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A CLASSIFICATION OF CENTERS

Roger C. McCANN

The purpose of this paper is to classify centers according
to isomorphisms. We define three types of isomorphism, and
for two of these types give necessary and sufficient conditions
for two centers to be isomorphic. We also give necessary and
sufficient conditions for the third type of isomorphism to be
equivalent to one of the other two,

These isomorphisms are discussed in a more general situation by
Taro Ura [7]. This paper was motivated by discussions with Taro
Ura and Otomar Hajek.

In our investigation we construct a section which generates a
neighborhood of the center by using a theorem from the theory of
fibre bundles. This section may be constructed directly, using the
existence of a transversal through each noncritical point of the dy-
namical system. Much insight, which is otherwise lost, into the
structure of a center is obtained from the fibre bundle approach.

The concept of a transversal is essential in our investigation. The
basic material on transversal theory in planar dynamical systems is
found in [3].

Throughout this paper R+, R', and R® will denote the nonnegative
reals, the reals, and the plane respectively.

Let (X, ) be a dynamical system on X, i.e., X is a topological
space and 7 is a mapping of X x R' onto X satisfying the following
axioms (where xmt = n(x, t) for (x,t)e X x RY):

(1) Identity Axiom: 270 = x for xe X

(2) Homomorphism Axiom: (xzt)zrs = xn(t + s) for e X and
t,se R

(3) Continuity Axiom: 7 is continuous on X x R'.

Then for ze X, anrR' is called the trajectory through x and is denot-
ed by C(x). If C(x) = {x}, « is called a critical point. If there exists
teR',t+ 0, such that ant =z, C(x) is called periodic. If C(x) is
periodic and x is not a critical point, C(x), is called a cycle.

1. Definition and properties of a center. In the following (R?, 7)
will denote a dynamical system on R?* and P the set of noncritical
periodic points of (R?, 7). Let T:P — R' be the mapping which as-
sociates with each point z e P its fundamental period T(x). For the
proof of the following result see [3, VII, 4.15].

ProprosiTioN 1.1. T is a continuous mapping of P into R'.
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DEFINITION 1.2. A critical point p of (R% 7) is called a center
if and only if there exists a neighborhood U of p such that C(z) is
a cycle for every ze U — {p}.

PROPOSITION 1.3. Let p be a center in (R, ). Then {p} is both
positively and megatively stable.

Proof. Let U be a neighborhood of p as described in Definition
1.2. We will show that D+*(p) = {p}, where D+*(p) denotes the positive
prolongation of p (see [1, 1.4.1]). This will prove (by [1, 2.6.6]) that
{p} is positively stable. Let M be the component of D*(p) which con-
tains p. By [1, 2.3.5], if D*(p) is compact, then it has exactly one
component and if D*(p) is not compact, then none of its components
is compact. We now have two cases:

MNU—-{ph) =@ or MNU—-{p}) # D .
If MO (U — {p) = @, then M = {p} and D*(p) = M = {p}. If
MNWU—-)#*0, let yeMn (U — {p}) .

Then there exist sequences {x;}3, in U — {p} and {¢;}, in R*, with
z;,—p and x7zt,—y. Since z,€¢ P for every ¢, we may assume
t;€[0, T(x;)). Since C(y) is a cycle, t;€[0,2T(y)) for all ¢ sufficiently
large by the continuity of T. Let {¢; }7_, be a convergent subsequence
of {t;), with limit ¢,. Then

Y —x; T, — P, = P .

This contradicts our assumption that y e M — {p}. Thus D} = {p} and
{p} is positively stable. Similarly {p} is negatively stable.

DEFINITION 1.4. A cycle C(z) of (R? 7) decomposes R* into two
components, one bounded and the other unbounded. int C(x) and ext
C(z) will denote the bounded and unbounded components, respectively,
of R* — C(x).

ProprosITION 1.5. Let C(x) be a cycle in (R), w). Then int C(v)
and ext C(x) are invariant.

Proof. The components of an invariant set are invariant.
In [3, VII, 4.8] it is proved that

ProrosITION 1.6. If C(x) 1s a cycle in (R?, 7), then int C(x) con-
tains a critical point.
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PropPOSITION 1.7. Let p be a center in (R, ) and U be a neigh-
borhood as described in Definition 1.2. Then there exists xc U such
that

(1) intC)c U,

(ii) peint C(x), and

(iii) peint C(y) for every yeint C(x) — {p}.

Proof. Let V be a disc neighborhood of p contained in U. Since
P is positively stable there exists x € V—{p} such that (C(x)=)C*(x)C V.
Then int C(x) © V because V is simply connected. int C(x) contains a
critical point by Proposition 1.6. This critical point must be p because
p is the unique critical point in U. Similarly, peint C(y) for every
y eint C(x) — {p}.

Thus we may reformulate Definition 1.2 as:

DEFINITION 1.2'. A critical point » of (R? =) is called a center if
and only if there exists a cycle C(x) such that peintC(x) and
int C(x) — {p} consists of cycles. We choose a fixed C(x,) satisfying
this condition and henceforth denote int C(x,) by U.

ProrosiTION 1.8. If xe U, then C(x) ts both positively and nega-
tively stable. Also C(x,) is stable relative to U.

Proof. See [3, VIII, 3.3].

ProPOSITION 1.9. Let S be a transversal contained in U. Then
Cx) N S = {x} for every xecS.

Proof. Since S is a transversal and p is critical, p¢.S; thus
ze Sc U — {p} implies C(x) is a cycle. A cycle intersects a transversal
at a unique point, [3, VII, 4.4].

ProrosiTioN 1.10. Let p be a center and U be a netghborhood of
p as described in Definition 1.2'. If C, and C, are distinct cycles
in U, then C,cintC, or C,Cint C,.

Proof. By Proposition 1.7 peint C, and peint C,. Thus
intC,NintC, = ¢ .

Thus int C,cint C, or int C,NextC, %= @. In the first case int C,C
int C,. Therefore C,cintC, or C, N C,# @. The latter is impossible
because C, and C, are distinct trajectories. In the second case,
d(int Cy) Nint C, = @. Therefore C,Nint C, # @ and C,C int C, since
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int C, is invariant.

COROLLARY 1.11. If C, and C, are distinct cycles in U such that
C,cextC,, then C,cCintC,.

Proof. By Proposition 1.10, C,cint C, or C,cCint C,. C, cannot
be contained in both int C, and ext C,. Therefore C,C int C,.

2. Bundles and cross-sections.

DEFINITION 2.1. Let (R? 7) be a dynamical system on R* and let
xz,yc R’. We define a relation ~ on R? by letting x ~ % if and only
if xe C(y).

Evidently ~ is an equivalence relation. The topology on R~
will be the quotient topology.

PROPOSITION 2.2. Let e be the natural mapping of R* onto R*/~.
Then e is an open mapping.

Proof. e is open if and only if e~'eG is open for every open set
G cC R*. Now, e'eG = GrR' = U,.n G7t, and Grt is open for every
t € R' since 7,: R’ ~ R*’. Hence GnR' is open and ¢ is an open mapping.

ProprosITION 2.3. If V is an inmvariant subset of R?, then e(V)
is homeomorphic to V/(~NV x V).

Proof. Since e¢ is an open mapping, the result follows from §1I,
3.5 of [2].

We shall now write ¢(V) as V/~ where it is understood that ~
is restricted to V x V.

PROPOSITION 2.4. e| U 1is a closed mapping of U onto U/~.

Proof. e|U is closed if and only if e~'¢eF = FrR' is closed in U
for every set F' which is closed in U. Let e FrR' N U. Then there
exist sequences {x;}, in F' and {¢;}3; in R' such that x;7¢; — «. Thus
C(x;) — C(x). Let ye U — int C(x). Then C(x) C int C(y) by Corollary
1.11 and int C(y) is a compact neighborhood of C(x). Thus x; € int C(y)
for 4 sufficiently large. Let {x;}7_, be a convergent subsequence of
{x;};=, with limit z. Then z€ F N C(x) since F' is closed and C(x;) — C(x).
Thus ¢ e C(z) C FrR' and FzR' is closed.

The following material on bundles is to be found in [6].
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DEFINITION 2.5. A bundle £ is a collection as follows:

(1) A space B called the bundle space,

(2) a space X called the base space,

(3) a map p: B— X of B onto X called the projection,

(4) a space Y called the fibre,

(5) an effective topological transformation group G of Y (i.e.,
goy =1y for all ye G implies g is the identity) called the group of
the bundle,

(6) a family {V,} of open sets covering X indexed by a set J,
the V;’s are called the coordinate neighborhoods, and

(7) for each j in J, a homeomorphism

@i V; X Y—p™(V))

called the coordinate function.

The coordinate functions are required to satisfy the following
conditions:

(8) ppi(x,y) =« for xeV;, ye Y

(9) if the map @;,: Y — p~'(x) is defined by setting ¢, . (y) =
@;(x, y) then for each pair 7,7 in J, and each x € V; N V;, the homeo-
morphism ¢@;.p;.: Y — Y coincides with the operation of an element
of G and

(10) for each pair 7,7 in J, the map

gjq;: Vj ﬂ Vfb'_’G

defined by g;,(x) = @;L®;,. is continuous.

Let U — {p} be the bundle space, U — {p}/~ be the base space,
the canonical mapping ¢ of U — {p} onto U — {p}/~ be the projection.
Then S* (the one-sphere) is the fibre; as the group take S* (with com-
plex multiplication). U — {p} can be covered by a countable family
{U,}7-, of open invariant sets which are generated by arc transversals
{T;}5-, minus their end points: if a; and b, are the end-points of T},
then U; = (T; — ({a;} U {b;}))7wR'. If we set V; = U,;/~, then {V 3,
is an open covering of U — {p}/~. For any (C(z), &) e V; x S* define

P;((C(x), &) = (C(x) N Ty T(x)
where ¢ = exp [in27] and A, € [0, 1). It is easily verified that the above
satisfies (1) through (8). We will verify that it also satisfies (9) and
(10) and is hence a bundle. Let 6 = d(x) € S* be such that

(C@ N Tyr(nT(2)) = C@) N T; .

It can be shown that §(.) is continuous. Then
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P7:Pi,a(€) = P7:((C@) N TN, T(w))
= 7:((C(@) N T)mhe — Xo) T())
=g

Thus @;.®;,. coincides with multiplication by ¢—' and is continuous
since 4 is a continuous funection.

PROPOSITION 2.6. U — {p}/~ 4s homeomorphic with (0, 1).

Proof. First U — {p}/~ is connected and locally connected since
U — {p} is such. Second, U — {p}/~ is a regular T, space since e| U
is a closed mapping. Since the topology of U — {p} has a countable
base and e is an open mapping, the topology of U — {p}/~ has a
countable base. By Urysohn’s metrization theorem U — {p}/~ is me-
trizable. It is known that if a metric space X is separable, connect-
ed, and locally connected, and such that on removing any point y of
X the remaining set X — {y} consists of exactly two components, then
it is the homeomorphic image of (0, 1), [8]. Take any C(x) € U—{p}/~.
Then (U — {p}) — C(x) consists of two components C, and C,. (Indeed,
C(z) is a Jordan curve in U~ R%.) For ¢ = 1,2, ¢(C;) is both open
and closed since C; is both open and closed and ¢| U is both open and
closed. (U—{ph)/~—C(x) = (U—{p})—C(x))/~ = e((U — {p})—C(z) =
e(C,UC,) =e(C)Ue(C,). Thus (U—{p})/~—C(x) has exactly two com-
ponents. Hence U — {p}/~ is homeomorphic with (0, 1).

DEFINITION 2.7. A space Y will be called solid with respect to
a space X, if for every closed subset A of X and mapping f: A—Y,
there exists a mapping f’: X— Y such that f'|A = f.

PROPOSITITION 2.8. S*' ¢s solid with respect to U — {p}/~.

Proof. It suffices, by Proposition 2.6, to show that S*' is solid
with respect to (0,1). We will only indicate the proof. Let I denote
(0,1) and A be a closed subset of I. The components of I — A are
open intervals and there are at most countably many of them. If
A = T there is nothing to show. Let f: A— S' be continuous, 4 = I.
Let V be a component of I — A. Since A = I, V must have an end-
point a contained in (0,1). If a is the only end-point of V in (0, 1)
define f: V— 8! by f'(x) = f(a) for all xe V. If V has another end-
point b contained in (0, 1), we have two cases: f(a) = f(b) or f(a) = f(b).
If f(a) = f(b) define f*: V— S* by f(z) = f(a) forallz e V. If f(a) = f(b),
then the points f(a) and f(b) are the end-points of two subarcs of S'.
Let S, be the one of shorter arc length, and if the two arcs are of
equal length S, is chosen to be either arc. Then there exists a homeo-
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morphism f' of V onto S, such that f'a) = f(a) and f'(b) = f(b).
We repeat this construction for every component of 7 — A and let ¢
denote the union of all such mappings. The continuity of ¢ follows
from the fact that in any compact subinterval of I there can be only
a finite number of components of I — A whose end-points have f images
which are diametrically opposite.

The following theorem from [6, 12.2] gives the existence of cross-
sections to bundles p: B— X, i.e., a continuous mapping f: X — B
such that pf(x) = x for every xze X.

THEOREM. Let X be a normal space with the property that every
covering of X by open sets is reducible to a countable coverimg. Let
B be a bundle over X with fibre Y which is solid. Let f be a cross-
section of B defined on a closed subset A of X. Then f can be ex-
tended to a cross-section over all of X. (Taking A = ¢, it follows
that 4 has a cross-section.)

It should be noted that in the proof of this theorem it is not
necessary that Y be solid, but only that Y be solid with respect to
X, i.e., that any continuous mapping f: A— Y, A closed in X, be
continuously extendable to a mapping f’: X— Y. Hence

PRrROPOSITION 2.9. There exists a continuous map f: U — {p}/~—
U — {p} such that ef(C(x)) = C(x) for every C(x)e U — {p}/~.

COROLLARY 2.10. Let f be as im Proposition 2.9 and S =
AU — {p}/~); then S is homeomorphic with (0, 1).

Proof. This is a consequence of the fact that if a: X — Y has
a cross-section 8: Y — X, then Y is homeomorphic with B(Y).

CorROLLARY 2.11. C(x) N S = {x} for each x € S and StR' = U—{p}.

ProrosiTIiON 2.12. Let h: (0,1) — S be a homeomorphism. Then
either lim,_, h(t) = p or lim,_, h(t) = p.

Proof. Let xe S and a € (0, 1) be such that A(a) = «. Then either
h((0, @)) cint C(x) or h((a,l))CintC(x) since SzR'= U — {p} and
SN C(x) = {x}. Since this is true for every x €S we must have

S—(SuUC@)U{ph) =0 .

Thus if 2((0, @)) C int C(x), then lim,_, () = p since int C(x) is compact.
Similarly if Z((a, 1)) < int C(z), then lim,_, h(¢) = p.
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COROLLARY 2.13. S U {p} is homeomorphic with [0, 1).

REMARK 2.14. Let xS and S, be the subarec of S U {p} with
end-points «# and p. In what follows we will assume 2=, and S=S,.

3. Type-N-isomorphisms. The classification of dynamical sys-
tems in terms of the following types of isomorphisms is due to Ura [7].

Let (X, m) and (X,, 7,) be two dynamical systems. An isomor-
phism of (X, w,) onto (X, 7,) is a pair of mappings (k, ) which satis-
fies one of the sets of conditions which follow. An isomorphism which
satisfies the condition of Type N will be called a type-N-isomorphism.
If there exists a type-N-isomorphism of (X, «,) onto (X, 7,), then we
say that (X, m,) and (X,, 7,) are type-N-isomorphic.

Type 1. (Topological isomorphisms.)

(1) & is a homeomorphism of X, onto X,.

(2) @ is a homeomorphic group-isomorphism of the real additive
group R' onto itself, i.e., @(f) = ¢t for some nonzero constant c.

(3) (Homomorphism condition) A(zw,t) = h(x)m,p(t) for all ze X,
and te R

Type 2.

(1) & is a homeomorphism of X, onto X,.

(2) o is a continuous mapping of X, x R' onto R' such that for
every fixed xe X, o(x,-) is a homeomorphic group-isomorphism of the
real additive group R' onto itself such that o(zx, 0) = 0, i.e., there
exists a continuous mapping ¢,: X, — R' such that ¢(z, t) = ¢,(x)t for
all xe X, and te R".

(3) (Homomorphism Condition)
h(zzmt) = h(x)mp(x, t) for all xe X, and te R

Type 2'. (Phase-map with reparameterization [4].)

(1) & is a homeomorphism of X, onto X,.

(2) @ is a continuous mapping of X,x R' onto R' such that for
every fixed x € X, p(x,-) is a homeomorphism of R' onto R' such that
@(x, 0) = 0.

(3) (Homomorphism Condition)
h(zm,t) = h(x)m,p(x, t) for all xe X, and ¢ e R'.

REMARK. Type 1< Type 2C Type 2.

Under certain restrictions we will show that isomorphisms of types
2 and 2’ are equivalent for centers, and for 7 = 1, 2 give necessary and
sufficient conditions for two centers to be type-N-isomorphic. The
proof of the following assertion is in [7].
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PROPOSITION 3.1. *type-N-isomorphic” s an equivalence rela-
tion on the family of all dynamical systems.

4. Classification of centers. We will now classify centers in
terms of type-N-isomorphisms. Let (R? w,) be the dynamical system

defined by
T =1y Y= —x.

The phase portrait consists of a single critical point—the origin—and
cycles of fundamental period 27 which are concentric circles about
the origin. Let ze R? and te R'; then x7w = xe*. Let

U,={xeR:|x| <1} and (R, 7m), U, T(),
be as before.

ProposiTiON 4.1. (U,—{0}, 7,) and (U—{p}, @) are type-2-isomor-
phic.

Proof. Let S be an arc such that SzR'=U and let f:[0,1]—S
be a homeomorphism such that f(0) = p. If xe U, — {0}, there exists
a unique ¢, € [0, 27) such that 27t, = |« |. Define h: Uy— U as follows:

Alehr — L 7(f(el)  if xe U, - (0)
h(zx) = 27

P if x=0
h is easily verified to be continuous. Let z,y e U, — {0} be such that
h(x) = h(y). Then

Azl — g— T(f(|z ) = Ay )T — L T(Ay]) .
T 27

Thus f(|z|) and f(|y]|) are on the same trajectory and both are ele-
ments of S. Hence f(|«]) = f(|¥]) and |2| = |y| since f is a homeo-
morphism. Next, t,,t,€[0,2r) implies ¢, = ¢,. Thus x = |x]|e's =
|y|ev = y; this shows that % is one-to-one.

If ye U—{p} there exists a 7, € [0, T(y)) such that yrxr,eS. Then
h(y) = fY(yrt,) exp [—2mit,/T(y)] and h is onto. Since each con-
tinuous, one-to-one mapping of a compact space onto a Hausdorff space
is a homeomorphism, % is a homeomorphism of U, onto U.

Now let ze U, — {0} and te R'. Then arit, = |x| = (@7t)7il,.
implies t, =t + ¢,., + 2nzw for some integer m.

h(amt) = £ amt )T — tz_ T(f( a7t |))
7T
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= fahr - L= L2200 g
/4

= flla ) — txz‘t T(f(| 2 ]))
T

_ h(x)n’—zt—— T(f( =) -
T

Since h(x) and f(|«[) are on the same trajectory, we have T(h(x)) =
T(f(|«|)). Thus

hamt) = h(@)m —L— T(h(z)) .
2T

Set @(z, t) = (¢/2r) T(h(x)) for all x € U,—{0} and for all ¢ € R*. Evident-
ly (h| U, — {0}, @) satisfies the conditions of type 2.

PROPOSITION 4.2. The following three conditions are equivalent:
(i) (U, m) and (U, ) are type-2-isomorphic.
(ii) (U, ) and (U, @) are type-2'-isomorphic.
(iii) lim,., T(y) exists, ts finite, and nmonzero.

Proof. We shall show that (iii) = (i) and (ii) = (iii). Assume
lim,, T(y) exists and equals A, 0 < xeR'. Let h and ¢ be as in the
proof of Proposition 4.1 and define @: U, x R* — R' as follows:

p(x, t) if xeU, — {0} and teR'
Px, 1) = §_tn

if x=0 and teR'.
2

Evidently @ is a continuous extension of ¢ to U, X R' and (k, »)
satisfies the conditions of type 2.

Now assume (%, @) is a type-2’-isomorphism of (U, ,) onto (U, 7).
h(0) = h(0zt) = h(0)zp,(0, t) for every te R'. Thus A(0) is critical and
must equal p. Since & is a homeomorphism, A(x) = p if and only if
x=0. Let xeU,— {0}). Then h(x) = h(xm,27) = h(x)Tp(x, 2m) and
h(x) = h(zm,t) for 0 < t < 2 imply that |p(x, 27) | is the fundamental
period of h(x), i.e., |p(x, 27)| = T(h(x)) for all xe U, — {0}. By the
continuity of o(-, 27), we have that lim,_, T(h(»)) exists and is finite.
@(,+) a homeomorphism such that p(z, 0) = 0 implies lim,_, T(h(x)) %
0. Since & is a homeomorphism, lim,_, T(y) exists, is finite, and nonzero.
This completes the proof.

Let (R, «,) and (R?, 7,) be two dynamical systems with centers p,
and p, respectively. For 7 = 1,2, let U; be a neighborhood of p; as
described in Remark 2.14, S; be the arc which generates U,, and T;
be the mapping which associates with xe U, — {p;} its fundamental
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period T;(x).

THEOREM 4.3. (U, — {p\}, m) and (U, — {py}, 7,) are type-2-isomor-
phic.

Proof. This is an immediate consequence of Propositions 3.1 and
4.1.

ProrosiTIiON 4.4. If S, — S, is a homeomorphism, then there
exists a type-2-isomorphism (h, ) of (U,—{p}, ) onto (U, — {p,}, ,)
such that h|S, = f and oz, t) = tTy(h(x))/T(x) for all xe U, — {p}
and for all te R

Proof. Analogous to that of Proposition 4.1.

DEFINITION 4.5. Let (X,,7) and (X, 7,) be dynamical systems.
A homeomorphism z of X, onto X, is said to be trajectory preserving
if and only if A(C.(z)) = Cy(h(x)) for every z¢c X,.

ProposiTiON 4.6. (U, 7)) and (U, w,) are type-2-isomorphic if
and only if there exists a trajectory preserving homeomorphism
h: U, — U, such that lim,_,, T.(h(y))/T\(y) exists, is finite, and nonzero.

Proof. Let h be a trajectory preserving homeomorphism of U,
onto U, such that lim,., T.(h(y))/T\(y) exists, is finite, and nonzero.
Then h(xrw.R') = h(x)m,R', and, for all xe S|, h(z)z,R' N k(S,) = {h(x)}
since x7,R*' N S, = {x}. k| S, is a homeomorphism of S, onto A(S,). By
Proposition 4.4 there exists a homeomorphism ¢ of U, onto U, such
that (¢ | U, — {p.}, ¢) is a type-2-isomorphism of (U, — {p}, ;) onto
(U, — {ps}, m;). Moreover g¢|S, =h|S, and oz, t) = tT(g(x))/T().
Then @(x, t) = tTy(h(x))/T\(x) for all xe S — {p} since ¢ |S, =% |S, and
lim,_, tTy(h(x))/T(x) = At for some nonzero ) by our assumption on k.
Define @: U, x R'— R' as follows:

_ (p(z, t) if e U, — {p,} and te R’
P, t) = | . .
[\t if x=p, and tcR'.

& is evidently a continuous extension of ¢ and (g, @) a type-2-isomor-
phism of (U,, 7,) onto (U,, 7,).

Now assume that (&, @) is a type-2-isomorphism of (U,, 7,) onto
(U,, 7). Then ¢,(-) a homeomorphic group isomorphism of R' onto
itself such that ,(0) = 0; thus there exists a continuous function
f: U, — R' such that ¢,(t) = f(®)t for all xe U, and for all te R
Indeed, f(x) = p(x,1). If xe U, — {p}, then
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h(x) = h(xm,T\(x)) = h(@)mp(x, T.(x))

and A(x) = h(xm,t) for 0 <t < Ty(x). Thus | p(x, T.(x))| is the funda-
mental period of h(2). Thus |@(Ty(2)) | = |f@)Ti(») | = |f@) ]| Ti(») =
Ty(h(x)). Therefore |f(x)| = Tyh(z))/Ti(x) and lim,., Ty(h(x))/T\() =
| f(»,) | # 0 since f is continuous and ¢, is a homeomorphic group iso-
morphism of R' onto itself. This completes the proof.

COROLLARY 4.7. If both lim,., T\(x) and lim,.,, T.(y) ewist, are
finite, and monzero, then (U, w) and (U,, w,) are type-2-isomorphic.

Proof. Since S, and S, are both homeomorphic to [0, 1] (by Remark
2.14), S, and S, are homeomorphic. By Proposition 4.4 there exists a
trajectory preserving homeomorphism of U, — {p,} onto U, — {p,}. This
can be extended to a trajectory preserving homeomorphism A of U,
onto U, by mapping p, onto p,. Then lim,_., Ty(h(x))/T\(») exists, is
finite, and nonzero since both lim,., T.(x) and lim,.,, Ty(y) are such.
The result follows from Proposition 4.6.

By assumption U, and U, are neighborhoods of p, and p, respec-
tively such that there exist x,, x, € R* with int C,(z,) = U, and int Cy(x,) =
U,. Moreover x; can be chosen so that S; = S;U{z}U{p}, 1 =1, 2.
(See Remark 2.14.)

CorROLLARY 4.8. If lim,_, T.(») = lim,_,, Ty(y) (with values 0 and
o as allowed), T\(x,) = Tyx,) and both T,|S, and T.|S, are one-to-
one, (U, ) and (U, w,) are type-2-isomorphic.

Proof. Since Ty(S;) is connected, T;(S;) is an interval for +=1, 2.
Moreover T(S,) = TS, since

T(%) = Te(x,) and lim,., T.(x) = lim,_,, Tu(y) .

If V is a compact subset of S;, then T;| V is a homeomorphism be-
cause a continuous, one-to-one mapping of a compact space onto a
Hausdorff space is a homeomorphism. Since this is true for every
compact subset V of S;, T; is a homeomorphism, 7 = 1, 2. Define g:
S, — S, as follows:

JT;lTl(x) if xeS, — {p}
g(x) = 110

if x=p,.

Evidently ¢ is a homeomorphism of S, onto S,. By Proposition 4.4 ¢
can be extended to a trajectory preserving homeomorphism h: U, — U,.
Then
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) A G N Sy

— lim @) _ 5 Tol0®)
Ve T.(y) vn T.(y)
= lim T(T'T\(y) _ 1.

y=Py T1(y)

Y€ 8y

The result now follows by Proposition 4.6.

ExampLE 4.9. If lim,., T\(2) = lim,.,, Ty(x) = 0, it is not neces-
sarily true that (U,, &,) and (U,, 7,) are type-2-isomorphic. Let (U, 7,)
be as before and define 7, and 7, as follows (f and g shall be chosen
later):

xmt = X7, for all xe U, and for all te R

Si)

It = X7, for all xe U, and for all te R'.

9()

If there exists a type-2-isomorphism (%, ) of (U, «;) onto (U,, 7,)
then by Proposition 4.6 lim,_, T,(k(x))/T.(x) exists and is nonzero. Note
that T.(x) = f(z) and T.(x) = g(x). Restricting our attention to S, and
S,, the problem may be reduced to the following:

Given continuous functions f, g:[0,1] — [0, 1] such that f(0) =
g(0) = 0 and f(x) > 0 < g(x) for € (0,1]. Does there exist a homeo-
morphism #,: [0, 1] — [0, 1] such that lim,_, f(h,(x))/g(x) exists and is
nonzero? It is not hard to see that there exist functions f and g
satisfying our assumptions and such that lim,_, f(h,(x))/g(x) does not
exist for any homeomorphism #4,: [0, 1] — [0, 1]. Hence for these choices
of fand g, (U,, ) and (U, w,) are not type-2-isomorphic.

Similarly, if lim,., T(x) = lim,_,, Ty(y) = + o, it is not necessari-
ly true that (U, &) and (U,, 7,) are type-2-isomorphic.

ProposiTiON 4.10. (U, ) and (U, 7,) are type-l-isomorphic if
and only if there exists a trajectory preserving homeomorphism h
of U, onto U, and a constant n such that T,(h(x)) = NT.(x) for all
HAS U1 - {p}'

Proof. Assume (U, «,) and (U,, w,) are type-l-isomorphic. Then
there exist a homeomorphism hi: U,— U, and a nonzero constant A
such that i(zzwt) = h(x)T, At for all x € U, and for all te R'. Evident-
ly & is trajectory preserving. Let xze U, — {p,}). Then

]’L(.’)C) = h(xﬂlTl(x)) = h/(x>7[2>‘/T1(x)
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and h(x) # h(x)TAt for te (0, T(x)). Thus
To(h(2)) = |INTy(2) | = [N]| Ti() .

Now let %~ be a trajectory preserving homeomorphism of U, onto
U, and \ be a nonzero constant such that T,(h(x)) = AT\ (x) for every
x€ U, — {p}. Then h|S, is a homeomorphism of S, onto A(S,. By
Proposition 4.4 there exists a homeomorphism g: U, — {p,} — U, — {p,}
such that ¢|S, =28, and (g, ) is a type-2-isomorphism of

(Ul - {pl}: 751) onto (Uz - {pz}y 77:2)

where o(z, t) = Ty(g(x))t/T(x) for all xe U — {p,} and te R'. Then
p(x, t) = Ty(h(x))t/T\(x) for all xe S, — {p,}. Thus @(x, t) = At for all
x€ S, — {p}. Define @: U, x R'— R' as follows:

P(x, t) = N\t .

Then it is easy to show g(xzw.it) = g(x)m Nt for all xe U, — {p,} and for
all te R'. ¢ can be extended to a homeomorphism g of U, onto U,
by mapping p, onto p,. Then (g, @) is a type-l-isomorphism of (U, ,)
onto (U,, m,).

COROLLARY 4.11. (U, 7w, and (U, ) are type-l-isomorphic if
and only if T,(-) is constant on U, — {p,}.

BIBLIOGRAPHY

1. N. P. Bhatia and G. P. Szegd, Dynamical systems: stability theory and applica-
tions, Springer-Verlag, New York, 1967.

2. N. Bourbaki, Elements of mathematics, general topology, Part I, Addison-Wesley,
Reading, Massachusetts, 1966.

3. Otomar Hijek, Dynamical systems in the plane, Academic Press, London, 1968.
4. , Categorical concepts in dynamical systems theory, Proceedings of Topologi-
cal Dynamics Symposium, Fort Collins, Colorado, W. A. Benjamin, 1968.

5. John L. Kelley, General topology, D. Van Nostrand Co., Inc., Princeton, 1965.

6. Norman Steenrod, The topology of Fibre bundles, Princeton University Press,
Princeton, 1951.

7. Taro Ura, Local isomorphisms and local parallelizability in dynamical systems
theory, Math. Systems Theory 2 (1968).

8. A. J. Wood, The topological characterization of an open linear interval, Proc. Lon-
don Math. Soc. 41 (1936), 191-198.

Received October 17, 1968. This work was partly done while the author held a
NASA Traineeship at Case Western Reserve University.

CASE WESTERN RESERVE UNIVERSITY AND
CALIFORNIA STATE COLLEGE AT LOS ANGELES





