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THE 2-CELL AS A PARTIALLY ORDERED SPACE

E. D. TYMCHATYN

In this paper we prove a Jordan Curve Theorem (Theorem
1) for certain two dimensional partially ordered spaces.

We use this result to give a new characterization of the
closed 2-cell (Theorm 2).

By a partially ordered space we X mean a Hausdorff space X with
a partial order which is closed when regarded as a subset of X x X
(X x X has the product topology).

For xe¢ X we set

Lz) ={ye X|y = 2}
M@ = fye X |z < y)
and
I'(x) = L(x) U M(x) .
If Ac X we let
L(A) = U {L(x) [xe A} .

We define M(A) and I'(A) analogously. We let L (resp. M) denote the
set of minimal (resp. maximal) elements of X.

A chain is a totally ordered set. An order arc is a compact and
connected chain. A separable and nondegenerate order arc is home-
omorphic to [0,1]. A continuum is a compact, connected, Hausdorff
space. An arc is a continuum with exactly two noncutpoints. A
cirele is a continuum such that every pair of points separates it.

DerFINITION. If X is a partially ordered space and Ac X let
C(A) = L(A) N M(A) .
A subset A of X is convex if and only if A = C(4).

L. Nachbin proved the following result ([4], p.48).

LEMMA 1.1. (Nachbin). A compact partially ordered space X
has a basis of comvex open sets.

The following three lemmas appear in [5]. For completeness we
sketch their proofs here.

LEMMA 1.2. Let X be a compact partially ordered space such
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that L 1s closed. If for each xze X L(x) has a unique minimal
element p(x) then the function p: X — L 1s a retraction.

Proof. We need only show p is continuous. Let (x; be a net
converging to & in X and let ¥ be a cluster point of p(w;)). Then
ye L since L is closed. Since the partial order on X is closed y € L(x).
Hence y = p(2).

LeEmMMA 1.3. Let X be a compact partially ordered space such
that L 1s closed and for each xec X L(x) is an order arc. Let 2¥
denote the space closed subsets of X with the finite topology [3].
Then the function f: X — 2% defined by f(x) = L(x) is continuous.

Proof. It is well known (Michael [3]) that 2% is a compact
Hausdorff space and that the family of closed and connected subsets
of X is closed in 2¥. Let (x; be a net converging to « in X and let
A be a cluster point of L(x;)). Since the partial order on X is closed
Ac L(x). Clearly x€ A and A meets L since L is compact. Since
A is connected and no proper connected subset of L(x) contains both
xz and L(x) N L, A = L(x).

LEMMA 1.4. Let X be a compact partially ordered space such
that L and M are closed and for each xe€ X I'(x) ts an order arc.
Then the projection w: X — M defined by letting w(x)e M(x) N M 1s
continuous and open.

Proof. By Lemma 1.2 we need only show that z is open. By
Lemma 1.3 the function f: M — 2% defined by letting f(m) = L(m) is
a homeomorphism onto f(M) c 2%.

Let e X and let U be a neighborhood of x. Then the pair
(U, X» is a basic open neighbourhood of L(m) in 2* (Michael [3]).
Hence

(U) = /KU, X> N f(M))

is a neighbourhood of 7(x) in M.

LEMMA 1.5. If X 1is as in Lemma 1.4 then X is locally connected
if and only tf M is locally connected.

Proof. By Lemma 1.2 M is a retract of X so M is locally con-
nected if X is locally connected.

Suppose M is locally connected and let w be as in Lemma 1.4.
Let xe X and let U be a neighborhood of . By Lemma 1.1 we may
suppose U is a convex open neighbourhood of z. By Lemma 1.4 n(U)
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is an open neighbourhood of 7(x) in M. Since M is locally connected
there exists a connected open set V in M such that w(x)e V C z(U).
Then

T (VyNnU=LV)nU

is a convex open neighbourhood of 2. If L(V)N U = AU B where A
and B are nonvoid and open in X then 7(4) and 7#(B) are open in M
and V = n(4) Un(B). Since V is connected 7(4) N #(B) is nonvoid.
Let zem(A)N7w(B). Then LN U=7n"2)N U is a connected set
such that L(z) N UcC AU B and L(z) N U meets both A and B. Thus
AN B is nonvoid and L(V) N U is connected.

LEMMA 1.6, Let X be a compact partially ordered space such
that L and M are closed and for each xe X L(x) is an order arc.
If M s locally connected then X 1is locally connected.

Proof. Define a set Y by
Y = {(m,x) | me M and x <€ L(m)} .

Give Y the partial order (m, ) <* (n,y) if and only if m = n and
xe L(y). Define g:Y— X by g(m,x) =« and give Y the smallest
topology % such that g is continuous with respect to % .

For each open set V of M let

0, ={(m,z)e Y|meV and xz< L(m)} .
Let 97~ be the topology on Y generated by % and
{0,| V is an open subset of M} .

Then 97 is a Hausdorff topology. It follows from Alexander’s Lemma
(Kelly [7], p.139) and Lemma 1.3 that 97~ is a compact topology.
Furthermore, the given partial order on Y is closed with respect to
2%~. The detailed proofs of the above statements appear in [5],
Theorem 2.7.

With the above partial order and the topology 97~ Y is a compact
partially ordered space which satisfies the hypotheses of Lemma 1.4.
The set of maximal elements of Y is homeomorphic to M. Hence, Y
is locally connected by Lemma 1.5. Now, X is the continuous image
of the compact, locally connected, Hausdorff space Y so X is locally
connected.

LemMA 1.7. Let X be a compact partially ordered space such
that M is a continuum and for each xe X L(x) is an order arc. If
F is a compact convex subset of X such that for each me M L(m) N F
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18 nonvoid then F' is conmnected.

Proof. The relation R on F x M defined by setting (x, m)e R if
and only if < m is upper-semicontinuous [2]. It follows by a well-
known result on upper-semicontinuous relations [2] that F is connected.

2. A jordan curve theorem. In this section we shall prove the
following theorem:

THEOREM 1. Let X be a compact partially ordered space such
that

(i) M s an arc with endpoints 0 and 1,

(ii) L 1s closed,

(iii) L(m) ts a nondegenerate order arc for each m in M,

(iv) for each cutpoint m of M, L(m) separates X into components
P and Q such that either Por @ meets L. Let B = L U M U L(0) U L(1).
Then each circle in X\B separates X and no pair of points separates X.

To prove Theorem 1 we shall use an approach somewhat similar
to that used by Whyburn [6] in his proof of the Jordan Curve Theorem.
We shall show that any circle in X may be approximated arbitrarily
closely by a circle which is the union of a finite number of convex
arcs. We shall then prove that a circle which is the union of a finite
number of convex arcs separates X.

For the remainder of this section let X be as in Theorem 1. Let
M have its natural order < with initial point 0. Then a <b in M
if and only if a lies in every subcontinuum of M which contains both
0 and b. For a,be M with a < b let [a, b] denote the arc in M which is
irreducible with respect to containing a and b. Let

[a, o[ = [a, b]\{0}

and let
la, b] = [a, b]\{a} .
For me M let
P,, = L([0, m])\L(m)
and let

Qn = L([m, I)\L(m) .

LEMMA 2.1. If me M\{0,1} then P, and Q, are connected and
P, is separated from Q.
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LEmMMA 2.2. If L is not trivial then L is an are.

Proof. By Lemma 1.2 L is a retract of X. Hence L is connected.
If L is not a point then by condition (iv) of Theorem 1 the only
noncutpoints of L are in L(0) and L(1). Thus L is an arc.

LeEmMMA 2.3. Ifx,ze M withx <z,yeP,NQ, and we L(x) N L(z)
then w e L(y).

Proof. Let meMN M(y). By Lemma 2.1 z <m < z. Then
(L(2) U L(x)) N M(w) is a connected set which meets both components
of X\L(m). Hence we L(m). Now ye@, and we L(x) so y £ w.
Since L(m) is a chain and y, we L(m) w < y.

DEFINITION. An arc C in X is said to have F'T if C is the union
of a finite number of convex arcs. If C is an arc with F'T then for
each m in M L(m) N C consists of a finite number of components.

DEFINITION. Let C be an arc with F'T and let xe X\C. Let D
be a component of C N L(x) such that D does not contain an endpoint
of C. We say D is a turnabout of C in L(x) if and only if there
exists a neighbourhood U of D in C and me M(x) N M such that
Uc L([0, m]) or U L([m, 1]). If D is a turnabout of C in L(z) then
for each ne M(x) N M either U c L([0, n]) or U c L([n, 1]).

LEMMA 2.4. Let C be an arc with FT and let m e M such that
the endpoints of C lie in X\L(m). The number of components of
C N L(m) which are not turnabouts of C in L(m) is odd if and only
if exactly one of the endpoints of C lies in P,.

Proof. Let A be a component of C N L(m). Each sufficiently
small neighbourhood of A in C meets both P, and @, if and only if
A is not a turnabout of C. Hence the number of times that C crosses
L(m) is odd if and only if the number of components of C N L(m)
which are not turnabouts of C in L(m) is odd.

LEMMA 2.5. If A is an arc in X with endpoints b and ¢ then
there exists a convex arc F with endpoints b and ¢ such that F C C(A).

Proof. If there exists ye A with b, ce M(y) let & be maximal in
L) N L(c) and let

F = M(x) 0 (L(b) U L(0)) .

Then F is a convex arc with endpoints b and ¢ such that F < C(4).
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Suppose, therefore, that there does not exist y € A with b, ce M(y).
We may assume by Lemma 2.3 that if m,ne M with be L(m) and
ce L(n) then m < n. Letre M(b) N M and let s€ M(c) N M such that
7 is maximal in M(b) N M and s is minimal in M(c) N M (with respect
to the total order on M). For each z¢[r, s] let g(x) be minimal in
L(x) N A and let

G ={9@) welr,s]}.

For each ec|r, s] let f, be minimal in [r, ¢] such that ¢g(f,) € L(e¢) and
let 7, be maximal in [e, s] such that g(h,) € L(e).

Let ec|r, s] such that » < f,. Let ¢);.; and d;);.; be two nets
in [r, f,] which converge to f,. Suppose the nets g(e¢;)) and g(d,))
converge to m and n respectively. Then m, ne L(f,). Suppose m < n.
By Lemma 1.1 there exist convex open neighbourhoods U and V of
m and n respectively such that L(U) N M(V) is void.

Pick j eI so that D, the arc in A which is irreducible with respect
to containing g(e;) and m, is contained in U. For each 1 me@,;, N Q,,.
Also g(e;) € P;,. By Lemma 1.3 there exists k¢ I such that g(e,) € P,,
and ¢g(d,)e V. Then L(d,) separates D. Now

Ld)nNnDcLd,)NANU =+ @ .

If ze L(d,)N AN U then z < g(d,) by the choice of U and V. This
contradicts the choice of g(d,). Hence m = n. We denote m by m,.
If te[f,, h,] then g(t) = g(e) by Lemma 2.3. Similarly if e € [r, s] such
that &, < s then

9([7ey s]) (1 L(h.)

consists of a single point. We denote this point by =,.
If ec[r, s] such that f, = we let m, = b and if %, =s we let
n, = ¢. For each ee|r, s] let p, be maximal in L(m,) N L(n,) and let

H = {m, n, p |ee[r, s} .

Since C(H) c C(G) it follows by the above argument that H is closed.

We let F = C(H). It is easy to check that F is closed. By
Lemma 1.7 F is connected. It is obvious from the above arguments
that the only noncutpoints of H are b and ¢. Thus F' is a convex
arc containing b and ¢. Also FFc C(A4).

LEMMA 2.6. Let A be an arc in X with endpoints b and ¢ and
let U be any mneighbourhood of A. There exists an arc E with FT
such that EC U and the endpoints of E are b and c.

Proof. For each x e A let V(x) be a closed and connected neighbour-
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hood of # in A such that C(V(x))c U. Since A is compact there
exists an integer # and a,, ---, a,€ A with

AcU{V(e)li=1, -+, n}.

We may suppose 7 is the smallest such integer and that V(a;) N V(a;)
is nonvoid if and only if |7 — 7| < 1.

The natural order on A with initial point b induces a total order
on V(a;) for each 1 =1, -+-, n.

By Lemma 2.5 there exists for each i =1, --., % a convex arc
B,;_, with the same endpoints as V' (a;) such that

B, . cC(V(a)cU.

For each 7 =1, .--,n — 1 let B, be a convex arc whose initial point
is the terminal point of V(a;) and whose terminal point is the initial
point of V(a,.,) such that

B, cC(V(a)cU.
One can now construct by an induction argument an arc
EcU{B;|li=1,---,2n—1}cU
such that E has FT and the endpoints of E are b and ec.

LEMMA 2.7. Let C be a convex arc in X and let me M\C such
that L(m)NC is a turnabout of C in L(m). If z 1s maximal in
C N L(m) then one of the components of C\z is a chain.

Proof. We may suppose that C < L(]0, m]). Let w be maximal
in Mz NC and let » be minimal in M such that we L(n). Then
n [0, m].

If C¢ L([0, n]) let ¢e C\L(]0, »]). By Lemma 2.3

L([0, m]) < L([0, n]) U M(z) .

Hence ce M(z). Since C is convex the component of C\z which con-
tains ¢ lies in M(2)\(M(w)\w). This component of C\z is a chain since
C is convex.

If Cc L(j0,n]) and w is not an endpoint of C let F and G be
the components of C\w. The endpoints of C lie in P,. Let n;) be a
net in [0, #n] which converges to »n. By Lemma 1.3 L(n;)) converges
to L(n) in 2%, Eventually, therefore, L(n,) N F and L(n) N G are
nonvoid. For each 7 we @,, hence

L(n) N C = (L(n;) N F) U (L(n;) N Q)

is disconnected. This contradicts the assumption that C is convex.
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Thus w is an endpoint of C and (L(w) N M(2))\z is a component of
C\z which is a chain.

LEMMA 2.8. Let x€ X and let U be a convex connected neighbour-
hood of x. Let C be a convex arc in X\U such that C has no
endpoints in L(U) and C has a turnabout in L(x). Then L(U)NC
18 a chain and if z€ U such that L(z) N C is nonvoid then L(z) N C
18 a turnabout of C in L(z).

Proof. Let me M(x) N M and suppose C c L([0, m]). Let y be
maximal in L(z) N C. By Lemma 2.7 there is a component T of C\y
which is a chain. Then T c M(y). Let t be the endpoint of C which
is in T and let pe M(t) N M.

Let 2¢eUNP, and let neM(z) N M. Just suppose pe€[n, m].
Then ze P, and so L(p) separates U. Let ae L(p) N U. Since

LO)NMy)cC and CNU

is void, @ £ t. Since L(p) is a chain ¢ < a. This contradicts the
assumption that C does not have an endpoint in L(U). Thus p < n.
By Lemma 2.3 it follows that U N P, C L(¢). This proves the lemma.

LEmMA 2.9. If C is a circle with FT in X and CC X\M, then
C separates X.

Proof. Let

the number of components of C N L(x) Which}

a=lzexic
lxe \ are not turnabouts of C in L(x) is odd

and let

the number of components of C N L(x) Which}

D= {xeX\C
1 \ are not turnabouts of C in L(x) is even

Then X\C =AUD and AN D is void. We shall show first of all
that A and D are open in X.

We may suppose that C = A, U --- U A, where each 4; is a convex
arc such that if A4, N A; is nonvoid then either A, = A; or A, N A4;
consists of an endpoint of A; and A4,.

Let €A and let me M(x) N M. Let C, ---,C, be the set of
components of C N L(x). By Lemmas 1.1, 1.3 and 1.6 there exists a
convex connected neighbourhood U of x such that

(i) UcX\C,

(ii) if pe L(U) is an endpoint of A; for some ie{l, ---, g} then
p € L(x),



THE 2-CELL AS A PARTIALLY ORDERED SPACE 833

(i) ifte{l, ---, q} such that 4; meets L(U) then A; meets L(z).

We shall prove that Uc A. For each we U define a function f,
with domain the set of components of L(w) N C and with range the
set of components of L(x) N C as follows: Let P be a component of
C N L(w). If P meets L(x) let f,(P) be the unique component of
C N L(x) which meets P. If P does not meet L(x) then Pc A; for
some unique t€{l, ---,q}. Let f,(P) be the unique component of
C N L(x) which meets A;. To prove that U c A it will suffice to prove
that for each we U and each 1€{1, ---, k} the number of elements of
f2X(C;) which are not turnabouts of C in L(w) is odd and only if C;
is not a turnabout of C in L(x).

Let ¥ be maximal in C,. We may suppose A, and A4, each have
exactly one endpoint in C, and that endpoint is y. We may also
suppose C,C A,.

Case 1. Suppose C, is a turnabout of C in L(x). We may suppose
A, U A, < L([0, m]).

Since A, has only one endpoint in L(u) it follows that if ze U N P,
then L(z) meets A,.

Let n be minimal in M such that ye L(n) and let #;) be a net
in [0, n] which converges to n. For each 7 let U, = U n L([0, n;]).
Since L(n;) separates U and U is convex and connected it follows that
U, is connected. By the choice of » and by Lemma 1.3

U\L([n, 1)) = U U; .

Let V = U\L([n, 1]) then V is a convex connected open set such that
A, C X\V and the endpoints of A, lie in X\L(V). By Lemma 2.8 for
each ze V L(z) N A, is nonvoid and is not a turnabout of A, in L(z).
Similarly for each e V L(z) N A, is nonvoid and is not a turnabout
of A, in L(z).

If ze U\V then L(z) N (A, U 4,) is either void or is a turnabout
of C in L(z).

Case 2. Suppose C, is not a turnabout of C in L(x). We may
suppose 4, L([0, m]) and A, C L([m, 1]).

If 2z¢(UN P,)\M(y) then by the argument of Case 1 L(z) N 4, is
nonvoid and is not a turnabout of C in L(z). Also L(z) N A, € L(y)\{y}.
If L(z) N A, is nonvoid it is a turnabout of C in L(z).

If 2ze Un (L(m,1]) U M(y)) then L(z) N (4, U 4,) is nonvoid and
connected and is not a turnabout of C in L(z).

Thus Uc A and A is open. Similarly D is open. Since C is not
an arc there exists m € M such that C meets both P, and @Q,. By
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Lemma 2.4 there exists a component E of L(m) N C, such that E is
not a turnabout of C in L(m). Let z,ye L(m)\C such that

E=MxynLiy)ynC.

If xc A then ye D and if xe¢ D then yc A. Thus both 4 and D are
nonvoid and so C separates X.

We are finally ready to prove Theorem 1.

Proof of Theorem 1. Let C be a circle in X\B and let me M
such that C meets both P, and Q,. Let a be maximalin CN P, and
let b be maximal in @,, N C. Let S and T be the two arcs in C which
are irreducible with respect to containing a and b.

Let y be maximal in C N L(m). We may suppose y€ T. Let @
be minimal in T'N L(m). Let ne L(x)\C such that

Mmn)N Lx)ynC = {z} .

Suppose that C does not separate X. Since X\C is connected and
locally connected by Lemma 1.6 there exists a continuum D in X\C
such that m, ne D.

Let Z be the arc in T which is irreducible with respect to con-
taining x and y. Let U and V be convex, open and connected
neighbourhoods of a and b respectively such that the closure of UU V
does not meet Z U L(m).

Let Z’, S’ and T’ be arcs with F'T which are obtained from Z, S
and T respectively by the method of Lemma 2.6 so that

Z'cX\(DUSuUUUYV)
S'c X\(DU Z" U (L(x) N M(n)))
T'c X\D

and
S'N(TUTYcUU V.

Let S” be an arc in S’ which is irreducible with respect to having
one endpoint in 7' N U and the other in TN V. Let T” be an arc
in T such that E = S” U T” is a circle. Then E is a circle with
FT in X/(D U M).

Now, T" N L(m) c L(y) N M(x) and the number of components of
T" N L(m) which are not turnabouts of 7" in L(m) is odd by Lemma
2.4. Also,

S"” N L(m) N M(n) < (L(y)\{y}h) N (M (x)\{2}) -
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Let p,qe Z' N L(m) such that p < ¢ and
M@ NLigNZ = {p,q}.

Let R be the arc in Z’ which is irreducible with respect to containing
» and ¢. Then

P =R U (L(g) N M(p))
is a circle with F'T in X\M. Since S” N Z’ is void
PN 8S"c(Lig) n M(p)\{p, ¢} -

The endpoints of S’ lie in the same component of X\P as does m.
Hence, by Lemma 2.4 and Lemma 2.9 the number of components of
S” N L(g) N M(q) which are not turnabouts of S” in L(m) is even.
It follows since Z’ has F'T and S” N Z’ is void that the number of
components of S” N L(m) N M(n) which are not turnabouts of S” in
L(m) is even. Hence m and n lie in distinct components of X\E.
This is a contradiction since EN D is void and D is a continuum
which contains m and #. Thus C separates X.

To prove that no pair of points separates X it suffices to prove
that if m e]0, 1] then P, N L(m) is a nondegenerate arc. Let

me]0,1]c M and let pe L(m)\m

such that pe L(0). Let # be minimal in M such that pe L(n). Let
n;) be a net in [0, n[ which converges to ». Br Lemma 1.3 the net
L(n;)) converges to L(n). Hence pe P,c P,.

3. Characterization of the 2-cell. We prove that if X is as
in Theorem 1 and also metric then X is homeomorphic to the closed
2-cell.

THEOREM 2. If X is a compact metric partially ordered space
such that

(i) M is an arc and L 1s closed,

(ii) L(m) is a nmondegenerate order arc for each m <€ M,

(iii) for each cutpoint m of M L(m) separates X into components
P and Q such that either P or Q meets L,
then X vs homeomorphic to a closed 2-cell.

Proof. We shall use Bing’s Characterization of the 2-sphere.

Clearly X is a continuum. By Lemma 1.6 X is locally connnected.
We proved in Theorem 1 that no pair of points separates X.

Let D be the unit disc in the plane. Let B be as in Theorem 1.
By Lemma 2.2, B is a simple closed curve. Let f:S'— B be a
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homeomorphism of the boundary S' of D onto the subset B of X.

Let Y be the adjunction space of X with D under the map f.
We shall prove that Y is a 2-sphere. Since the boundary of X in ¥
is the simple closed curve B it will follow that X is a closed 2-cell.

It is clear that Y is a locally connected, metric continuum such
that no pair of points of Y separates Y. It remains to show that
every simple closed curve in Y separates Y.

Let C be a simple closed curve in Y. Let ye Y\(XUC) and let
U be an open disc containing y such that U is a closed disc in Y\X.
It is easy to define a closed partial order on Y'\U so that Y\U satisfies
all the hypotheses of Theorem 1. Then C is a simple closed curve
in Y\U such that C does not meet the boundary of Y\U. By Theorem
1, C separates Y\U and hence C separates Y. Thus Y is a 2-sphere
and X is a closed 2-cell.
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