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INTRINSIC EXTENSIONS OF RINGS

JOHN J. HUTCHINSON

Faith posed the problem of characterizing the left intrinsic
extensions of left quotient semisimple (simple) rings. In this
paper a characterization is given for the left strongly intrinsic
extensions of left quotient semisimple rings.

Section 1 consists of several definitions and known preliminary
results. In §2 we define essential subdirect sums and develop several
of their elementary properties. The results of §2 enable us to state
and prove the main characterization theorem which appears in §3. In
the last section it is shown that in the class of left quotient semisimple
rings, the left strongly intrinsic extensions are exactly the left intrinsic
extensions.

1* Preliminaries* Let R and S be nonzero associative rings
(not necessarily with identities or commutative) where S fi R. S is left
quotient simple, left quotient semisimple, a left Ore domain if S has
a left classical (and maximal) quotient ring which is respectively simple
Artinian, semisimple Artinian, a division ring. The left classical quotient
ring of S will be denoted S, and left quotient semisimple (left quotient
simple) will be written lqss (lqs). R is a left intrinsic extension of
S if every nonzero left ideal of R has nonzero intersection with S.
A left S-module M (denoted SM) is an essential extension of a sub-
module N if every nonzero submodule of M has nonzero intersection
with N (we also say N is essential in M). R is a left essential
extension of S if SR is an essential extension of SS. It is clear that
every left essential extension of S is left intrinsic, but the converse
is not always true (for instance when R is a proper field extension
of a field S). A left ideal A of S is closed if S contains no proper
left essential extensions of A (as left S-modules). The symbol L(S)
will denote the set of closed left ideals of S. R is a left strongly
intrinsic extension of S if R is a left intrinsic extension of S, and
for all A e L(S) there exists a left ideal B of R such that B Π S = A.
In any left S-module M, we denote by Z(SM) the set of elements in
M whose annihilator in S is an essential left ideal. Clearly Z(SM) is
a submodule of M.

THEOREM 1.1. // Z(SS) = 0, then SS has a (unique up to isomor-
phism) maximal essential extension Q (called the maximal quotient
ring of S) which has a ring structure compatible with the module
structure; and Q is a regular, left self-injective ring such that
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Z(QQ) = 0. Moreover L(S) and L(Q) are lattices, and L(Q) ~ L(S)
under contraction.

Proof. Follows from [1, Theorem 1, p 69] and [3, Corollary 2.6]
and their proofs.

The following two lemmas appear in [2].

LEMMA 1.2. If R is a left strongly intrinsic extension of S, then
the following are equivalent: (i) Z(SS) — 0, (ii) Z(SR) = 0, (iii) Z(RR) = 0.

LEMMA 1.3. // Z(SS) = 0 and R is a left strongly intrinsic
extension of S, then L(R) ~ L(S) under contraction.

2. Essential subdirect sums* If R is a subdirect sum of rings
{Ra i a 6 A} and S = Σ ^ Ra is the complete direct sum of the Ra, then
the subdirect sum is essential if R (identifying R and its canonical
isomorphic image in S) is an essential left jβ-submodule of S.

Clearly an essential subdirect sum of nonzero rings is irredundant
[5], and in the case of a finite number of factors, is essentially
irredundant in the sense of [1, p 114]. It is an easily verified property
of subdirect sums that if B^i e JD) are disjoint subsets of A such that
A = \JizDBi a n d R B . = {a e YfaBBi R a | f o r s o m e beR a(a) = b(a) f o r
all aeBi), then for each i e D, the RB. are rings which are subdirect
sums in a natural way of the rings {Ra\aeBi}, and R is a subdirect
sum in a natural way of the rings [RB. \ i e D}. If, in addition, each
Ra is a subdirect sum of rings {Tar\yeAa}, then R is a subdirect
sum in a natural way of the rings {Tar\y e Aa whenever a e A}. Each
of these constructed subdirect sums will be referred to as the induced
subdirect sum, and whenever we say "the subdirect sum" we are
referring either to the original fixed subdirect sum or one of its various
induced subdirect sums. Loosely speaking, we may think of the
preceding remarks as saying that subdirect sums satisfy a generalized
associative law. The results in this section will show that finite
essential subdirect sums also have this nice property (finite irredundant
subdirect sums do not).

LEMMA 2.1. Let Rbe a subdirect sum of nonzero rings Rλ, , Rn.
The subdirect sum is essential if and only if R (Ί Ri is an essential
left R-submodule of R{ for i = 1, 2, , n.

Proof. If the subdirect sum is essential and Wx is a nonzero
iϋ-submodule of R19 then W1 is also a nonzero left lϋ-submodule of
Θ Σ?=i Ri> a n d s o WiΠRφO. Since W, Π (R Π RJ = W,C\R the
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result follows. Conversely suppose R Γ) Ri is an essential iϋ-submodule
of Ri for each i. If n = 1 the result is trivial, so suppose n = 2.
Let 0 Φ xγ + x2 G Rx 0 R2(Xi e Ri) and assume xι Φ 0. Since ϋ! Π ϋ?i is
essential in Rlf there exists an integer n and an reR such
that 0 Φ rx1 + w^ = (r + w)^ e J? Π RL. If (r + n)x2 = 0, then
0 ^ (r + w)(aj! + #2) e R. If (r + w)x2 Φ 0, then since R Γ) R2 is essential
in iϋ2 there exists an integer m and an s e R such that 0 Φ
(s + m)(r + n)x2 zRf\R2. Then clearly 0 Φ (s + m)(r + n){xι + a?2) 6 J?,
and R is essential in Rι φ i22. The result now follows by a simple
induction.

PROPOSITION 2.2. Lβ£ Q be a ring which is an essential subdirect
sum of nonzero rings Ql1 , Qn. If each Q{ is an essential subdirect
sum of nonzero rings Qi>u •• ,Qi,ki, then the induced subdirect sum
of Q (of the Qifj) is essential. Also, if n19n2, — ,nk+1 are integers
such that 1 = nγ < n2 < < nk+1 = n + 1, and Ql(i = 1, 2, , k) are
the induced subdirect sums of Qn., , QWi+1_i, then Q is the essential
subdirect sum of Q[, , Q'k and each Q[ is the essential subdirect sum

Of Qni> *> Qni + 1-1

Proof. The result follows by a fairly straightforward application
of Lemma 2.1.

The following theorem is a modification of a theorem of Levy,
[5, Theorem 6.1].

THROREM 2.3. R is Iqss if and only if it is an essential subdirect
sum of a finite number of Iqs rings Rly , Rn for some n. In this
case, we have R =

Proof. If R is Iqss, then by [5, Theorem 6.1], R is an ir-
redundant subdirect sum of Iqs rings Rlf - ,Rn for some n, and
R S R, Θ Θ R» S Ri Θ 0 Rn £ R. Since R is an essential ex-
tension of R, it follows that R is essential in Rt 0 0 Rn, and R
is then an essential subdirect sum of Rιy « ,i?w. Conversely, if R
is a finite essential (and so irredundant) subdirect sum of Iqs rings
Rx, •• ,JBΛ, then R is Iqss by [5, Theorem 6.1].

THEOREM 2.4. // R (S) is an essential subdirect sum of prime
rings Ru —-,Rn (Slf , £»), SQR, and each Ri is a left intrinsic
extension of the corresponding Si, then R is a left intrinsic extension
of S.

Proof. If 0 Φ x e R, then x = xx + + xn{Xi e R{). We may
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assume xx Φ 0, and so 0 Φ R& = Rxx since Rx is prime. Thus Rxx is
a nonzero left ideal of R19 so JB^ n ̂  ^ 0. R,x n & is a nonzero left
S-submodule of St 0 0 Sn, so S Π RίX Π S, Φ 0. Since St is prime,
(S Π JSi& Π SO2 Φ 0. Hence there exists s,s'eS Γι Rxx Π ̂  such that
0 Φ ssr 6 £. If s' = r^, then there exists r e R such that r = rx + + rn.
Hence srx = srxx = ss' 6 i?# Π S, so J? is a left intrinsic extension of S.

3* The main theorem*

LEMMA 3.1. If rings R and S are direct sums of division rings
RL, ',Rn and S19 ,Sm respectively, and R is a left intrinsic
extension of S such that their identities coincide, then m — n and
Rγ Π S = Si for a suitable arrangement of the Ri9

Proof. Since Rx is a nonzero ideal of 22, it follows that R^S
is a nonzero ideal of S. The ideals of S are direct sums of some of
the Si9 so Rx Π S = 0 Σ U Si for some rearrangement of the Sim But
k = 1, otherwise i^ has nonzero zero divisors. Similarly, each Ri
contains exactly one Si9 so n ^ m and R{ f] S — S{ for i = 1, 2, , n.
Each S^ (i = 1, 2, , n) is a multiplicative subgroup of Rf, so their
identities coincide. Equating identities leads to a contradiction if n < m,
so we must have n = m.

PROPOSITION 3.2. // *S is a left Ore domain, then R is a left
intrinsic extension of S if and only if R is a left strongly intrinsic
extension of S.

Proof. Let R be a left intrinsic extension of S. By Theorem 1.1,
L(S) = L(S) = {0, S}, so L(S) = {0, S}. The zero ideal of R and R
itself contract to the elements of L(S), so R is a left strongly intrinsic
extension of S. Note that by Lemma 1.3, L(R) = {0, R}.

PROPOSITION 3.3. If R is a left intrinsic extension of a left Ore
domain S, then R is a left Ore domain.

Proof. By Proposition 3.2, R is a left strongly intrinsic extension
of S, and {0, J?} — L(R) which clearly satisfies the maximum condition.
By Lemma 1.2, Z{RR) = Z{SS) = 0. If A is a nilpotent left ideal of
R, then A Π S is a nilpotent left ideal of S. Thus Af] S = 0, and
A — 0. Hence R is semiprime, and by [3, Theorem 4.4], R is lqss.
Thus {0, R) = L(R) ~ L(R) = {0, R}. By [1, Proposition 5, p. 71], L(R)
consists of the annihilator left ideals of R. Since R has an identity,
R is a domain. It follows that J? is a left Ore domain.
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THEOREM 3.4. // S is Iqss, then R is a left strongly intrinsic
extension of S if and only if SSR and one of the following is true:

( i ) S — R is semisimple Artinian,
(ii) S (and R) is an essential subdirect sum of left Ore domains

S[, * ,S'n (R[, •••,!?„) where Rl is a left intrinsic extension of the
corresponding S'i9

(iii) S (and R) is an essential subdirect sum of nonzero rings
Si and S2 (Ri and R2) where SiSRi for i = 1,2 and such that (i) holds
for S2 and R2 and (ii) holds for St and Rlm

Proof. By [3, Theorem 4.4], L(S) satisfies the maximum condition,
so by Lemma 1.3, so does L(R). By Lemma 1.2, Z(RR) = Z(SS) = 0;
and as in Proposition 3.3, R is semiprime. Thus by [3, Theorem 4.4],
R is Iqss. By Theorem 1.1, R is a regular, semisimple, left self-
injective ring. The lattice of principal left ideals of R is complete
by [6, Theorem 1], so by [6, Corollary to Theorem 4], R can be de-
composed into the direct sum of two ideal ζ)x and Q2 in such a way
that Qt is strongly regular and Q2 does not contain any nonzero strongly
regular ideals. By [2, Theorem 2.5], there is a subring T of Qx with
the properties that:

(a) T contains every idempotent of Qly

(b) T is a strongly regular self-injective ring,
(c) S= T®Q2.
Since S (R) is semisimple Artinian, S = 0 Σ?= 1 F, (R = 0 ΣΓi A)

where each F{ (A) is simple Artinian. Since S = T ®Q2(R = ζh 0 Q2),
we have T = 0 Σ?=ι Fi (Qi = θ Σ?ii A) where 0^n^m(0^n'^ m'),
and the F{ (Z )̂ are suitably arranged. Since strongly regular rings
have no nonzero nilpotent elements, it follows that Flf , Fn, Dx, , Dn,,
are division rings (if n Φ 0 Φ nr). It is clear that Q1 is a left intrinsic
extension of T (so T = 0 if and only if Qλ — 0). By property (a) the
identities of T and Q1 coincide, so by Lemma 3.1, n = nf and Di Π T = F{

for i = 1,2, •-•, w.
Let βL be the identity of Q1 (and T) and 2̂ the identity of Q2.

If T Φ 0, let dx, , dΛ be the identities of A, , -A (and of F19 , Fn).
Let ie4 = Re, and S4 = Se* for i = 1, 2. Clearly S»S J2iCQi; Q» = 0
if and only if R{ = 0 if and only if Sf = 0; and S (R) is a subdirect
sum of Sx and S2 (Rx and J?2).

We claim that if ζ>i ̂  0, then R, = Q, and S, = T; and if Q2 Φ 0,
then S2 = R2 = Q2. Suppose Qλ Φ 0 and r is regular in R. Clearly
reλ e Rγ is regular in Rly so Rγ has regular elements. If rx is any
regular element in Rx and q1r1 = 0 where qιeQ1, then #! = c-16 (c,beR),
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so 0 = brt = {be^r^ Since rx is regular in R19 it follows that bex = 0,
and so qγ = qγex — c~γbβ1 = 0. Hence rL is not a zero divisor in Qu so
by [1, Corollary 4, p. 70], r1 is invertible in Qt. If qι is given, then
^ = d~ιb (d, beR) and qx = qxeγ = (d"ιb)e1 = ( d ^ ) - 1 ^ ) . Hence ζ^ = 5X,
and exactly the same argument gives that T = S1 and (if ζ)2 ̂  0) that
Q2 — Ri = *̂ 2

Since S g S 1 φ S 2 g ϊ τ © Q 2 - S and Λ £ I?! 0 jβa £ QL 0 Qa = 22, it
follows that S (R) is an essential subdirect sum of Sx and S2 {Rt and i?2).

If Rx = 0, then St = 0; so S = S2 £ J?2 = 22 and S = S2 = Q2 = β 2 =
5. This is condition (i).

If #! ^ 0, then e1 = ^ + + dw, Sx = Seι £ Sdx + + Sc?,, and
R, = ReiQRdL+ + jRd%. If S; = S^i = Sdi (R't = R,d, = Rd^ for
i = l,2, •••?&, it follows as before that Si (UJ is a subdirect sum of
Si, , S'n (R[, , R'n). In exactly the same way as we proved that
Rx = Qly we get that S = Ft and 5 = A for ΐ = 1, 2, , w. Also,
as before, the subdirect sums are essential.

We next show that R[ is a left intrinsic extension of S[ (and similarly
for R'2, •••,#;). LetO^=a? = rd1ei2d1 = i2'1(rGJB). Theni2Jx = Jϊx ^ 0,
so Ita Π i? Φ 0 (since ώ g β ) . Since R is a left intrinsic extension
of S, we have Rx f) R Π S = Rx f) S Φ 0. Thus if 0 =£ s = r'x e Rx f] S
(rf e R), we have 0 Φ S = sdλ e Sd^ Hence Oφse (Rdjx Π Sd, = R[x n S[,
and i?i is a left intrinsic extension of S[.

If i?2 = 0, then S2 = 0; so S = Sx and R = RL which gives condition
(ii). If i?L and ϋ?2 are not zero, then condition (iii) is satisfied.

Conversely, suppose condition (i) is true. Hence S^RQS, and
R exists. Thus by [3, Corollary 2.6], L(S) ~ L(S) = L(B) = L(R)
under contraction, so R is a left strongly intrinsic extension of S.

In condition (ii), we have by Theorem 2.3 that S = ©Σ?=iS<, and
-B = Θ Σ?=i '̂> where Si, and Sί, are division rings. Clearly L(S) = L(R)
under contraction, and since L(S) ~ L(S) and L(R) ~ L(R), it follows
that L(S) ~ L(R) under contraction. By Theorem 2.4, R is a left
intrinsic extension of S, so JB is a left strongly intrinsic extension of S.

In condition (iii), S2 = .β2 are semisimple Artinian, so S2 and R2

are lqss. Let S2 = R2 = 0 ΣJLi JP ,̂ where i^ are simple Artinian rings
with identities e4 (i = 1, 2, , m). Let Sn+i

r = S2β{ and i2n+/ = i?A
for i = 1,2, « ,m. By Theorem 2.3 and the proof of [5, Theorem
6.1], we have that S2 (R2) is an essential subdirect sum of the Iqs rings
SI (Si) (i = n + 1, , n + m), and Si = R\ = F^n for i = n + 1, ,
^ + m. Since S £ J? £ S , (for ΐ = w + 1, , n + m), it follows that
R\ is a left intrinsic extension of S for i = 1, , n + m. Thus by
Proposition 2.2 and Theorem 2.4, i? is a left intrinsic extension of
S. Also S = 0 Σ ? i w S ί f = Sx 0 S2, and β =• 0 Σ S m Λ*, = #1 + Λa,
and as in the proof of case (ii), LiSJ ~ L{Rt) under contraction. Since
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L(S2) = L(R2), it follows that L(S) = L(R) under contraction. Again
L(S) = L(R) under contraction, so R is a left strongly intrinsic ex-
tension of S.

COROLLARY 3.5. R is a left strongly intrinsic extension of a
Iqs ring S if and only if either S^RQS or S and R are left Ore
domains such that R is a left intrinsic extension of S.

Proof. If S S R S S, then R is a left strongly intrinsic extension
of S by case (i). If R and S are left Ore domains such that R is a
left intrinsic extension of S, then the result follows from Proposition 3.2.

Conversely, since S = T φ Q2J we have either T = 0 or Q2 = 0.
If Q2 = 0, then S = Γ = Fx and R = Q, = Dlf so R and S are left Ore
domains and R is a left intrinsic extension of S. If T = 0; then
^ = Rι — 0, S = S29 and R = R2 which is case (i).

4* Left intrinsic extensions* In this section, it is shown that,
in the case of lqss rings, every left intrinsic extension is left strongly
intrinsic.

LEMMA 4.1. If R is a left intrinsic extension of S, then

Proof. The first containment is clear. If xeR and x#Z(RR),
then the left annihilator in R of x (denoted lR(x)) is not an essential
left ideal of R. Thus there exists a nonzero left ideal A of R
such that lB(x) Π i = 0. Thus 0 = lR{x) f] Af)S = ls(x) f] (A Π S), and
A Π S ^ O . Hence x £ Z(SR), and so Z(SR) g Z(RR).

LEMMA 4.2. Let S have a left classical quotient ring. If Z{RR) = 0
and R is a left intrinsic extension of S, then every regular element
of S is a regular element of R.

Proof. Let s be a regular element of S, and reR. If rs = 0,
then r e lR(s). Clearly, ls(s) = lR(s) Π S = 0, so iΛ(s) = 0 and r = 0. If
sr = 0, then (Ss)r = 0 and r e Z(si2). By Lemma 4.1, ^(S22) S Z(RR) = 0,
so r = 0. Thus s is regular in R.

LEMMA 4.3. Let S have a classical left quotient ring S. If R
is a left intrinsic extension of S where Z(RR) = 0, then S^Q where
Q is the maximal left quotient ring of R.

Proof. Let M be the injective hull of R as a left i?-module.
By [1, Theorem 1, p. 69], Q = Hom^ (M, M) = M. If d is a regular
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elements of S, define the map/: Rd-+R by f(rd) = r for all reR.
The map is well defined by Lemma 4.2, and by the injectivity of M,
there exists /eHom^ (Λf, Λf) such that f\Rd= f. By [1, Theorem 1,
p. 69], the canonical isomorphic image of d in Q is the unique
g G Hom^ (Λf, M) such that #(r) = rd for all r e R. If 1 denotes the
identity of Q, it follows that R^ker (1 - 0/) and Rdeker (1 - #/).
JS is left essential in Q, and it is easy to verify that Rd is also
essential in Q. By [1, Theorem 1, p. 44], 1 — gf and 1 — fg are in
the Jacobson radical of the semisimple ring Q. Hence gf = fg = 1.
By the canonical injection of J? into Q, we can consider i? to be a
subring of £?, and so d has a two-sided inverse / (henceforth denoted
d~ι) in Q. Hence every regular element of S has a two-sided inverse
in Q. If Γ = {or^ | 6 e S, a regular in S}, then Γ g Q and T is a ring
by Ore's condition for S, [see 4, p. 109]. Hence S = TdQ.

LEMMA 4.4. If S is a left self-injective ring and Z(SS) = 0,
ί/ieπ every left intrinsic extension of S is a left strongly intrinsic
extension of S.

Proof. Let R be a left intrinsic extension of S. By [1, Theorem
1, p. 69], S is its own maximal left quotient ring and is a regular
ring. If AeL(S), then by [1, Theorem 4, p. 70], A = Se where
e2 = ee S. Hence Re Π S = Sβ, and J? is a left strongly intrinsic ex-
tension of S.

THEOREM 4.5. // R is an extension of a Iqss ring S and Z(RR) = 0,
then R is a left intrinsic extension of S if and only if R is a left
strongly intrinsic extension of S.

Proof. Let R be a left intrinsic extension of S and Q the maximal
left quotient ring of R. By Lemma 4.3, SξΞ^Q, and clearly Q is a
left intrinsic extension of S. Also S is left self-injective and Z(SS) — 0,
so by Lemma 4.4, Q is a left strongly intrinsic extension of the Iqss
ring S. By Lemma 1.3, L(Q) ~ L(S) under contraction, and since
L(Q) = L(R) and L(S) ~ L(S) under contraction, it follows that
L(S) = L(R) under contraction. Hence R is a left strongly intrinsic
extension of S.

THEOREM 4.6. If R is a left intrinsic extension of a Iqss ring
S, then the following are equivalent:

( i ) Z(BR) = 0,
(ii) R is a left strongly intrinsic extension of S,
(iii) R is Iqss.
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Proof, (i) ==> (ii) by Theorem 4.5. (ii) => (iii) by the proof of
Theorem 3.4. (iii) ==» (i) follows from [3, Theorem 4.4].
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