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CELL-LIKE MAPPINGS, I

R. C. LACHER

Cell-like mappings are introduced and studied. A space
is cell-like if it is homeomorphic to a cellular subset of some
manifold. A mapping is cell-like if its point-inverses are cell-
like spaces. It is shown that proper, cell-like mappings of
ENR'S (Euclidean NR1s) form a category which includes both
proper, contractible maps of ENR's and proper, cellular maps
from manifolds to ENR's. It is difficult to break out of the
category: The image of a proper, cell-like map on an ENR,
is again an ENR, provided the image is finite-dimensional and
Ήausdorff.

Some applications to (unbounded) manifolds are given. For
example: A cell-like map between topological manifolds of
dimension ^ 5 is cellular. The property of being an open n-
cell, n ^ 5, is preserved under proper, cell-like maps between
topological manifolds. The image of a proper, cellular map
on an %-manifold is a homotopy %-manifold.

The concept of cell-like mappings of ENR's extends the idea of
cellular maps of manifolds by allowing point-inverses to be embeddable,
rather than embedded, as cellular sets. This change in viewpoint has
several advantages. First, one can study cell-like maps on manifolds
and ask when such maps are cellular; this direction of study will
presumably clarify certain aspects of the theory of cellular maps on
(or decompositions of) manifolds. Second, and perhaps more important,
in replacing the old setting with the more general one, much better
results on the homotopy structure of maps become apparent. A third
advantage is that the new concept generalizes several old concepts at
once, and hence is, in a sense, unifying.

The most interesting types of mappings which fall into the "cell-
like maps of ENR's" category are the cellular maps on manifolds and
the contractible maps of ENR's. Cellular maps on manifolds (or
cellular decompositions of manifolds) have been studied extensively,
yet our results for cell-like mappings yield new results in this fields.
Piecewise linear contractible mappings of piecewise linear manifolds
have also been studied, notably in [7] and [8]. Contractible maps of
ANR's were studied by Smale in [27]. Smale's conclusions (for con-
tractible maps of ENR's) are improved here.

The primary purpose of this first paper is to develop the basic
homotopy properties of cell-like mappings. Some applications to
manifolds and related results are given in the last section. Other
applications to manifolds will be given in a latter paper.
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We rarely consider maps defined on spaces more general than ENR's
(three exceptions: (2.3), (3.1), and (3.4)), although many arguments
would go through under less restriction. In this sense, the emphasis
is placed on strengthening conclusions rather than weakening
hypotheses.

Preliminaries. To avoid confusion, we present here some defini-
tions and conventions. Rn is euclidean w-space. Bn is the closed unit
ball in Rn. Sn is the boundary of Bn+1. 1= [0,1]. An n-cell (resp.
open n-cell, n-sphere) is a space homeomorphic to Bn (resp. Rn, Sn).

An n-manifold is a separable metric space N which is locally
euclidean; i.e., each point of N has an open %-cell neighborhood. (By
neighborhood of A in X we always mean an open subset of X which
contains A.) An n-manifold with boundary is a separable metric
space in which each point has a neighborhood whose closure is an w-cell.
If N is an ^-manifold with boundary, Int N denotes the subset of
points having open n-ce\\ neighborhoods, and Bd N — N — Int N.

An ENR is a space homeomorphic to a retract of an open subset
of some euclidean space. Basic references for ANR's are [3] and [13].
The following explains the relationship between ANR and ENR.

LEMMA. A metric space is an ENR if and only if it is a locally
compact, finite-dimensional ANR.

The proof is not difficult using [14].

SYMBOLS. We use πQX to denote the path components of X and
πqX, q Ξ> 1, to denote the g-th homotopy group of X. (Whenever we
use these symbols, it will be clear what to do about base points.) We
use the symbol " ^ " to mean "is homeomorphic to."

1* Cell-like mappings of ENR's* A space A is cell-like if there
are a manifold M and an embedding φ: A —> M such that φ(A) is
cellular in M; i.e., φ(A) is the intersection of a sequence Qly Q2, •••
of (closed) m-cells in ikf, where Qi+1 c Int Q{ for each i and m = dim M.
(See [5].) A mapping f: X—>Y is cell-like if f~\y) is a cell-like space
for each y e Y.

Cell-like spaces and mappings were introduced in [19] and [20]
as the natural generalization of cellular sets and cellular mappings of
manifolds. (In fact, the results announced in [20] are proved in this
paper.) We would now like to state the main result of [19]; in order
to do this we need the following property (called Property (**) in [19]
and [20]).

Property UV°°. An embedding φ: A —• X has Property UV°° if, for



CELL-LIKE MAPPINGS, I 719

each open set U of Xcontaing φ(A), there is an open set V of X, with
φ(A) aVaU, such that the inclusion V c U is null-homotopic in U.

THEOREM 1.1. Let A be a nonvoid finite-dimensional compact
metric space. Then the following conditions are equivalent:

(a) A is cell-like.
(b) A has the Cech-homotopy-type (or "fundamental shape") of a

point (see [4]).
(c) There exists an embedding of A into some ENR which has

Property UV°°.
(d) Any embedding of A into any ANR has Property UV°°.

Theorem 1.1 is a direct quote of [19]. In our applications below,
we will not need the equivalence of (a) and (b). However, the equi-
valence of (a), (c), and (d) is used repeatedly, often without reference
to Theorem 1.1.

Recall that a proper mapping is one under which preimages of
compact sets are compact. Two proper maps h0, h{. X—+Y are properly
homotopic if there is a proper map h: X x I—+Y. Finally, a proper
homotopy equivalence: X-+ Y is a proper map / : X—• Y for which there
exists a proper map g: Y—>X such that the compositions gf:X-^X
and fg:Y —>Y are properly homotopic to the appropriate identity
maps.

THEOREM 1.2. Let X and Y be ENR's, and let f be a proper
mapping of X onto Y. Then the following are equivalent:

(a) / is cell-like.
(b) If VciU are open sets in Y, with V contractible in U, then

f~~\V) is contractible in f~ι(U).
(c) For any open subset U of Y,f\ f-\U): f~\U)-+U is a proper

homotopy equivalence.

REMARKS. (1) The "proper" conclusion in (c) is very important.
We will use this property (in a later paper) to show that the number
(and homotopy type) of ends of manifolds is preserved under cell-like
maps. This in turn will allow the proof of in variance of several im-
portant non-compact topological types under cell-like mappings.

(2) D. Sullivan has proved that a map f:M—>N of closed PL
manifolds which satisfies (c) is homotopic to a PL isomorphism: M—>
N, provided dim M ^ 5 and π^M) = H%M; Z2) = 0. For a proof of
this remarkable generalization of the hauptvermutung, see [25]. We
will not use this fact here.

(3) In § 2, condition (b) will be "weakened" in two senses. See (2.2).
For the proof of (1.2), notice that (c) obviously implies (b). More-

over, using (1.1), it is easy to see that (b) implies (a). The fact that
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(a) implies (c) will be proved in §2. (See Theorem 2.1.)

COROLLARY 1.3. A proper, cell-like map of ENR's is a proper
homotopy equivalence.

(Notice that a cell-like mapping is necessarily onto, since the
empty space is not cell-like.)

The next result says essentially that ENR's and cell-like maps
form a category.

THEOREM 1.4. Let f: X-+Y be a proper, cell-like map of ENR's,
and let A be a subset of Y. Then A is cell-like if and only if f~~ι(A)
is cell-like.

Proof. The inclusion f~\A) c X has Property UV°° if and only
if the inclusion A(zY has the same property, by (1.2). The result
follows from (1.1).

THEOREM 1.5. The (Tychonoff) product of two cell-like spaces (or
maps) is again a cell-like space (map).

Proof. If A and B are cell-like, then there are manifolds M, N
and embeddings φ: A—> M, ψ:B-+N such that φ(A) is cellular in M
and ψ(B) is cellular in N. Obviously, φ(A) x ψ(B) = (φ x ψ)(A x B)
is cellular in M x N.

We conclude this section with the observation that an onto, proper
map with contractible point-inverses is cell-like.

THEOREM 1.6. A contractible, finite-dimensional, compact metric
space is cell-like.

Proof. Let A be such a space. Then we may as well assume
that AczRn for some n. (See [14].) Let r: A x I-+A be a map such
that r0 = identity and rL(A) = point. Let U be a neighborhood of
A in Rn, and define B and r:B—*U as follows:

B = (AxI)Ό(Ux {0,1}),

r IA x / = r, r0 = identity, ΨJJJ) = point .

Since U is an ANR, there is a neighborhood of B in U x I over which
r can be extended. Hence, there in a neighborhood V of A in [7 and
a map iϋ: 7 x I—+U such that iϋ0 = inclusion and R^V) = point. I.e.,
the inclusion F c U is null-homotopic in ?7. Therefore the inclusion
AaRn has Property UV°° and A is cell-like.
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REMARK. Most cell-like spaces are not contractible or locally con-
nected. See Theorem 2 of [2], and note that a pseudo-arc is cell-like.

2* Mapping theorems for proper homotopy* In this section
we will need the following weak versions of Property UV°° and "cell-
like mapping."

Property UVk. An embedding φ:A —>X has Property UVk if,
for each open set U of X containing φ(A), there is an open set V of
X, with <p(A) c V c Z7, such that any map Sq —• V can be extended to
a map Bq+1 — U, 0 ^ q ^ k.

UVι'-Trivial maps. A map /: X —>Y is UVk-trivial if the in-
clusion Z""1^) c X has Property UVk for each y e Y.

We will eventually prove that a C/Ffc trivial map of ENR's is
cell-like provided that k exceeds the simplicial dimension of the ENR's
according to the following definition.

Simplicial dimension. The simplicial dimension sd X of a space
X is the smallest integer k such that X embeds into a locally finite
fe-complex. If X and Y are spaces, we define sd (X, Y) to be
sd (X x 0 U Y x 1) = max {sd X, sd F}.

Some relations between simplicial dimension and ordinary
dimension.

(1) If X is a metric space then dim X <J sd X <S 2 dim X + 1.

(See [14].)
(2) If P is a locally finite polyhedron, then s d P = dim P.

(3) Product formula. If X, Y are metric spaces,

sd(Xx Y) ^ s d X + sdY .

The main result of this section is the following:

THEOREM 2.1. Let X and Y be ENR's, and let f be a proper,
UVk~γ-trivial mapping of X onto Y, where k = sd (X x /, Y). Then,
for any open subset U of Y, f\f~ι{U): f~ι(U) —*U is a proper homo-
topy equivalence.

Clearly Theorem 2.1 implies Theorem 1.2, since a cell-like map of
ENR's is J7F~-trivial. (See Theorem 1.1.) Also, since an onto, UVk-
trivial map of ENR's is again an onto, ί/F^-trivial map of ENR's
when restricted to an inverse open set, we can apply Theorem 2.1 to
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get the promised "weakening" of 1.2(b), as follows.

COROLLARY 2.2. Let X and Y be ENR's, and let f be a map-
ping of X onto Y. Then the following conditions are equivalent:

(a) / is cell-like.
(b) / is UVk-trivial for some k ^ sd (X x 7, Y) — 1.
(c) If 7 c U are sufficiently small open sets in Y, with V con-

tractible in U, then f~\V) is contractible in f~ι(U).

REMARK. Condition (c) of (2.2) obviously implies that / is UV°°-
trivial.

Before beginning the proof of (2.1), we will prove the following
fact.

LEMMA 2.3. Let the following be given:
( i ) Locally compact metric spaces X and Y.
(ii) A locally finite k-complex K with a locally finite subcom-

plex L.
(iii) A proper UVk~ι-trivial mapping f of X onto Y.
(iv) A proper map φ: K-+Y.
(v ) A proper map ψ: L —> X such that fψ = φ\L.
(vi) A continuous function ε: Y—*(0, M),
(vii) A metric d on X and Y under which closed, bounded sets

are compact.

Then, there exists a proper map φ:K—*X such that <p\L = ψ
and d(f<p, ψ) ^ εφ.

Proof. For each y e Y, let Uy be a neighborhood of y with

diam Uy ^ min ε | Uy

and

diam/-^ t θ ^ diam/-1^) + 1 .

Then, in particular, Uy and f~\Uy) have compact closures. Let Vy be
another neighborhood of y, with Vy c Uy, such that any singular q-
sphere in f~\Vy) is contractible in f-\Uy), 0 ^ q < k. Finally, let
j: F—•(O, oo) be a continuous function such that, if the diameter of
a compact set S is no greater than max 7 | S, then SaVy for some y.

Now, we can easily prove the lemma assuming dim (K — L) = 0.
Therefore, we may assume inductively that K — L is p-dimensional
and that the lemma is true for the (p — l)-skeleton of any subdivision
of K and any function ε. Choose a subdivision Kγ of K so that
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diam φ(σ) ^ — min yφ | σ
Δ

for each σ e Kly and assume that ψ: K{~1 U L1 —+X is a proper map
such that

We extend ψ over the p-simplices of Kx — Lγ one at a time, (assum-
ing that p ^ k).

Let σ be a p-simplex of Kι — Lιm Then /ψr(Bd σ) U φ{p) has dia-
meter no greater than max7<p(0"), and hence lies in Vy for some y e Y;
in particular, ψ(Bd σ) a f~ι(Vy). By Property t/F^"1, we can extend
α/r|Bdσ to a map ψσ: σ —>f~(Uy). It follows immediately that
d(fψσ, φ\o) ̂  ê lfff since both fψβ(σ) and φ(σ) lie in ZĴ . The union
of the τ/rσ extends ψ over K? — L^ It is easy to check that | i s a
proper map, using the condition that d i a m / " 1 ^ ) ^ diam/"1^) + 1.

Proof of (2.1). We may as well assume U = Y. In order to
make full use of (2.3), we need a special set-up, as follows: Assume
(without loss of generality) that X and Y are retracts of locally
finite complexes P and Q, respectively, where dim P x I and dim Q
are no greater than sd(X x I, Y); let r: P-+X and s: Q—>Y be the
retraction maps. Assume that both r and s are proper mappings, so
that preimages of compact sets lie in finite subcomplexes. Finally,
let d stand for the barycentric metric on P and Q, or any other metric
under which closed, bounded sets are compact.

Let ε: Y—> (0, oo) be a continuous function. Applying (2.3) with
K = ζ), L = 0 , and <p = s, we get a proper mapping v: Q—+X such
that d(fv, s) ^ es. Let g = v\ Y. Then g: Y—>X is a proper map such
that

d(fg, ίdγ) ^ ε .

Clearly ε can be chosen so that fg is homotopic to the identity on Y
via a homotopy h: Y x Z—>F with the properties

h is a proper homotopy ,

h0 = identity on Y and h1 = fg ,

d(y, ht(y)) ^ 1 for 0 ^ t ^ 1, y e Y .

Now, define H:P x I->Ybγ

H(x, t) = Λ ( / r ( α ) , t),xeP,teI.

Notice that £Γ is a proper map: a sequence in P x I tends to infinity
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if and only if its image under H does so. Finally, define h: P x {0,1}
-*Xby

h0 = r,hλ = gfr .

Then fh0 = fr = hjr = Ho, and fh, = fgfr = hjr = H,\ i.e.,

fh = H\P x {0,1} .

Apply (2.3) again, with K = P x /, L = P x {0,1}, φ = H, f = h, and
ε = l. We get an extension H of h over P x 7, H: P x I-*X, such
that

That is, d(fHt, Ht) ^ 1 for each t.
It is obvious that H is a homotopy between r and gfr, so that

if |X x / is a homotopy between the identity on X and gf. Moreover
5 | Z x / i s a proper homotopy: If a sequence H(xn,tn) converges to
a point xQeX, then fH(xnί tn) converges to f(x0), so that iϊ(a;w, tn) is
bounded; since if is a proper map, (#n, tn) must have a convergent
subsequence.

Before leaving this section, here is one final corollary to (2.3).

COROLLARY 2.4. Let X be a locally compact metric space, let Y
be an ANR, and let f be a proper UVk —trivial map of X onto Y.
Then, for each open subset U of Y,

is an isomorphism for 0 ^ q ^ k and an epimorphism for q = k + 1.

Proof. We may as well assume that U = Y. That f% is monic
for 0 ^ q ^ k is obvious from (2.3). To see that /# is epic for
0 ^ q ^ k + 1 iwe need (2.3) together with the observation that
"sufficiently close" maps into ANR's are homotopic. (Compare with
Theorem 3.1.)

3. The image of a cell-like map. The cell-like image of an
ENR is an ENR, provided that the image is finite-dimensional. This
result is a corollary to the most general result of this section,
Theorem 3.1.

THEOREM 3.1. Let X and Y be locally compact metric spaces,
and let f be a proper, UVk-trivial mapping of X onto Y. If U is
any open subset of Y then
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\f\f-\U)l:πqf-\U)-»πq(U)

is an isomorphism for 0 ^ q rg k.

Before proving (3.1), we deduce two corollaries.

COROLLARY 3.2. Let X and Y be locally compact metric spaces,
with k = dim Y < ©o. J/ there is a proper UVh'-trivial mapping of
X onto Y, then Y is an ENR.

This corollary follows immediately from (3.1) and the fact that
an LCk space Y is an ANR provided k :> dim Y < oo. See [13], § VJ.l.
(Y is clearly locally compact. See the introductory lemma.) (The
definition of LCk many also be found in [13].) The following simpli-
fication is the main point:

COROLLARY 3.3. Let X be an ENR, and let f be a proper, cell-
like map of X onto Y. If Y is finite-dimensional and metrizable
then Y is an ENR.

The basic tool used in the proof of (3.1) is the following "homo-
topy" lemma. This lemma provides not only a "lifting to within
ε-homotopy" theorem similar to (2.3), but also provides a continuous
selection of liftings of approximations.

LEMMA 3.4. Let the following be given:
( i ) Locally compact metric spaces X and Y.
(ii) A pair (K, L) of finite simplicial complexes, dim if <J k.
(iii) A proper, UVk-trivial mapping f of X onto Y.
(iv) A map φ:K-+Y.
( v ) A map ψ: L —>X such that fψ = φ \ L.

Then there exist maps Φ: K x /—> Y and Ψ: K x (0, 1] —* X such that
(1) fψt = Φt for 0 < t ^ 1,

(2) Ψ ί | L = ψ o < ί g l , and

(3) Φo = ^ .

Proof. For each y e Y let {U{

y

n)} be a sequence of neighborhoods
of y such that

diam U{

y

n) ^ —
n

and
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Moreover, construct the U}n) so that any singular g-sphere in
f-\Uϊn+ί)) bounds a singular (q + l)-disk in f-\Uin)). Finally, con-
struct UP to have compact closure.

Using an argument similar to that of (2.3), or in fact applying
(2.3) carefully, we can find a sequence {ψn} of maps of K into X such
that

ψn\L = ψ ,

and

ffn{x) e U&ϊ?

for each n and each x e K. Being slightly more careful, we can find
a descending sequence K19 K2, of subdivisions of K such that

ffn{σ) c TO1* for all x e σ

holds for each n and each σ e Kn.

SUBLEMMA. For each n there is a map ψ'n); K x /—* X such that

1 —

and

fψ(n)(x x /) c U^1)n .

Proof of sublemma. Extend Ψ0LJΨi over the cells of K{k+ίHn+1) x /
as follows. Let J = Kik+ίHn+1). Use the triviality of the inclusion
/~1(D r9(ί1 ) ( n H ))c:/-1(^ί1 ) ( n + l ϊ-1) to extend over the cells of J° x I,
where xeJ°. Then, using the triviality of the inclusions

for each j and each x e σ e J, extend over the cells of Jp x I for each

Now, let Ψ: K x (0,1] —> X be the composition of the Ψ{n\ where
Ψ(w) is to be copied on the interval [l/(n + 1), 1/n]. Let Φ: Kxl-+Y
be defined by

α, ί) if 0 < tS 1

\φ{x) if ί = 0 .

Clearly Φ is a well-defined function. Φ is continuous, since Φt con-
verges uniformly to φ as t—*0.
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Proof of (3.1). We may as well assume that U = Y. Let <p: Sq

—> Y be a map, q ̂  k. Then, by (3.4), there is a map φ: Sq -+X such
that fφ is homotopic to φ. Hence f$[φ] = [φ], and f% is epic for
0 ^ g ̂  fc.

Now, suppose that ψr0, ψ :̂ Sq —> Xand /f0 is homotopic to/f 1# Then,
using (2.3), we can "lift" the homotopy, provided q ̂  k. Hence /# is
monic for 0 ̂  g ̂  A:, and the proof is complete.

Note, incidentally, that due to the relative nature of (2.3) and
(3.4), we need not worry about base points.

4* Cell-like maps defined on manifolds. Any topological mani-
fold (with or without boundary) is an ENR. (See |12|.) Hence our
results for cell-like maps of ENR's hold a fortiori for cell-like maps
of manifolds. Recall our conventions about manifolds: Unless specifically
stated, manifolds, are not assumed to be compact nor are they assume
equipped with any extra structure; however, manifolds are assumed
to have empty boundary.

One question we would like to consider in this section is: (1) When
is a cell-like map on a manifold actually cellular? (A cellular map
on a manifold M is one whose point-inverses are cellular in M.) An-
other way to state this question is: (1)' If /: M—> Y is a cell-like map,
and if M is a manifold, when is it true that f~\y) is cellular in M
for each y e YΊ This reformulation immediately poses: (2) If /: Λf—>
N is a cell-like map of manifolds, and if C is cellular in N, is f~ι(C)
cellular in Ml These questions are answered, at least partially, in
this section.

Homotopy-manifolds. A homotopy-m-manifold is an ENR M such
that for any point x of M, x has arbitrarily small neighborhoods VaU
in M, with VaU, and with the property: The image of πq(V — x) in
πq(U — x) (under the map induced by inclusion) is isomorphic to πq(Sm~1)
for q ̂  0. (Compare with [9] and [10].)

THEOREM 4.1. Let M be an m-manifold, and let f:M—+Y be a
proper cellular map of M onto the finite-dimensional metric space
Y. Then Y is a homotopy-m-manifold.

Proof. (Compare with [18].) / is cell-like, so that Y is an ENR
by (3.3). For yeY and neighborhoods F c U of y in Y, consider the
following commutative diagram

πq(f~\V- V)) > πq(f-\U - y))

I J
π,(V-y) > πt(U-y).
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The vertical arrows are induced by / | , and hence are isomorphisms
by (1.2). The horizontal arrows are induced by inclusions. Thus the
problem of showing that Y is a homotopy m-manifold is transferred
to a similar problem in M.

Using cellularity of f~\y), let TΓ3 be an open m-cell in M con-
taining f~ι(y). Let U be a neighborhood of y such that f~\U) c TF3.
Now, W3 - f~\y) ^ S™-1 x R1. (See [5].) Thus there is an open
m-cell W2J containing f~~ι(y) and lying in f~l(U), such that the
inclusion

(Wt- f-ι(y))a(W,~ f'ι(y))

is a homotopy equivalence. Let V be a neighborhood of y such that
f~\V) c W2, and find an open m-cell W, such that f~\y) aW.c: f~\V)
and the inclusion (Wί — f~ι(y))a(W2 — f~ι(y)) is a homotopy equiva-
lence. We have the following commutative diagram (in which all
maps are induced by inclusions):

x - f~ι{y)) -̂ -> πq(W2 - f~\y)) — πq(W> - f~\y)) .
\

\
πq(f~\V - y)) - ^ πq(f-\U - y))

The fact that the upper horizontal arrows are isomorphisms implies
that β is epic and 7 is monic. Therefore

Im a - Im y & πq(W2 - f~\y)) ^ πq(Sm~ι) ,

and the proof is complete.

A piece wise linear, or PL, manifold is a manifold which has a PL
structure, called a poly structure in [23]. The next theorem gives a
complete answer to question (1) in the case where M is a PL manifold
of dimension at least five. First, a definition.

Property SUVk. An embedding φ:A—+X has Property SUVk

("S" is for "strong") if for each open set U of X containing φ(A)
there is an open set V of x, with φ(A)aVc:U, such that any map
Sq-+{V-φ(A)) can be extended to a map Bq+1 ->(£/- φ(A)), 0 ̂ q^ k.

SUVk-trivίal maps. A map /: X—> Y is St/F^-trivial if, for each
yeY, the inclusion f-\y)czX has Property SUV\

REMARK. Property SUV1 is what was called "Property (*)" in
[19]. McMillan [22] immortalized Property SUV1 and Property UV°°
when he proved that an embedding φ: A—+M has cellular image, pro-
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vided M is a PL manifold of dimension at least five and φ has Prop-
erties SUV1 and UV°°. The following theorem provides a converse
to McMillan's criterion for upper-semicontinuous families.

THEOREM 4.2. Let M be a PL m-manifold, m ^ 5, and let f: M
—*Y be a proper, cell-like map of M onto the finite-dimensional
metric space Y. Then the following conditions are equivalent:

(a) / is cellular.
(b) / is SUV-trivial.
(c) / is SUVk-trivial for k <, m - 2.
(d) Y is a homotopy-m-mainfold.

Proof, (a) => (d) is a special case of (4.1). (d) => (c) follows im-
mediately from (3.3) and (1.2) (c). (c) ==> (b) is trivial, (b) =» (a) follows
immediately from McMillan's cellularity criterion as interpreted in the
above remark.

Recall that an open n-cell is a manifold homeomorphic to Rn.

THEOREM 4.3. Let M and N be topological manifolds, dim N =
n *> 5, and let f: M-+N be a proper cell-like mapping.

(1) Let U be an open subset of N. Then U is an open n-cell
if and only if f"\U) is an open n-cell.

(2) If C is a cellular subset of N then f~ι{C) is cellular in M.
In particular,

(3) f is a cellular map.

Proof. It is easy to see that (1) => (2), since any compact subset
of an open cell V lies interior to a closed cell in V. Also, (2) => (3)
trivially, so we need only prove (1).

But (1) follows immediately from a recent result of Siebenmann
[26]. He shows that an open topological manifold which is properly
homotopically equivalent to Rn must be homeomorphic to Rn, provided
n^>5. (f\f~1(U):f~~ι(U)-+U is a proper homotopy equivalence by
Theorem 1.2.)

COROLLARY 4.4. If f: M-+N is a proper, cell-like map of topo-
logical manifolds of dimension at least five, then M ^ Rn if and
only if N m Rn.

We conclude with the analogue of (4.3) for manifolds with boundary.
An open n-half-cell is a manifold-with-boundary homeomorphic to
Rn~ι x [0, oo).

THEOREM 4.5. Let M and N be topological manifolds with
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boundary, dimJV = n ^ 6, and let f:M—*N be a proper, cell-like
map such that /(Bd M) = Bd N and /(Int M) = Int N.

(1) Let U be an open subset of N. Then U is an open n-half-
cell if and only if f~\U) is an open n-half-cell.

(2) // C is cellular-at-the-boundary of N then f~ι(C) is cellular-
at-the-boundary of M.

Proof. Again it is clear that (1) => (2). To prove (1), let U be
an open subset of N, V = f~\U). Then Bd U = U Π Bd N and Bd V =
V n Bd AT, so that Bd V = /^(Bd 17) and Int V = /^(Int 17). Also,
f\ Bdikf and / | I n t M are cell-like maps. Applying (4.4), we see that
Bd V ** Rn~ι if and only if Bd U ^ Rn~ι and that Int V ^ Rn if and
only if Int U^Rn. It is known that a topological m-manifold-with-
boundary, say W, is an open m-half-cell provided Bd W ^ Rm~\
Int W ^Rm, and m ^ 4. See [6] and [11]. The result now follows.

S. Armentrout, T. Price, and G. Kozlowski have independently
discovered some of these results, working from entirely different points,
of view. See [1] and [17]. In particular, both Price and Kozlowski
have versions of (2.3), Kozlowski has a version of (3.4), and Armen-
trout has studied property UVk. Finally, A. V. Cernavskii has
informed me that he and V. Kompaniec have obtained some results
related to these, although not as general. See [14].

The referee has pointed out that the arguments given for Lemmas
2.3 and 3.4 are "embellishments" of arguments given by Price in [24].
(In fact, Price's arguments are similar to some of the arguments given
by Smale in [27], which is where some of the ideas in the present
paper originated.) See [21] and [23] for further discussions along this
line.

The terminology introduced in [19] and [20], Property (**), has
been changed so that the present paper is now in agreement with at
least part of the existing literature.

A property equivalent to "cell-like" (for finite dimensional com-
pacta) is studied by Hyman in [15] under the name "absolute neigh-
borhood contractibility". (This is the property described in condition
(d) of Theorem 1.1.) Some of the arguments of [19] are quite similar
to some in [15], as are some of the results. Hyman's result that an
absolutely neighborhood contractible space is an ANR divisor translates,
using Theorem 1.1 and the terminology above, as follows. If X is an
ANR, and if A is a cell-like subset of X, then X/A is an ANR.
(Compare this with Corollary 3.3, but note that Hyman uses a more
general definition of ANR.)
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