partial order (m, x) <̂ * (w, T/) if and only if m = n and
xeL(y). Define #: Y—>X by g(m,x) — x and give F the smallest
topology <%f such that g is continuous with respect to ^/.

For each open set V of M let

0F = {(m, « ) 6 7 | m G 7 and x e L(m)} .

Let W be the topology on Y generated by ^ and

{0F I V is an open subset of M} .

Then W^ is a Hausdorff topology. It follows from Alexander's Lemma
(Kelly [7], p. 139) and Lemma 1.3 that ^ ^ is a compact topology.
Furthermore, the given partial order on Y is closed with respect to
"W. The detailed proofs of the above statements appear in [5],
Theorem 2.7.

With the above partial order and the topology 5 ^ Y is a compact
partially ordered space which satisfies the hypotheses of Lemma 1.4.
The set of maximal elements of Y is homeomorphic to M. Hence, Y
is locally connected by Lemma 1.5. Now, X is the continuous image
of the compact, locally connected, Hausdorff space Y so X is locally
connected.

LEMMA 1.7. Let X be a compact partially ordered space such
that M is a continuum and for each xe X L(x) is an order arc. If
F is a compact convex subset of X such that for each me M L(m) Π F
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is nonvoid then F is connected.

Proof. The relation R on F x M defined by setting (x, m) e R if
and only if x ^ m is upper-semicontinuous [2]. It follows by a well-
known result on upper-semicontinuous relations [2] that F is connected.

2* A Jordan curve theorem* In this section we shall prove the
following theorem:

THEOREM 1. Let X be a compact partially ordered space such
that

( i ) M is an arc with endpoints 0 and 1,
(ii) L is closed,
(iii) L(m) is a nondegenerate order arc for each m in M,
(iv) for each cutpoint m of M, L(m) separates X into components

P and Q such that either PorQ meets L. Let B = L U M (j 1/(0) U L(l).
Then each circle in X\B separates X and no pair of points separates X.

To prove Theorem 1 we shall use an approach somewhat similar
to that used by Whyburn [6] in his proof of the Jordan Curve Theorem.
We shall show that any circle in X may be approximated arbitrarily
closely by a circle which is the union of a finite number of convex
arcs. We shall then prove that a circle which is the union of a finite
number of convex arcs separates X.

For the remainder of this section let X be as in Theorem 1. Let
M have its natural order ^ with initial point 0. Then a ^ b in M
if and only if a lies in every subcontinuum of M which contains both
0 and b. For a, be M with α ^ 6 let [α, b] denote the arc in M which is
irreducible with respect to containing a and b. Let

[α, b[ - [α, b]\{b}

and let

]α, b] = [a, b]\{a) .

For m e M let

Pm = L([0, m])\L(m)

and let

Qm - L([m, l])\L(m) .

LEMMA 2.1. If me M\{0,1} then Pm and Qm are connected and
Pm is separated from Qm.
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LEMMA 2.2. If L is not trivial then L is an arc.

Proof. By Lemma 1.2 L is a retract of X. Hence L is connected.
If L is not a point then by condition (iv) of Theorem 1 the only
noncutpoints of L are in L(0) and 1/(1). Thus L is an arc.

LEMMA 2.3. If x,ze M with x < z, yePzΓ\ Qx and w e L(x) Π L(z)
then w e L(y).

Proof. Let me MΠ M{y). By Lemma 2.1 x < m < z. Then
(L(z) U £(#)) Π M(w) is a connected set which meets both components
of X\L(m). Hence w e L(m). Now y e Qx and w e L(x) so y S w

Since L(m) is a chain and y, w e L(m) w <^ y.

DEFINITION. An arc C in X is said to have FT if C is the union
of a finite number of convex arcs. If C is an arc with FT then for
each m in M L(m) Π C consists of a finite number of components.

DEFINITION. Let C be an arc with FT and let x e X\C. Let D
be a component of C Π £(#) such that D does not contain an endpoint
of C. We say D is a turnabout of C in L(x) if and only if there
exists a neighbourhood U of D in C and m e M(x) ΓΊ -M such that
Ucz L([0, m]) or Z7c L([m, 1]). If D is a turnabout of C in L(x) then
for each n e M(x) Π M either Ucz L([0, w]) or [/c L([w, 1]).

LEMMA 2.4. Let C be an arc with FT and let me M such that
the endpoints of C lie in X\L(m). The number of components of
C Π L(m) which are not turnabouts of C in L(m) is odd if and only
if exactly one of the endpoints of C lies in Pm.

Proof. Let A be a component of C ΓΊ L(m). Each sufficiently
small neighbourhood of A in C meets both Pm and Qm if and only if
A is not a turnabout of C. Hence the number of times that C crosses
L(m) is odd if and only if the number of components of C Π L(m)
which are not turnabouts of C in L(m) is odd.

LEMMA 2.5. If A is an arc in X with endpoints b and c then
there exists a convex arc F with endpoints b and c such that Fez C(A).

Proof. If there exists y eA with 6, ce M(y) let x be maximal in
L(b) Π L(c) and let

F = M(x) n (L(b) U L(c)) .

Then F is a convex arc with endpoints b and c such that FaC(A).
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Suppose, therefore, that there does not exist y e A with b, ce M(y).
We may assume by Lemma 2.3 that if m, ne M with b e L(m) and
c e L(n) then m < n. Let r e M(b) Π If and let s e M(c) Π M such that
r is maximal in M(b) Π ikf and s is minimal in M(c) Π Λf (with respect
to the total order on M). For each xe[r, s] let g(x) be minimal in
L(x) Π A and let

G = {£(&) i a; e [r, s]} .

For each e e [r, s] let fβ be minimal in [r, e] such that #(/e) 6 L(e) and
let Λe be maximal in [e, s] such that g(he) e L(e).

Let ee[r,s] such that r < fe. Let β ^ j and di)ieI be two nets
in [r, /β[ which converge to fe. Suppose the nets #(β;)) and ^(^))
converge to m and ^ respectively. Then m, ne L(fe). Suppose m < n.
By Lemma 1.1 there exist convex open neighbourhoods U and V of
m and n respectively such that L(U) Π M(V) is void.

Pick j e I so that D, the arc in A which is irreducible with respect
to containing g(βj) and m, is contained in C/. For each i meQd.Π Qe..
Also g{βj) e Pfe. By Lemma 1.3 there exists ke I such that g{e3) e Pdk

and g(dk) e V. Then L^^) separates D. Now

L ( d t ) Π ΰ c L(dk) f]Af]U^0.

If ze L(dk) ΠAΠU then z < g(dk) by the choice of U and V. This
contradicts the choice of g(dk). Hence m = n. We denote m by me.
If t e [fe, he] then g(t) = g(e) by Lemma 2.3. Similarly if e e [r, s] such
that he < s then

, s]) Π

consists of a single point. We denote this point by nβ.
If e e [r, s] such that /β = r we let me = b and if he = s we let

we = c. For each β e [r, s] let pe be maximal in L(me) f] L(nβ) and let

H = {me, n β , p e \ e e [ r , s]} .

Since C(H) c C(G) it follows by the above argument that H is closed.
We let F = C(fl"). It is easy to check that F is closed. By

Lemma 1.7 F is connected. It is obvious from the above arguments
that the only noncutpoints of H are b and c. Thus F is a convex
arc containing b and c. Also

LEMMA 2.6. Lei A δβ cm arc in X with endpoints b and c and
let U be any neighbourhood of A. There exists an arc E with FT
such that EaU and the endpoints of E are b and c.

Proof. For each x e A let V(x) be a closed and connected neighbour-



THE 2-CELL AS A PARTIALLY ORDERED SPACE 831

hood of x in A such that C( V(x)) c U. Since A is compact there
exists an integer n and aly * ',aneA with

Aa\J{V(ai)\i = l, .-•,**}.

We may suppose n is the smallest such integer and that F(α^) Π V(as)
is nonvoid if and only if | i — j | <J 1.

The natural order on A with initial point b induces a total order
on V(a,i) for each i = 1, , n.

By Lemma 2.5 there exists for each i = 1, •••, w a convex arc
#2i-i with the same endpoints as F(αJ such that

B«_ 1 cC(7(o i ))c[/ .

For each i = 1, , w — 1 let B2i be a convex arc whose initial point
is the terminal point of F(a^) and whose terminal point is the initial
point of V(ai+1) such that

One can now construct by an induction argument an arc

such that E has FT and the endpoints of E are b and c.

LEMMA 2.7. Let C be a convex arc in X and let m e M\C such
that L(m) Π C is a turnabout of C in L(m). If z is maximal in
C Π L(m) then one of the components of C\z is a chain.

Proof. We may suppose that CcL([0, m\). Let w be maximal
in M(z) Π C and let n be minimal in M such that weL(n). Then
ne [0, m].

If C ς£ L([0, w]) let c e C\L([0, w]). By Lemma 2.3

L([0, m]) c L([0, n]) U Λf(«) .

Hence ceM(z). Since C is convex the component of C\z which con-
tains c lies in M(z)\(M(w)\w). This component of C\z is a chain since
C is convex.

If CcL(|0, w]) and w is not an endpoint of C let .F and G be
the components of C\w. The endpoints of C lie in Pw. Let nj be a
net in [0, n[ which converges to n. By Lemma 1.3 L(n^)) converges
to L(n) in 2Z. Eventually, therefore, L{n^ Π F and L(n{) Π G are
nonvoid. For each i w e QWί hence

L(%) n c = (L(^) n f ) u (L(^) n G)

is disconnected. This contradicts the assumption that C is convex.
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Thus w is an endpoint of C and (L(w) Π M(z))\z is a component of
C\z which is a chain.

LEMMA 2.8. Let xe X and let U be a convex connected neighbour-
hood of x. Let C be a convex arc in X\U such that C has no
endpoints in L(U) and C has a turnabout in L(x). Then L(U) Π C
is a chain and if zeU such that L(z) Π C is nonvoid then L(z) Π C
is a turnabout of C in L(z).

Proof. Let m e M(x) Π M and suppose C c L ( [ 0 , m]). Let y be
maximal in L(x) Π C. By Lemma 2.7 there is a component T of C\y
which is a chain. Then TaM(y). Let t be the endpoint of C which
is in T and let p e M(t) Π M.

Let z e U Π Pm and let n e M(z) n Λf. Just suppose p e [n, ml.
Then zePp and so L(p) separates U. Let α e L(p) Π £7. Since

L(t) Π M(τ/) c C and C f] U

is void, a %t. Since L(p) is a chain t < a. This contradicts the
assumption that C does not have an endpoint in L(U). Thus p < n.
By Lemma 2.3 it follows that U Π Pm c L(ί). This proves the lemma.

LEMMA 2.9. // C is a circle with FT in X and C a X\M, then
C separates X.

Proof. Let

( the number of components of C Π L(x) which)
A = \x e X\C Ά \

[ are not turnabouts of C in L(x) is odd j

and let

the number of components of C Π L(x) which)

} are not turnabouts of C in L(x) is even J

Then X\C = A U D and A Π D is void. We shall show first of all
that A and D are open in X.

We may suppose that C = Aγ U U Aq where each A{ is a convex
arc such that if A{ Π Aό is nonvoid then either A{ = Aj or A{ Π A3

consists of an endpoint of A{ and Aά.
Let xeA and let meM(x) Π M. Let d , •• ,CA; be the set of

components of C Π L(x). By Lemmas 1.1, 1.3 and 1.6 there exists a
convex connected neighbourhood U of x such that

( i ) U(zX\C,
( i i ) if pe L(U) i s a n e n d p o i n t of A< f o r s o m e ίe{l, , q] t h e n
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(iii) if ί e {1, , q} such that Ai meets L(U) then A{ meets L(x).
We shall prove that Ua A. For each well define a function /w

with domain the set of components of L(w) Π C and with range the
set of components of L(x) Π C as follows: Let P be a component of
C Π L(w). If P meets L(#) let fw(P) be the unique component of
C Π !/(#) which meets P. If P does not meet L(x) then PaAi for
some unique ie{l, •••,#}. Let fw(P) be the unique component of
C Π L(x) which meets A{. To prove that Ua A it will suffice to prove
that for each w e U and each i e {1, , &} the number of elements of
fw\Ci) which are not turnabouts of C in L(w) is odd and only if d
is not a turnabout of C in L(x).

Let y be maximal in d We may suppose ^ and A2 each have
exactly one endpoint in d and that endpoint is ?/. We may also
suppose d c A i

1. Suppose d is a turnabout of C in £,(#). We may suppose

Since Aι has only one endpoint in L(u) it follows that if z e U f] Pm

then L(z) meets Ax.
Let n be minimal in M such that ?/ e L(n) and let %) be a net

in [0, n[ which converges to n. For each i let C/̂  = 27 Π L([0, %]).
Since L(^) separates U and 27 is convex and connected it follows that
Ui is connected. By the choice of n and by Lemma 1.3

U\L([n, 1]) = U Ui .

Let V = 27\L([w, 1]) then F is a convex connected open set such that
Ax cz X\Fand the endpoints of Ax lie in X\L(V). By Lemma 2.8 for
each ze V L(z) Π Aλ is nonvoid and is not a turnabout of Aλ in L(z).
Similarly for each xe V L(z) Π A2 is nonvoid and is not a turnabout
of A2 in L(z).

If ^ e U\ V then L(^) Π {Aι U A2) is either void or is a turnabout
of C in

2. Suppose d is n o t a turnabout of C in L(x). We may
suppose 42cL([0,m]) and AιdL{[m, 1]).

If ze (J7lΊ Pm)\M{y) then by the argument of Case 1 L(2) Π A2 is
nonvoid and is not a turnabout of C in L(^). Also L(z) (Ί Ax c L(τ/)\{?/}.
If L(2) Π .̂J. is nonvoid it is a turnabout of C in L(#).

If « e U Π (I/([m, 1]) U M(y)) then L(«) Π (A, U A2) is nonvoid and
connected and is not a turnabout of C in L(z).

Thus ί7cA and A is open. Similarly D is open. Since C is not
an arc there exists meM such that C meets both Pm and Qm. By
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Lemma 2.4 there exists a component E of L(m) Π C, such that E is
not a turnabout of C in L(m). Let x,ye L(m)\C such that

# = j|f(α>) Π L(y) Π C .

If x G A then | / e ΰ and if x e D then y e A. Thus both A and D are
nonvoid and so C separates X.

We are finally ready to prove Theorem 1.

Proof of Theorem 1. Let C be a circle in X\B and let me M
such that C meets both Pm and Qm. Let α be maximal in C Π P w and
let 6 be maximal in Qm Π C. Let S and T be the two arcs in C which
are irreducible with respect to containing a and b.

Let y be maximal in C Π L(m). We may suppose i/eϊ1, Let x
be minimal in Tf)L(m). Let neL(x)\C such that

Λf (n) Π L(α) (Ί C = [x] .

Suppose that C does not separate X. Since X\C is connected and
locally connected by Lemma 1.6 there exists a continuum D in X\C
such that m, ne D.

Let Z be the arc in T which is irreducible with respect to con-
taining x and y. Let U and V be convex, open and connected
neighbourhoods of a and b respectively such that the closure of U U V
does not meet Z U L(m).

Let Z', S' and T' be arcs with FT which are obtained from Z, S
and T respectively by the method of Lemma 2.6 so that

Z' c X\(D USUUUV)

S' c X\(D [jZr[j (L(x)

T c JSΓ\D

and

Let S" be an arc in S' which is irreducible with respect to having
one endpoint in T' Π U and the other in T' Π V. Let T" be an arc
in T' such that E = S" U T" is a circle. Then £ is a circle with
FT in X/(D U Λf).

Now, Γ" Π I/(m) c L(y) Π ikί(^) and the number of components of
T" (Ί L(m) which are not turnabouts of T" in L(m) is odd by Lemma
2.4. Also,

S" Π L(m) n M(n) a (L{y)\{y)) n (M(a?)\{a?}) .
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Let p, q e Zf n L(m) such that p < q and

M(p) Π L(q) ΠZ' = {p, q) .

Let R be the arc in Z' which is irreducible with respect to containing
p and q. Then

-P = R\J(L(q)nM(p))

is a circle with FT in X\M. Since S" Π Z' is void

The endpoints of S" lie in the same component of X\P as does m.
Hence, by Lemma 2.4 and Lemma 2.9 the number of components of
S" Π !/(#) Π Λf(g) which are not turnabouts of S" in L(m) is even.
It follows since Z' has FT and S" f) Z' is void that the number of
components of S" Π L(m) n M(w) which are not turnabouts of S" in
L(m) is even. Hence m and n lie in distinct components of X\E.
This is a contradiction since E Π D is void and D is a continuum
which contains m and n. Thus C separates X

To prove that no pair of points separates X it suffices to prove
that if me ]0,1] then Pm n L(m) is a nondegenerate arc. Let

m e ] 0 , l ] c J l ί and let p e L(m)\m

such that pgL(0). Let n be minimal in M such that peL(n). Let
%) be a net in [0, n[ which converges to n. Br Lemma 1.3 the net
L(Πi)) converges to L(ri). Hence pe Pn(Z Pm.

3. Characterization of the 2-celL We prove that if X is as
in Theorem 1 and also metric then X is homeomorphic to the closed
2-cell.

THEOREM 2. // X is a compact metric partially ordered space
such that

( i ) M is an arc and L is closed,
(ii) L(m) is a nondegenerate order arc for each me M,
(iii) for each cutpoint m of M L(m) separates X into components

P and Q such that either P or Q meets L,
then X is homeomorphic to a closed 2-cell.

Proof. We shall use Bing's Characterization of the 2-sphere.
Clearly X is a continuum. By Lemma 1.6 X is locally connnected.

We proved in Theorem 1 that no pair of points separates X.
Let D be the unit disc in the plane. Let B be as in Theorem 1.

By Lemma 2.2, β is a simple closed curve. Let f:Sι->B be a
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homeomorphism of the boundary S1 of D onto the subset B of X.
Let Y be the adjunction space of X with D under the map /.

We shall prove that 7 is a 2-sphere. Since the boundary of X in Y
is the simple closed curve B it will follow that X is a closed 2-cell.

It is clear that Y is a locally connected, metric continuum such
that no pair of points of Y separates Y. It remains to show that
every simple closed curve in Y separates Y.

Let C be a simple closed curve in Y. Let ye Y\(X{J C) and let
U be an open disc containing y such that Ό is a closed disc in Y\X.
It is easy to define a closed partial order on F\?7so that Y\U satisfies
all the hypotheses of Theorem 1. Then C is a simple closed curve
in Y\U such that C does not meet the boundary of Y\U. By Theorem
1, C separates Y\U and hence C separates Y. Thus Y is a 2-sphere
and X is a closed 2-cell.
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