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G-SPACES, ^-SPACES AND ^-SPACES

JERROLD SIEGEL

The notions of G-space, W-space, if-space, and higher order
Whitehead product are differentiated through example.

In [3], [4] and [5] D. H. Gottlieb introduces certain subgroups,
Gn(X, x0), of the homotopy groups of a space. These groups are re-
lated to the problem of sectioning fibrations with fibre X. Related to
the groups Gn(X, x0) is the notion of a G-space. A G-space is a space
with Gn(X, x0) = πn(X, xQ) for all n. It is a simple matter to show that
every iϊ-space is a G-space (see below). However, till recently the
status of the converse remained undecided. Recently, Gottlieb pro-
duced an example of a two-stage Postnikov system that is a G-space
but not an H-space (unpublished). The purpose of this note is to clarify
the situation further. We produce a 3-dimensional manifold that is a
G-space but not an ϋΓ-space. Incidently, the theory of G-spaces tells
us that our example is also a ΐf-space, that is, a space whose White-
head products all vanish.

Finally we would like to resolve a question of G. Porter [6].
Namely, our example is also an example of a space whose higher order
Whitehead products all vanish but, again, is not an if-space.

We would like to acknowledge the priority of D. H. Gottlieb's
example mentioned above and thank him for his help in the prepara-
tion of this paper.

1* Preliminaries* In this section we review the elementary
theory of G-spaces presented in [4] and [5].

NOTATION 1.1. We assume all our spaces X are path connected
C. W. complexes with base point x0. We let Xx be the space of maps
X to X. We let M(X) be the component of the identity map 1: X—* X
in Xx. Consider the evaluation map e: M(X) —> X given by e(f) — f(x0).
This map gives a fibration with fibre M(X)0, the space of maps in
M(X) with f(x0) = x0.

DEFINITION 1.2. We define

Gn(X, Xo) = e*(π%(M(X), 1)) S π«(X, x0) .

THEOREM 1.3. The groups Gn(X, x0) are invariant with respect to
base point and homotopy type but not natural with respect to maps.
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Proof. [5].

THEOREM. 1.4.

Gn(X9 Xo) = {[/]| 3 F : I x Sn >X ivith F/XW Sn = 1 V /} .

Proof. [5].

THEOREM 1.5.

Gn(X, x0) = {[/1| 3 a fibratίon X^E-^-+Sn+1 with [f] = 3J1]} ,

where 1: Sn+1 —• SM+I is ίfcβ identity map.

Proof. [4].

DEFINITION 1.6. Pn(X, α0) is the subgroup of elements [/] in
πn(X, x0) with [[/], [#]] = 0 (Whitehead product) for all m and all
[g]eπm(X, xQ).

THEOREM 1.7. Gn(X, x0) S Pn(X, »0).

Proof. [5] (see 1.4 above).

REMARK. Ganea [1] has shown that in general Gn{X, x0) Φ Pn(X, »o)
(see 3.4 below).

DEFINITION 1.8. ( a ) A G-space is a space X with Gn(X, x0) =
τrΛ(X, a?0), all n.

( b ) A W-space is a space X with P^(X, xQ) = πn(X, x0) for all n.

THEOREM 1.9. ( a ) Every H-space is a G-space.
( b ) Every G-space is a W-space.

Proof. [5]. ( a ) Follows from 1.4.
( b ) Follows from 1.7.

2 A G-space that is not an lί-space* As mentioned in 1.3 the
groups Gn(X, x0) are not natural with respect to maps. However, we
can prove the following.

LEMMA 2.1. Suppose we are given a map F: Y x X—+Y with

F/Y V X - 1 V / then /*: πu(X, xQ) -> Gn(Y9 y0).

Proof. For g: Sn-+X consider the composition
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Now apply 1.4.

EXAMPLE 2.2. Let H be a closed subgroup of a Lie group G.
Let (H\G) be the left coset space. Let p: G —> (H\G) be the projection.

We have the usual pairing (H/G) x G — (H/G) with F/(H/G) VG =
IV p.

THEOREM 2.3. In the situation of 2.2 assume i*:πn(H,e)—*
πn(G, e) is an inclusion for all n, then (H\G) is a G-space hence a
W-space.

Proof. Since i* is an inclusion p*: πn(G, e) ~*πn(H\G, [e]) is an
epimorphism. On the other hand, by 2.1 p*πn(G, e) g Gn(H\G, [e])
hence Gn(H\G, [e]) - πn(H\G, [e]) or H\G is a G-space.

We are now prepared to produce our example. We represent S1

by the complex numbers eiθ 0 ̂  θ <̂  2τr. In SO(3) we let the symbol
(#) denote the matrix

cos θ sin θ 0\

- sin θ cos 0 0

0 0 1/

2.4. Example of a G-space that is not an H-space. Embed
S1 S SO(3) x S1 as a subgroup by the following map i(βί<?) - (2Θ) x eί8^.
We let

T = i(Sι)\SO(S) x S1 .

LEMMA 2.5. T is a G-space, hence a W-space.

Proof. By 2.3 we need only check

ή^iOS1) ^(50(3) x S1)

Z Z2®Z

is an inclusion, but it is easy to check ^(1) = 0 0 3 . Note this implies

LEMMA 2.6. T is not an H-space.

Proof, (a) T is a 3-dimensional manifold hence Hn(T, Zz) = 0,
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n > 3.
( b ) H'(T, Zd) = Z3J generated say by a. This is by remarks at

the end of 2.5.
( c ) From the universal coefficient theorem we know there is β Φ 0

in H2(T, ZJ β indecomposable (a2 = 0).
(a), (b) and (c) implies that H*(T, Zs) does not support a Hopf

algebra structure, hence, T is not an H space. In particular if

T x T —h—> T is a Hopf map.

0 = h*(β2) = (1 (g) β + β (g) 1 + r(a ® a))2 = 2/3 (g) /3 + ^ 0 .

We could also note that T = Z3\SO(3) where Z, is the group (0),
(2/3ττ), (4/3ττ). Then, using the spectral sequence of a covering we
have

* •-° 1 ί »
0 w > 3 .

This does not support a Hopf algebra structure.

3. Higher order Whitehead products. The purpose of this
section is to point out that our example also answers a question of
G. Porter [6].

DEFINITION 3.1. A space X is said to have trivial higher order
Whitehead products. If given any set of homotopy elements

,] e πp.(X, x0) i S i ^ n .

The map V?=1 /,-: V SPi -> X extends to some / : χ ; u SPί -> X. (see [6]).

THEOREM 3.2. Any G-space has trivial spherical Whitehead
products.

Proof.

LEMMA. Given any n — 1 elements [/J e πPi(X, x0) 1 ^ i ^ n — 1
we can find a map

h: ("XS^) x X > X with

This is proved by induction. For n = 2 this is 1.4. Suppose we
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have a map

Γλ x X >X

with the required property.
Consider h: S^-1 x l ^ I a n extension of fn_x V 1 (1.4). Finally,

consider the composition

(ΓχSpλ x ^-i x X h X.

Set h = h(l x h).
We now finish the proof by noting that the composition

( n-l

x Sp* l χ / - ΓxS'i) x X

is the required extension of V?=i/ί

THEOREM 3.3. There exists finite dimensional spaces with trivial
higher order Whitehead products that are not H-spaces.

Proof. The space T of 2.4 is such an example.

FINAL REMARKS 3.4. Ganea [2] has constructed an infinite dimen-
sional example of a W-space that is not a G-space. G. Lang (un-
published) points out that using recent results of Gottlieb [5] one
can show that CP(3) is a finite dimensional example of such a space.
In [1] it is shown that CP(3) is a ΐ^-space, but in [5] it is shown
that every finite dimensional G-space has Euler-Poinare characteristic
0 hence CP(3) is not a G-space.

Porter [7] shows that CP(3) has nontrivial higher order White-
head products. It would be interesting to have examples of spaces
with vanishing higher order Whitehead products that are not G-
spaces.
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