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A CLASSIFICATION OF CENTERS

ROGER C. MCCANN

The purpose of this paper is to classify centers according
to isomorphisms. We define three types of isomorphism, and
for two of these types give necessary and sufficient conditions
for two centers to be isomorphic. We also give necessary and
sufficient conditions for the third type of isomorphism to be
equivalent to one of the other two.

These isomorphisms are discussed in a more general situation by
Taro Ura [7]. This paper was motivated by discussions with Taro
Ura and Otomar Hajek.

In our investigation we construct a section which generates a
neighborhood of the center by using a theorem from the theory of
fibre bundles. This section may be constructed directly, using the
existence of a transversal through each noncritical point of the dy-
namical system. Much insight, which is otherwise lost, into the
structure of a center is obtained from the fibre bundle approach.

The concept of a transversal is essential in our investigation. The
basic material on transversal theory in planar dynamical systems is
found in [3].

Throughout this paper R+, R\ and R2 will denote the nonnegative
reals, the reals, and the plane respectively.

Let (X, π) be a dynamical system on X, i.e., X is a topological
space and π is a mapping of X x Rι onto X satisfying the following
axioms (where xπt = π(x, t) for (x, t) e X x Rι):

(1) Identity Axiom: xπO = x for xe X
(2 ) Homomorphism Axiom: (xπt)πs = xπ(t + s) for xe X and

t,seRι

(3) Continuity Axiom: π is continuous on X x R1.
Then for xe X, xπR1 is called the trajectory through x and is denot-
ed by C(x). If C(x) = {x}, x is called a critical point. If there exists
t e R\ t Φ 0, such that xπt — x, C(x) is called periodic. If C(x) is
periodic and x is not a critical point, C(x)9 is called a cycle.

1* Definition and properties of a center. In the following (iϋ2, π)
will denote a dynamical system on R2 and P the set of noncritical
periodic points of (R2, π). Let T: P —• Rι be the mapping which as-
sociates with each point xeP its fundamental period T(x). For the
proof of the following result see [3, VII, 4.15].

PROPOSITION 1.1. T is a continuous mapping of P into Rι.
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DEFINITION 1.2. A critical point p of (R2, π) is called a center
if and only if there exists a neighborhood U of p such that C(x) is
a cycle for every xe U — {p}.

PROPOSITION 1.3. Let p be a center in (R2, π). Then {p} is both
positively and negatively stable.

Proof. Let U be a neighborhood of p as described in Definition
1.2. We will show that D+(p) = {p}, where D+(p) denotes the positive
prolongation of p (see [1, 1.4.1]). This will prove (by [1, 2.6.6]) that
{p} is positively stable. Let M be the component of D+(p) which con-
tains p. By [1, 2.3.5], if D+(p) is compact, then it has exactly one
component and if D+(p) is not compact, then none of its components
is compact. We now have two cases:

Mf](U-{p})=0 or Mf](U- {p}) Φ 0 .

If Mn (U - {p}) = 0 , then M = {p} and D+(p) = M= {p}. If

I Π (U- {p}) Φ 0 , let yeMΠ (U - {p}) .

Then there exist sequences {x^i in U — {p} and {£<}Π=i in R+, with
Xί~*P and x-πti—^y. Since x^P for every ΐ, we may assume
ίiG[0, T(Xi)). Since C(y) is a cycle, tt e [0, 2T(y)) for all i sufficiently
large by the continuity of T. Let {tin}ζ=1 be a convergent subsequence
of {ti}T=i with limit tQ. Then

7/ <- xinπtin -> pττί0 = p .

This contradicts our assumption that yeM—{p}. Thus D+ = {p} and
{p} is positively stable. Similarly {p} is negatively stable.

DEFINITION 1.4. A cycle C(x) of (R2, π) decomposes R2 into two
components, one bounded and the other unbounded, int C(x) and ext
C(x) will denote the bounded and unbounded components, respectively,
of R2 - C(x).

PROPOSITION 1.5. Let C(x) be a cycle in (R2,π). Then intC(x)
and extC(x) are invariant.

Proof. The components of an invariant set are invariant.

In [3, VII, 4.8] it is proved that

PROPOSITION 1.6. // C(x) is a cycle in (R2,π), then intC(α ) con-
tains a critical point.
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PROPOSITION 1.7. Let p be a center in (R\ π) and U be a neigh-
borhood as described in Definition 1.2. Then there exists xe U such
that

( i ) int C(x) c U,
(ii) pe int C(x)9 and
(iii) p e int C(y) for every y e int C(x) — {p}.

Proof. Let V be a disc neighborhood of p contained in U. Since
p is positively stable there exists x e V— {p} such that (C(x) — )C+(x)d V.
Then int C(x) c V because V is simply connected, int C(x) contains a
critical point by Proposition 1.6. This critical point must be p because
p is the unique critical point in U. Similarly, p e int C(y) for every
yeintC(x) - {p}.

Thus we may reformulate Definition 1.2 as:

DEFINITION 1.2'. A critical point p of (R2, π) is called a center if
and only if there exists a cycle C(x) such that p e int C(x) and
int C(x) — {p} consists of cycles. We choose a fixed C(x0) satisfying
this condition and henceforth denote int C(x0) by U.

PROPOSITION 1.8. If xe U, then C(x) is both positively and nega-
tively stable. Also C(x0) is stable relative to U.

Proof. See [3, VIII, 3.3].

PROPOSITION 1.9. Let S be a transversal contained in U. Then
C(x) ίΊ S = {x} for every xe S.

Proof. Since S is a transversal and p is critical, p ί S; thus
x e S c U — {p} implies C(x) is a cycle. A cycle intersects a transversal
at a unique point, [3, VII, 4.4].

PROPOSITION 1.10. Let p be a center and U be a neighborhood of
p as described in Definition 1.2'. If Cx and C2 are distinct cycles
in U, then d c int C2 or C2 c int d .

Proof. By Proposition 1.7 peintC1 and peintC 2 . Thus

int d (Ί int d Φ 0 .

Thus int d c int d or int d Π ext d Φ 0 In the first case int d c
int d Therefore d c int d or d Π d ^ 0 . The latter is impossible
because d and d are distinct trajectories. In the second case,
3(int d ) Π int d Φ 0 . Therefore d Π int CXΦ 0 and d c int d since
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int d is invariant.

COROLLARY 1.11. If d and C2 are distinct cycles in U such that
d c ext C2, then C2 c int d

Proof. By Proposition 1.10, C 2 c i n t d or d c i n t C 2 . d cannot
be contained in both int d and ext d Therefore d c int d

2* Bundles and cross-sections*

DEFINITION 2.1. Let (R2, π) be a dynamical system on R2 and let
x, y eR2. We define a relation ~ on iϋ2 by letting x ~ y if and only
if »eC(»).

Evidently — is an equivalence relation. The topology on R2/~
will be the quotient topology.

PROPOSITION 2.2. Let e be the natural mapping of R2 onto R2/~.
Then e is an open mapping.

Proof, e is open if and only if e~ιeG is open for every open set
GaR2. Now, e~ιeG = GπR1 — \JteRιGπt, and Gπt is open for every
t e R1 since πt: R

2 ̂  R2. Hence GπR1 is open and e is an open mapping.

PROPOSITION 2.3. // V is an invariant subset of R2, then e(V)
is homeomorphic to V/(~ Π F x V).

Proof. Since e is an open mapping, the result follows from § I,
3.5 of [2].

We shall now write e(V) as V/~ where it is understood that ~
is restricted to V x V.

PROPOSITION 2.4. e \ U is a closed mapping of U onto U/~.

Proof, e I U is closed if and only if e~ιeF — FπR1 is closed in U
for every set F which is closed in U. Let x e FπR1 Π U. Then there
exist sequences {Xi}T=ι in F and {ίjjli in R1 such that x-πti —> x. Thus

-> C(a ). Let yeU - int C(x). Then C(x) c int C(τ/) by Corollary
1.11 and int C(τ/) is a compact neighborhood of C(x). Thus x{ e int
for i sufficiently large. Let {xin}n=ι be a convergent subsequence of
{%i}T=ι with limit «. Then ze F f] C(x) sinceFis closed and C(Xi) —> C(x).
Thus x G C(z) c FTΓ̂ K1 and FTri?1 is closed.

The following material on bundles is to be found in [6].
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DEFINITION 2.5. A bundle β is a collection as follows:
( 1 ) A space B called the bundle space,
( 2 ) a space X called the base space,
( 3 ) a map p: B —> X of J3 onto X called the projection,
(4 ) a space F called the ./ϊδre,
( 5 ) an effective topological transformation group G of Y (i.e.,

goy = y for all 2/ G G implies # is the identity) called the group of
the bundle,

( 6 ) a family {Vά) of open sets covering X indexed by a set J,
the F/s are called the coordinate neighborhoods, and

( 7 ) for each j in J, a homeomorphism

called the coordinate function.
The coordinate functions are required to satisfy the following

conditions:
( 8 ) pφ3 (x, y) = x for x e Vό, yeY
( 9 ) if the map φjtX: Y-+p~\x) is defined by setting φj>x(y) =

Ψ5{x, y) then for each pair i, j in /, and each xe Vif] Vjf the homeo-
morphism <pj*xφitX: Y—> Y coincides with the operation of an element
of G and

(10) for each pair i, j in J, the map

defined by gSi{x) = φj^xφitX is continuous.
Let U — {p} be the bundle space, U — {p}/~ be the base space,

the canonical mapping e of U — {p} onto U — {p}/~ be the projection.
Then S1 (the one-sphere) is the fibre; as the group take S1 (with com-
plex multiplication). U — {p} can be covered by a countable family
{Uj}J=L of open invariant sets which are generated by arc transversals
{TΓ

i}7=1 minus their end points: if a5 and bό are the end-points of Tό,
then Uj = (Td - ({αj U {bά}))πRι. If we set V, = Us/~, then {T^JU
is an open covering of U — {p}/~. For any (C(x), ζ) e V3- x S2 define

^((C(»), f)) = (C(x) ΓΊ T^πX.Tix)

where ξ = exp [ίλ^π ] and λe G [0,1). It is easily verified that the above
satisfies (1) through (8). We will verify that it also satisfies (9) and
(10) and is hence a bundle. Let δ = δ(x) e S1 be such that

(C(χ) n TM^T(X)) = C(χ) n τ3.

It can be shown that δ( ) is continuous. Then
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n ,
Π T,)7T(^ - X5)T(X))

Thus φjlxφi>x coincides with multiplication by δ"1 and is continuous
since δ is a continuous function.

PROPOSITION 2.6. U — {p}/~ is homeomorphic with (0,1).

Proof. First U — {p}/~ is connected and locally connected since
U — {p} is such. Second, U — {p}/~ is a regular ϊ\ space since e\ U
is a closed mapping. Since the topology of U — {p} has a countable
base and e is an open mapping, the topology of U — {p}/~ has a
countable base. By Urysohn's metrization theorem U — {p}/~ is me-
trizable. It is known that if a metric space X is separable, connect-
ed, and locally connected, and such that on removing any point y of
X the remaining set X — {y} consists of exactly two components, then
it is the homeomorphic image of (0,1), [8]. Take any C(x) e U—{p}/~.
Then (U — {p}) — C(x) consists of two components Cι and C2. (Indeed,
C(x) is a Jordan curve in U^R2.) For i = 1, 2, e(d) is both open
and closed since d is both open and closed and e \ U is both open and
closed. (U-{p})l~-C(x) = «U-{p})-C(x))/~ = e((U - {p})-C(x) =
e(C1[jC2) = e(C1)[Je(C2). Thus (U-{p})/ C(x) has exactly two com-
ponents. Hence U — {p}/~ is homeomorphic with (0,1).

DEFINITION 2.7. A space Y will be called solid with respect to
a space X, if for every closed subset A of X and mapping f: A-+Y,
there exists a mapping / ' : X—• Y such that f'\A = f.

PROPOSITITION 2.8. S1 is solid with respect to U — {p}/~.

Proof. It suffices, by Proposition 2.6, to show that S1 is solid
with respect to (0, 1). We will only indicate the proof. Let I denote
(0,1) and A be a closed subset of I. The components of / — A are
open intervals and there are at most countably many of them. If
A = I there is nothing to show. Let /: A-+S1 be continuous, A Φ I.
Let V be a component of I — A. Since AΦ /, V must have an end-
point a contained in (0, 1). If a is the only end-point of V in (0, 1)
define f1: V-+S1 by f\x) = f(a) for all xe V. If V has another end-
point b contained in (0,1), we have two cases: f(a) Φ f(b) or /(α) = f(b).
If/(α) =/(6) define Z1: F - H . S 1 by/1(»)=/(α) for alia? e V. ltf{a)Φf{b),
then the points f(a) and f(b) are the end-points of two subarcs of S1.
Let Sx be the one of shorter arc length, and if the two arcs are of
equal length Sλ is chosen to be either arc. Then there exists a homeo-



A CLASSIFICATION OF CENTERS 739

morphism fι of V onto S, such that f\a) = f(a) and f\b) = f(b).
We repeat this construction for every component of I — A and let g
denote the union of all such mappings. The continuity of g follows
from the fact that in any compact subinterval of I there can be only
a finite number of components of / — A whose end-points have / images
which are diametrically opposite.

The following theorem from [6, 12.2] gives the existence of cross-
sections to bundles p: B —• X, i.e., a continuous mapping /: X —• B
such that pf(x) = x for every x e X.

THEOREM. Let X be a normal space with the property that every
covering of X by open sets is reducible to a countable covering. Let
β be a bundle over X with fibre Y which is solid. Let f be a cross-
section of β defined on a closed subset A of X. Then f can be ex-
tended to a cross-section over all of X. (Taking A = 0, it follows
that β has a cross-section.)

It should be noted that in the proof of this theorem it is not
necessary that Y be solid, but only that Y be solid with respect to
X, i.e., that any continuous mapping f:A—+ Y, A closed in X, be
continuously extendable to a mapping / ' : X—> Y. Hence

PROPOSITION 2.9. There exists a continuous map f: U — {p}/~—>
U - {p} such that ef(C(x)) = C(x) for every C(x) eU - {p}/~.

COROLLARY 2.10. Let f be as in Proposition 2.9 and S =
f(U— {p}/~); then S is homeomorphic with (0,1).

Proof. This is a consequence of the fact that if a: X-+ Y has
a cross-section β: Y—>X, then Y is homeomorphic with β(Y).

COROLLARY 2.11. C(x) n S = {x} for each xe S and SπR1 = U-{p).

PROPOSITION 2.12. Let h:(0,ΐ)-+S be a homeomorphism. Then
either linw h(t) = p or lim^0 h(t) = p.

Proof. Let xe S and ae (0, 1) be such that h(a) = x. Then either
h((0, a)) c int C(x) or h((a, 1)) c int C(x) since SπR1 = U - {p} and
S Π C(x) = {x}. Since this is true for every xe S we must have

S - (S U C(x0) U {p}) = 0 .

Thus if fc((0, a)) c int C(x), then lim^o h(t) = p since int C(x) is compact.
Similarly if h((a, 1)) c int C(x), then lim^ h(t) = p.
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COROLLARY 2.13. S u b } is homeomorphic with [0,1).

REMARK 2.14. Let x e S and Si be the subarc of S U {p} with
end-points x and p. In what follows we will assume x = xQ and S = Sx.

3* Tyρe-ΛΓ-isomorρhisms* The classification of dynamical sys-
tems in terms of the following types of isomorphisms is due to Ura [7].

Let (X19 TΓJ and (X29 π2) be two dynamical systems. An isomor-
phism of (X19 πt) onto (X29 π2) is a pair of mappings (h, φ) which satis-
fies one of the sets of conditions which follow. An isomorphism which
satisfies the condition of Type N will be called a type-ΛΓ-isomorphism.
If there exists a type-iV-isomorphism of (X19 πλ) onto (X29 π2), then we
say that (X19 πλ) and (X29 π2) are type-iV-isomorphic.

Type 1. (Topological isomorphisms.)
(1) h is a homeomorphism of Xx onto X2.
(2 ) φ is a homeomorphic group-isomorphism of the real additive

group R1 onto itself, i.e., φ(t) = ct for some nonzero constant c.
( 3 ) (Homomorphism condition) h{xπ{t) = h{x)π2φ(t) for all x e Xγ

and teR1.
Type 2.
(1) h is a homeomorphism of X1 onto X2.
(2) φ is a continuous mapping of Xx x J?1 onto Rι such that for

every fixed xeXl9φ(x9 ) is a homeomorphic group-isomorphism of the
real additive group R1 onto itself such that φ(x, 0) = 0, i.e., there
exists a continuous mapping φL: X.-^R1 such that φ(x9 t) = ^(a?)* for
all x e X1 and t e Rι.

( 3 ) (Homomorphism Condition)
h(xπjt) = /φ)τr299(#, ί) for all x e Xι and ί e R1.

Type 2'. (Phase-map with reparameterization [4].)
(1) h is a homeomorphism of XL onto X2.
(2) φ is a continuous mapping of Xγ x JB1 onto R1 such that for

every fixed xe X19 φ(x9*) is a homeomorphism of i?1 onto R1 such that
^ , 0) - 0.

( 3 ) (Homomorphism Condition)
h{xnxt) — h(x)π2φ(x, t) for all xe Xλ and t e R1.

REMARK. Type 1 c Type 2 c Type 2'.

Under certain restrictions we will show that isomorphisms of types
2 and 2' are equivalent for centers, and for i = 1, 2 give necessary and
sufficient conditions for two centers to be type-ΛΓ-isomorphic. The
proof of the following assertion is in [7].
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PROPOSITION 3.1. " type-N-isomorphic" is an equivalence rela-
tion on the family of all dynamical systems.

4* Classification of centers* We will now classify centers in
terms of type-AMsomorphisms. Let (i?2, ττ0) be the dynamical system
defined by

* = V y = —x .

The phase portrait consists of a single critical point —the origin —and
cycles of fundamental period 2π which are concentric circles about
the origin. Let xeR2 and teR1; then xπot = xeu. Let

Uo = {xe R2: \x\^l] and (R2, π), U, Γ( ) ,

be as before.

PROPOSITION 4.1. (J70-{0}, 7ΓO) and (U—{p},π) are type-2-isomor-
phic.

Proof. Let S be an arc such that SπR1 = U and let /: [0, 1]->S
be a homeomorphism such that /(0) = p. If x e Uo — {0}, there exists
a unique tx e [0, 2π) such that xπQtx = \ x |. Define h: UQ—+U as follows:

T(f(\ x I)) if x e Uo - {0}

if x = 0

A is easily verified to be continuous. Let x, y e Z70 — {0} be such that
h(x) = Λ(ί/). Then

/ ( | x \)π - A _ T(/( | x I)) = / ( | 7/ |)τr - A -

T h u s f(\x\) and f(\y\) are on the same trajectory and both are ele-
ments of S. Hence f(\ x |) = / ( | 7/1) and \x\ = \y\ since / is a homeo-
morphism. Next, tx, ty e [0, 2π) implies tx = ty. Thus x — \x\ eitχ —
17/1 eιtv = 7/; this shows t h a t h is one-to-one.

If y G ί/— {̂ >} there exists a τye [0, T(?/)) such t h a t yπτy e S. Then
h~\y) = f^iyπTy) exip[ — 2πiτy/T(y)] and fe is onto. Since each con-
tinuous, one-to-one mapping of a compact space onto a Hausdorff space
is a homeomorphism, A is a homeomorphism of Z70 onto U.

Now let x£ Uo — {0} and £ e JB1. Then xπotx = \ x \ = (xπot)πotxπQt

implies tx = t + tXKQt + 2nπ for some integer n.

h(xπot) = / ( | xπot \)π - ±pL T(f(\ xπot ]))
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\)π - <*« - \ ~ 2 n π ϊ T(f(\ x I))
ΔTC

= h(x)π-±-T(f(\x\)).
2π

Since h(x) and f(\ x |) are on the same trajectory, we have T(h(x)) =
T(f(\x\)). Thus

h(xπot) = h(x)π-J—T(h(x)) .
2π

Set φ(x, t) = (t/2π)T(h(x)) for all a? e f70-{0} and for all ί e iί1. Evident-
ly (h\ Uo — {0}, 9?) satisfies the conditions of type 2.

PROPOSITION 4.2. ΓΛe following three conditions are equivalent:.
( i ) (Uo, 7Γ0) and (U, π) are type-2-isomorphic.
(ii) (E/Q, TΓ0) απcί (U,π) are type-2'-isomorphic.
(iii) lim^p Γ(τ/) exists, is finite, and nonzero.

Proof. We shall show that (iii) => (i) and (ii)=>(iii). Assume
lim,,_p Γ(2/) exists and equals λ, 0 < λ e i ί 1 . Let h and φ be as in the
proof of Proposition 4.1 and define φ: Uo x R1—> R1 as follows:

rφ(x, t) if xeUQ- {0} and t e R1

?(*>*) = \jhL- if x = 0 and ί e Λ 1 .

1 2ττ

Evidently φ is a continuous extension of φ to Uo x R1 and (h, φ)
satisfies the conditions of type 2.

Now assume (h, φ) is a type-2'-isomorphism of (Uo, π0) onto (U, π).
h{0) = fe(Oττί) = ^(0)^^(0, ί) for every teR1. Thus Λ,(0) is critical and
must equal p. Since h is a homeomorphism, Λ(x) = p if and only if
B = 0. Let x e Uo - {0}. Then fe(a ) = h(xπQ2π) = h(x)πφ(x, 2π) and
fe(£) ^ h(xπot) for 0 < ί < 2ττ imply that | ^>(x, 2ττ) | is the fundamental
period of h(x), i.e., \φ(x,2π)\ = T(h(x)) for all xeUQ~ {0}. By the
continuity of φ( , 2π), we have that limτ_0 T{h(x)) exists and is finite.
φ(x, ) a homeomorphism such that φ(x, 0) = 0 implies lim^o T(h{x))Φ
0. Since h is a homeomorphism, l i m ^ T(y) exists, is finite, and nonzero.
This completes the proof.

Let (R2, πλ) and (R2, π2) be two dynamical systems with centers p1

and p2 respectively. For i = 1, 2, let Ui be a neighborhood of ^ as
described in Remark 2.14, St be the arc which generates Ui9 and Γ,
be the mapping which associates with xe Ui — {Pi} its fundamental
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period T{(x).

THEOREM 4.3. (Uι — {p,}, πλ) and (U2 — {p2}y π2) are type-2-isomor-
φhic.

Proof. This is an immediate consequence of Propositions 3.1 and
4.1.

PROPOSITION 4.4. If /: S, -+ S2 is a homeomorphism, then there
exists a type-2-isomorphism (ft, φ) of (ZΛ — {pj, πλ) onto (U2 — {p2}, π2)
such that h\ Sί = f and φ(x, t) = tT^hix^jT^x) for all xe U1 — {pλ}
and for all teR1.

Proof. Analogous to that of Proposition 4.1.

DEFINITION 4.5. Let (X19 π,) and (X2, π2) be dynamical systems.
A homeomorphism ft of Xι onto X2 is said to be trajectory preserving
if and only if hiC^x)) = C2(h(x)) for every xeX,.

PROPOSITION 4.6. (U^π^ and (U2,π2) are type-2-isomorphic if
and only if there exists a trajectory preserving homeomorphism
h: Uι —* U2 such that \\my^Pi T2(h(y))/T1(y) exists, is finite, and nonzero.

Proof. Let ft be a trajectory preserving homeomorphism of U1

onto U2 such that l im^^ T^hiy^/T^y) exists, is finite, and nonzero.
Then h(xπxR

ι) = h(x)π2R\ and, for all x e S19 h(x)π2R
ι Π h{Sλ) = {h(x)}

since xπ^1 f] Sλ = {x}. h\ Sί is a homeomorphism of S1 onto hiS^. By
Proposition 4.4 there exists a homeomorphism g of U1 onto U2 such
that (g I Uι — {ί9j, φ) is a type-2-isomorphism of (Uι — {pj, TΓJ onto
( U 2 - { p 2 } , π 2 ) . M o r e o v e r g \ S 1 = h \ S 1 a n d <p(x, t) = t T M x ^ / T ^ x ) .
T h e n φ ( x , t) = t T ^ H x ^ / T ^ x ) f o r a l l x e S - {p} s i n c e g \ S ί = h \ S 1 a n d
limx_»Pl tT2{h(x))ITλ(x) = Xt for some nonzero λ by our assumption on h.
Define φ: Uγ x Rι —> Rι as follows:

(<p(x, t) if xe Uι — {p,} and teR1

<p(x, t) — \
(Xt if x = pι and teR1 .

φ is evidently a continuous extension of φ and ( ,̂ φ) a type-2-isomor-
phism of (ί/i, TΓi) onto (U2,π2).

Now assume that (ft, 99) is a type-2-isomorphism of (U^πJ onto
(U2,π2). Then <£>*(•) a homeomorphic group isomorphism of R1 onto
itself such that φx(0) = 0; thus there exists a continuous function
/ : U, -> i?1 such that <px(t) = f(x)t for all xeU1 and for all ί e R1.
Indeed, /(«) = <p(x, 1). If α e J7X - {pj, then
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h(x) = hixπ^ix)) = h(x)π2φ(x, Tx(x))

and h(x) Φ h(x^t) for 0 < t < Tx{x). Thus | <p(x, Tx(x)) | is the funda-
mental period of h(x). Thus | ̂ ( T ^ ) ) | = \f(x)T1(x)\ = \f(x)\ Tx(x) =
T2(h(x)). Therefore |/(α?)| - TMx^jT^x) and limx_Pl T2(/φ))/ϊ\(^) -
I /(Pi) I =£ 0 since / is continuous and φPl is a homeomorphic group iso-
morphism of Rι onto itself. This completes the proof.

COROLLARY 4.7. If both limx_ί)i Tλ(x) and limlf_>P2 T2(?/) eαisί, are
finitey and nonzero, then (U19 TΓJ aweZ (U2,π2) are type-2-isomorphic.

Proof. Since Si and S2 are both homeomorphic to [0, 1] (by Remark
2.14), S, and S2 are homeomorphic. By Proposition 4.4 there exists a
trajectory preserving homeomorphism of Uι — {pj onto U2 — {p2} This
can be extended to a trajectory preserving homeomorphism h of £7̂
onto U2 by mapping Pi onto p2. Then lima;_>2,1 T2{h(x))ITSx) exists, is
finite, and nonzero since both lima.^l TΊ(x) and lim2/_fP2 T2(y) are such.
The result follows from Proposition 4.6.

By assumption Uί and U2 are neighborhoods of pι and p2 respec-
tively such that there exist x19x2e R2 with int CΊfe) = Ux and int C2(x2) =
Z72. Moreover ^ can be chosen so that Si = Si U {»<} U {#»}, i = 1, 2.
(See Remark 2.14.)

COROLLARY 4.8. // lima.^Pl ϊ\(a;) = lim,,^2 Γ2(2/) (wiίλ values 0
co as allowed), JΓΊ(#I) = Γ2(^2) a ^ δoί^ TΊ | ^ a^cί Γ21 S2 are one-to-
one, (ί/i, TΓJ a^d (U2, π2) are type-2-isomorphic.

Proof. Since 2^(5;) is connected, Ti(S^ is an interval for i = l, 2.
Moreover T^S,) - Γ2(S2) since

^(x,) = T2(x2) and lim_P i Tx(x) = limy_^ T2(y) .

If V is a compact subset of Siy then Γ̂  | V is a homeomorphism be-
cause a continuous, one-to-one mapping of a compact space onto a
Hausdorff space is a homeomorphism. Since this is true for every
compact subset V of Si9 T{ is a homeomorphism, i = 1, 2. Define g:
Si—* S2 as follows:

ίΓr1^^) if xeS.-ta)

Evidently ^ is a homeomorphism of SL onto S2. By Proposition 4.4 g
can be extended to a trajectory preserving homeomorphism h: UΊ—+ U2»
Then
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Km TMV)) = l i m TMCM Π S

The result now follows by Proposition 4.6.

EXAMPLE 4.9. If l i m , ^ T^x) = lim^P 2 T2(x) = 0, it is not neces-
sarily true that (Uί9 TΓJ and (U2, π2) are type-2-isomorphic. Let (Uo, τr0)
be as before and define T^ and π2 as follows (/ and g shall be chosen
later):

xπxt = xπ0—-— for all xeU0 and for all teR1

= xπ0—-— for all xe Uo and for all teR1 .
()

If there exists a type-2-isomorphism (h, <p) of (J70, π\) onto (i70,7Γ2)
then by Proposition 4.6 lim^ 0 T2(fc(a;))/T1(x) exists and is nonzero. Note
that Tt(x) = f(x) and T2(x) = g(x). Restricting our attention to S1 and
S2, the problem may be reduced to the following:

Given continuous functions /, g: [0, 1] —• [0, 1] such that /(0) —
#(0) = 0 and f(x) > 0 < g(x) for x e (0, 1], Does there exist a homeo-
morphism hλ: [0, 1] —> [0, 1] such that lima!_KΪ/(fe1(a?))/g(a;) exists and is
nonzero? It is not hard to see that there exist functions / and g
satisfying our assumptions and such that lim^0 f(hι(x))jg{x) does not
exist for any homeomorphism hγ\ [0, 1] —> [0, 1]. Hence for these choices
of / and g, (UQ, πj and (Z70, π2) are not type-2-isomorphic.

Similarly, if lima._Pl T^x) = limy_+P2 T2(y) = + oo, it is not necessari-
ly true that (Z71? TΓJ and (U2,π2) are type-2-isomorphic.

PROPOSITION 4.10. (C7i, TΣΊ) αwd (U2,π2) are type-1-isomorphic if
and only if there exists a trajectory preserving homeomorphism h
of U1 onto U2 and a constant λ such that T2(h(x)) = XT^x) for all
xeU,- {p}.

Proof. Assume (Uly πt) and (U2, π2) are type-1-isomorphic. Then
there exist a homeomorphism h: Uι—+U2 and a nonzero constant λ
such that h(xπ{t) = h(x)π2Xt for all x e Uι and for all t e R1. Evident-
ly h is trajectory preserving. Let x e U1 — {pj. Then

h(x) = hixπ.T^x)) = h{x)π2XTγ{x)
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and h(x) Φ h(x)π2xt for t e (0, Ύ^x)). Thus

T2(h(x)) =

Now let h be a trajectory preserving homeomorphism of Z7X onto
U2 and λ be a nonzero constant such that T2(h(x)) = λT^x) for every
XG ZTΊ — {p}. Then A, | Si is a homeomorphism of Sx onto hiS^. By
Proposition 4.4 there exists a homeomorphism #: U1 — {pλ} —• ί72 —
such that fir | Si = Λ | Sί and (#, φ) is a type-2-isomorphism of

(C/i - {Pi}, ̂ i) onto (Z72 - {p2}, π2)

where >̂(α?, t) = T2(g(x))t/T,(x) for all xeU-ip,} and ί e Λ 1 . Then
cp(α;, t) = T^hix^t/T^x) for all xeS,- {pj. Thus φ(a;, ί) = M for all
^ e S i - {pj. Define φ: Uι x Rι—+Rι as follows:

φ(ίC, ί) = Xt .

Then it is easy to show gixπj) = g(x)π2Xt for all xeUι — {px} and for
all ί e i ϊ 1 . g can be extended to a homeomorphism g of ^ onto U2

by mapping ^ onto p2. Then (^, ^) is a type-1-isomorphism of (ZTx, TΓJ
onto (J72, τr2).

COROLLARY 4.11. (U01π0) and (U^π^ are type-1-isomorphic if
and only if T^ ) is constant on U1 —
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