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PROOF OF A CONJECTURE OF WHITNEY

W. S. MASSEY

Let M be a closed, connected, nonorientable surface of
Euler characteristic X which is smoothly embedded in Euclidean
4-space, R4, with normal bundle v. The Euler class of i>, de-
noted by e(v), is an element of the cohomology group H2(M; %)
(the letter % denotes twisted integer coefficients). Since the
group H%M; %) is infinite cyclic, e(ι>), is m times a generator
for some integer m. In a paper presented to a Topology
Conference held at the University of Michigan in 1940, H.
Whitney studied the possible values that this integer m could
take on for different embeddings of the given surface M. He
gave examples to show that m can be nonzero (unlike the
case for an orientable manifold embedded in Euclidean space)
and proved that1

m = 2X (mod 4) .

Finally, he conjectured that m could only take on the following
values:

2X — 4, 2X, 2X + 4, , 4 — 2X .

It is the purpose of the present paper to give a proof of this
conjecture of Whitney. The proof depends on a corollary of
the Atiyah-Singer index theorem.

This corollary is concerned with manifolds with an orientation
preserving involution; an elementary proof of the corollary has re-
cently been given by K. Janϊch and E Ossa, [5].

The author is grateful to G. Bredon and W. Browder for helpful
discussions of the Atiyah-Singer theorem.

The precise statement of the theorem which was conjectured by
Whitney is contained in the next section. In order to remove the
ambiguity in the sign of the integer m, it is necessary to give a
rather thorough discussion of some basic notions regarding questions
of orientation, local coefficient systems, etc. Although this material
is more or less known, it is nowhere published in a form convenient
for our purposes; hence it has been relegated to the appendix of this
paper.

2* Precise statement of the theorem* We will assume that M
is a closed, connected, nonorientable surface which is embedded smoothly

1 This result of Whitney was generalized by M. Mahowald in 1964. For a proof
of Mahowald's theorem, see a recent paper of the author entitled "Pontryagin squares
in the Thorn space of a bundle" (Pacific J. Math.).

143



144 W. S. MASSEY

in the 4-sphere, S* (the one point compactiίication of ϋ?4), and that
S4 has been given a definite orientation. Let v denote the normal
bundle of this embedding; by the Whitney duality theorem, we have
equality of Stiefel-Whitney classes,

wx{v) = WiiM) .

Let ^T denote the local system of integers on M with twisting determined
by wx{v) = w^M). The local systems of orientations O(v) and O(M)
(see Appendix 1) are both isomorphic to %, and in each case the
isomorphism may be chosen in two different ways. Note that if τ(M)
denotes the tangent bundle to M, we have

v 0 τ(M) = r'

where r' denotes the restriction of the tangent bundle of S4 to M.
Therefore we have a natural isomorphism

( * ) O(v) ® O(τ(M)) ~ O(τ') .

The choosing of an orientation of S4 determines an isomorphism of
O(τ') with the group of integers, Z. Assume that one also chooses
isomorphism

O(v) ™ r and O(τ(M)) ** %: .

Then the equation (*) becomes

(**) & ® ^ % Z .

We will consistently assume that the isomorphisms O(v) p& %* and
O(τ(M)) f^ ^ are chosen so that at each point of M the isomorphism
of (**) is that determined by ordinary multiplication of integers.
This implies that the choice of the isomorphism O(v) ̂  %£ determines
the choice of O(τ(M)) ̂  %£ and conversely. It also implies that e(v)[M]
(the Euler class of v evaluated on the fundamental class of M) is a
positive or negative integer whose sign is determined by the orientation
of S4. With these conventions, we can state our main theorem;

THEOREM. Let M be a closed, connected, nonorientable surface
of Euler Characteristic χ which is smoothly embedded in the oriented
4-sphere, S\ Then the integer e(v)[M] has one of the following
values:

2χ - 4, 2χ, 2χ + 4, . . . , 4 - 2 χ .

Moreover, any of these possible values can be attained by an ap-
propriate embedding of M in S4.
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REMARK. This theorem is actually true if S4 is an oriented
homology sphere; it is not necessary to assume that it is simply
connected.

The rest of the paper is organized as follows: Section 3 contains
an outline of the proof. The more tedious details are relegated to
lemmas which are proved in §4 and 5. In §6 we prove the statement
contained in the last sentence of the theorem; this part of the proof
is completely independent of the rest.

3* Outline of the proof* We are assuming the surface M is
smoothly embedded in the oriented 4-sphere, S\ By the Alexander
duality theorem,

H^S* -M;Z)~ H2(M, Z) = Z2 .

Hence the space S* — M has a unique 2-sheeted covering space, namely,
that which corresponds to the commutator subgroup of the fundamental
group TΓ^S4 — M). This covering space can be "completed" to a
branched covering space

p: S' > S4

with M as the set of branch points (for the theory of branched
covering spaces, see R. H. Fox, [2j We orient S' so that its orientation
agrees with that of S4 under the map p. For the sake of convenience,
we will identify M and p~1(M) by means of the map p. Note that
S' is a 4-dimensional compact orientable manifold; we denote by

T: S' > S'

the obvious involution of S' which interchanges the two sheets of the
covering. T is an orientation preserving smooth involution and its
fixed point set is precisely the surface M.

We will denote by ι/ the normal bundle of the imbedding of M
in £>'. Let S(v) and S(v') denote the associated 1-sphere bundles of
the bundles v and v' respectively; S(v) and S(v') can be realized as
the boundaries of smooth tubular neighborhoods of M in S4 and S'
respectively. The projection p: S' —>• S* induces a fibre-preserving map
S(v') —* S(v) which has degree ±2 on each fibre. We can now apply
Lemma 1 (see §4) to this fibre preserving map and conclude that the
Euler classes of the bundles v and v' are related by the following
equation:

(1) e(v) = ± 2 β(i/) .

Lemma 1 is applicable here, because the Euler class is the first ob-
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struction to a cross section of a sphere bundle. We may assume that
the local orientations, etc., are chosen so that e(v) = 2*e(v').

Next, we will apply equation (6.14) of Atiyah and Singer [1] to
the involution T of the 4-manifold S'. The result is the following
equation:

( 2 ) Sign (Γ, S') - {^{M).^(v')-ιe{v')}[M]

In this equation, we have used the notation of Atiyah and Singer.
Here Sign (Γ, S') denotes the signature of the involution T; for a
simplified definition, see Hirzebruch, [4], or Janich and Ossa, [5].
This simplified definition is repeated below. J^{M) and ^f(v') are
certain polynomials in the Pontr jagin classes of M and vr respectively.
Since M is a 2-dimensional manifold,

In view of (3) equation (2) simplifies to the following:

(4)

Thus to determine the possible values of the integer e{v')[M] (and
hence e(v)[M], by equation (1)), we must determine the possible values
of the signature, Sign (Γ, S')

We recall that Sign (T, S') may be defined as the signature of
a quadratic form defined on the real cohomology group H2(S',R) as
follows:

(x, y) = ( x ϋ T*y)[S'], x,ye H*(S', R) .

Now by Lemma 2, T*(y) = — y for any yeH2(S':R), hence (x,y) is
the negative of the usual quadratic form of the oriented 4-manifold
S'; it follows that (x, y) is a nonsingular quadratic form. It is also
proved in Lemma 2 than H2(S', R) has rank n, where n — 2 — χ is
the (nonorientable) genus of the surface M (i.e., M is the connected
sum of n projective planes). Therefore the possible values of Sign
(Γ, S') are the following:

— n, — n + 2, , n — 2, n .

Whitney's conjecture now follows by making use of equation (1) and
the equation n = 2 — χ. To complete the proof, it remains to prove
Lemmas 1 and 2; this is done in the following sections. We will also
show that all the possible values of the integer e(v)[M] can be attained
by actual embeddings.

4* Statement of Lemma L Let B be a CΫF-complex, p\E—*B
and p':E'—>B locally trivial fibre spaces over B with fibres F and
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F' respectively, and assume that f:E—*Ef is a fibre preserving map,
i.e., the diagram

E-+E'

B

is commutative. Finally, let us assume that the fibres F and Ff are
(n — l)-connected, n^l. Then the first obstructions to cross sections
of these bundles are well-defined cohomology classes

ce H*+\By πn(F)), C e H^\B, πn(F')) ,

(these are cohomology groups with local coefficients in general). The
map / induces a coefficient homomorphism of cohomology groups,

/*: H*+ι(B, πn(F)) > H*+\B, πn{F'))

in an obvious way.

LEMMA 1. Under the above hypotheses, the first obstructions
satisfy the following naturality condition:

f\c) = c' .

The proof of this lemma is an easy consequence of the definition
of obstructions. The details may be left to the reader.

5* Statement and proof of Lemma 2* In this section, we will
use the same notation as in §2:p:S'—>S4 is a 2-sheeted branched
covering with the nonorientable surface M as the set of branch points,
and T: S' —> S' is the involution or covering transformation which
interchanges the two sheets of the covering. The surface M is the
connected sum of n projective planes, where n = 2 — χ.

LEMMA 2. The cohomology group H2(S', R) is a vector space over
the reals of rank n and the homomorphism T*: H2(S', R)—+H2(S', R)
induced by T satisfies the equation

T*(x) = -x,xeH2(S',R) .

The proof of this lemma involves several steps; as a first step,
we will prove the following lemma which may be of independent
interest:

LEMMA 3. Let X be a finite, connected CW complex such that
Ήj(X, Z) is cyclic of order 2, and let π: X—>X denote the covering
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space corresponding to the commutator subgroup of τcλ(X). Then
, Z) is a finite abelian group of odd order.

Proof. Since π:X—*X is a 2-sheeted covering space, it may be
considered as a nonorientable 0-sphere bundle. Hence there is a Gysin
sequence for this situation with if2 coefficients (see Thorn [7]). We will
make use of the following portion of this Gysin sequence:

H°(X) - ίU Hι{X) -^U H\X) ~^~> Hι{X) ~^-> H\X) .

Here the homomorphism μ: Hm(X, Z2) -• Hm+1(X, Z2) is cup product
with the characteristic class, wλ e H\X, Z2). The hypothesis of the
lemma implies that H\X, Z2) is cyclic of order 2; since X is a nontrivial
covering space, w1 must be the unique nonzero element of Hι(X, Z2).
From this it follows that μ: H°(X) —•> H\X, Z2) is an isomorphism onto.
We assert that μ: H\X) —> H2(X) is a monomorphism; it then follows
by exactness that H\X, Z2) = 0. Since H\X, Z2) = Horn [H^X, Z), Z2],
and HL(X, Z) is a finitely generated abelian group, the conclusion of the
lemma follows. It remains to prove the assertion. To do this, it
suffices to prove that μ(wx) Φ 0. Now

μ(wλ) = w1\Jw1 = Sq^Wj) ,

and the homomorphism Sq1 is well-known to be the composition of
the Bockstein homomorphism (associated with the exact coefficient
sequence 0—>Z—>Z-+Z2—> 0) and reduction mod 2. The hypothesis
that H^X, Z) is cyclic of order 2 enables one to prove that Sq\w^) Φ 0;
the details are left to the reader.

REMARK. Professor E. Schenkman has communicated to the author
a purely group-theoretic proof of the following generalization of
Lemma 3. Assume that X is a finite, connected CW-complex and
τr; X —> X is the covering space corresponding to the commutator
subgroup of π\(X), exactly as in the lemma. The generalization
consists in assuming that H^X, Z) is cyclic of prime power order.
The conclusion is that H^X, Z) is a finite abelian group, and the
orders of i?x(X, Z) and H^X, Z) are relatively prime. Professor Schenk-
man also has an example to show that this conclusion does not neces-
sarily hold if H^X, Z) is a cyclic group of order 6.

We will now continue with the proof of lemma 2. Let A be a
smooth closed tubular neighborhood of M in S\ C — closure of S4 — A,
and E — A Π C. Then E is a closed, orientable 3-manifold which is
the common boundary of A and C; also, £ is a realization of the
normal 1-sphere bundle S(v). In general, we will denote the correspond-
ing subsets of S' by means of primes, i.e.,



PROOF OF A CONJECTURE OF WHITNEY 149

A = p~\A) ,

C" = p-'iQ, and

E' = p~ι{E) .

Then A! is a closed tubular neighborhood of M in S', A'UC' = S',
and £" is the common boundary of A! and C. Note that C is a de-
formation retract of S4 — ikf, C is a deformation retract of S' — M,
and C" is a 2-fold (unbranched) covering of C. We can apply Lemma
3 with X = C, X = C" to conclude that ϋΓi(C", Z) is a finite group of
odd order. It follows immediately that

( 5 ) H\C, JR) = 0 .

Next, we wish to compute the real cohomology of the space E'.
Since Er = S{v') is a nonorientable 1-sphere bundle over M, we can
use the Gysin sequence for this purpose:

) — H^E" iί)

Here Hm(M, &) means the m-dimensional cohomology group of M
with local coefficient group the twisted real numbers. By the Poincare
duality theorem for nonorientable manifolds,

H«~2(M, 32) ^ H4_q(My R) .

From this it follows readily that for any value of q, Hq~2(M, &) = 0
or Hq(M, R) = 0. Therefore μ = 0, and

rank H\E', R) = rank Hq(M, R) + rank Hq~\M, &)

= rank ii9(iki, i?) + rank Hs_q(M, R) .

From this we conclude that

( 6 ) rank H°(E', R) - rank H\E', R) - 1 ,

(7) rank H\E\ R) = rank i Γ ^ ' , 12) = n - 1 .

Of course, (6) also follows from the fact that E' is a closed, connected,
orientable 3-manifold.

Next, we consider the real cohomology sequence of the pair (C, Ef).
By making use of (5) and the fact that

rank Hq(C, E', R) = rank H'-\C\ R)

(which is a consequence of the Lefschetz-Poincare duality theorem
for orientable manifolds with boundary) we conclude that
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(8) H\C, R) = H\C, R) = 0 .

Next, since C" is a 2-sheeted covering of C, we have the following
obvious relation between the Euler characteristics:

χ(C') = 2 χ(C) .

Now one readily computes that χ(C) — n (use the Alexander duality
theorem). Hence χ(C") = 2n; then making use of (5) and (8) we conclude
that

( 9 ) rank H\C, R) = 2n - 1 .

Next, we will use the information we have already obtained about
H*(C, R) and the real cohomology sequence of the pair (S', C") to
determine H*(S', R). For this purpose, note that by the excision
property,

H*(S', C) ** H'(A', Ef) .

Now the pair (A', E') is the Thorn space of the normal bundle v';
therefore, we can apply the Thorn isomorphism theorem for (non-
orientable) vector bundles to conclude that

H*(A', E', R) ~ H«-\M, &) .

Also Hq~2(M, &) ^ H4_q(M, R), as was noted above. Combining these
isomorphisms, we see that

(10) rank H%S\ C", R) = 1 ,

(11) r a n k H*(S', C ' , R ) = n - l ,

(12) H'(S', C, R) = 0 for q Φ 3 or 4 .

If we incorporate all the information we have obtained about H*(S', C\
R) and Jff*(C, R) together with the fact that

rank H3(S\ R) - rank H\S\ R)

(which is a consequence of the Poincare duality theorem) into the
cohomology sequence of the pair (S'9 C"), we see that

rank H2(S', R) = n ,

as was to be proved. We note that it also follows that

£Γ(S', R) = HS(S', R) = 0 .

It remains to prove the last statement of Lemma 2. For this
purpose, note that the projection p: S' -> S4 induces a map of the real



PROOF OF A CONJECTURE OF WHITNEY 151

cohomology sequence of the pair (S\ C) into that of the pair (S\ C);
hence we have the following commutative diagram:

0 > H2 (C) — H3(S\ C) > 0

[pi*

0 > H2{S') -^-> H\C) — H\S', C") > 0

The involution T* operates on each of the real vector spaces in the
bottom line of this diagram, and the homomorphisms i* and <?' commute
with Γ*. Each of these three vector spaces decomposes into the
direct sum of two subspaces corresponding to the eigenvalues + 1 and
— 1 respectively of the involution T*. These subspaces are respectively
the subspace of elements left fixed by T*, and the subspace consisting
of those elements x such that T*(x) — — x. The homomorphisms i*
and δ' respect these direct sum decompositions. Furthermore, it is
clear that the images of pf and pf are contained in the subspaces
of elements left fixed by T*.

Next, we assert that pf is a monomorphism, and its image is the
entire subspace of elements of H2(G) which are left fixed by T*. To
prove this, note that C is a covering space of C; hence we can apply
the results of appendix No. 2. By equation (V) we see that

(14) H\C) = image pf © kernel t*

and by (VI) the elements of kernel ί* satisfy the equation

x + τ*(x) = 0 ,

i.e., T*(x) = — x. Thus the direct sum decomposition in (14) is the
same as that corresponding to the eigenvalues of T*.

Finally, we assert that pf is an isomorphism. This follows from
consideration of the following diagram:

TT3/ O4 Z0'\ ^ v tΓ3/ Λ TΠ\

T T 3 / C Γ*t\ v ZJ"3/ /tf 77"\ v
ϋ (o , O ) > ϋ (A , hi ) <

The left hand square of this diagram is commutative, and j and f
are isomorphisms by the excision property. (A, E) and {A\ Ef) are
the Thorn spaces of the bundles v and vf respectively, and φ and φ'
are the Thorn isomorphisms defined by

φ(x) = x U J7,

Λ ) = 2/ U J7' ,



152 W. S. MASSEY

where Ue H2(A, E; &) and U' e H\Ar, E', &) are the Thorn classes
(with twisted coefficients) of the bundles v and 2/ respectively. Note
that pA: A! —> A is a homotopy equivalence, hence pf is a isomorphism.
The Thorn classes are related by the following equation

p}{U)=±2U'

since the projection p3: (A\ Er) —> (A, E) is a fibre preserving map
having degree ±2 on each fibre (cf. Spanier [6], Chapter V, §7). Thus
the right hand square of the diagram (15) is commutative up to a
factor of ±2. Putting all these facts together, we see that pt is an
isomorphism, as asserted.

It follows that every element of H%S\ C") is left fixed by T*.
Therefore every element of the subspace (kernel t*) of H2(C) (i.e.,
those corresponding to the eigenvalue —1) is contained in kernel
δ' = image i*. But it is readily seen that

rank (kernel t*) = n, and

rank (image i*) = n .

Therefore

image ΐ* = kernel £* .

Since i* is a monomorphism, it follows that on the vector space
H2(Sf) the only eigenvalue of T* is —1. This completes the proof
of Lemma 2.

6. Proof that all possible values of the integer e(v)[M] can
actually be realized* It follows readily from our conventions that
changing the orientation of the 4-sphere, S\ changes the sign of the
integer e(v)[M\. Alternatively, we could achieve the same result by
keeping the orientation of S4 fixed and replacing the given embedding
i: M-* S* by the composite

where h is an orientation reversing diffeomorphism of S\
If we are given two pairs (S{, Mi), i = 1,2, consisting of an

oriented 4-sphere and a smoothly embedded nonorientable surface, we
can form the connected sum

(S\ M) - (Si, M,) # (Si, M2)

as defined by Haefliger [3]. Denote the normal bundles of M, Mlf and
M2 by v, v19 and v2 respectively. We then have the following equation:

e(v)[M] = eMlMJ + e(v2)[M2] .
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The proof of this equation is not difficult; we leave it to the reader.
Let P be a real protective plane imbedded smoothly in an oriented

4-sphere, S4 with normal bundle v. It is a consequence of the theorem
proved so far that

e(v)[P] = ±2 ,

the sign depending on the orientation of S\ Let us assume that
the orientation is chosen so that

e(v)[P] - 2 .

If we now form the connected sum of i copies of the pair (S\ P) and
(n — i) copies of the pair ( —S4, P), we obtain a pair (S\ M) such
that

e(vM)[M] = 4i - 2n ,

and χ(M) = 2 — n. By choosing i — 0,1, 2, , n we obtain all possible
values for the Euler class of the normal bundle of a surface M with
χ(M) = 2 - n .

Appendix 1* Generalities on orientations of vector bundles
and local coefficients* If E—*J3 is an ^-dimensional real vector
bundle over the space 2?, we will consistently use the notation S(E) —> B
and D(E) —»B to denote the associated (n — 1) -sphere bundle and
the associated ^-dimensional disc bundle respectively. For any point
beB, the fibres of these bundle will be denoted by Eb, S(E)b, and
D(E)h respectively. Associated with the bundle E—>B is a certain
local system of groups O(E), called "the local coefficient system of
orientations of E". This local system of groups associates with each
point beB the group Hn(D(E)b, S(E)b; Z) (or alternatively, the group
Hn~ι{S{E)b', Z) or τrw_1(S(£')fe); these different groups are related by ob-
vious canonical isomorphisms). The Euler class, e(E), is an ̂ -dimensional
cohomology class with coefficients in O(E). Note that the local system
O(E) is determined up to isomorphism by the first Stiefel-Whitney
class, w^E).

If M is a (possibly nonorientable) differentiable closed, connected
^-manifold, the local coefficient system of orientations of M is, by
definition, the local coefficient system of orientations of the tangent
bundle of M; it is denoted by O(M). The "fundamental homology
class of M" is a uniquely defined homology class, [M] e Hn(M, O(M)).
If M is triangulated, it is represented by an w-eycle which assigns
to each oriented ^-simplex the corresponding "local orientation' \

Let E and Ef be vector bundles over B, and let E®E denote
their Whitney sum. There is a natural isomorphism
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0(E) 0 0{E') ^ 0{E@E'))

which is determined a t each point beB by the natura l isomorphism

Hn(D(E)b, S(E)b) <g> Hn,(D(E')b, S(E')b)
E')b, S(E 0 E%) .

This natural isomorphism can also be looked on as a bilinear pairing

O(E) x O(E') > O(E © E') ,

which can be used to define cup products, cap products, etc.
Given the bundle E over a connected space B, the local system

of groups O(E) is isomorphic to a local system of groups in B which
assigns to each point beB the additive group of integers, Z, with
the "twisting'' of this local system of integers determined by w^E).
We will denote this local system of integers by %ί. As a matter of
fact, there are actually two distinct isomorphisms between the local
systems O(E) and %\ to choose one of them as a preferred isomorphism
amounts to "orienting" the bundle E in some sense, even though the
bundle E may be nonorientable in the usual sense.

Appendix 2* The transfer homomorphism in a covering space*
Let X be an arcwise connected topological space and p: X—>X a re-
gular covering space of X with finitely many sheets. In this section,
we shall consider some relations between the homology and cohomology
groups of X and X. These relations are well known, but do not seem
to have been published anywhere.

We will simultaneously consider the following two situations:
(a) X and X are simplicial polyhedra, p is a simplicial map, and

we use simplicial chains and cochains.
(b) X and X are not assumed triangulated, and we use singular

chains and cochains.
In either case, the projection p induces a chain transformation

Since the covering is assumed to have only finitely many sheets, the
so called "transfer homomorphism'' is defined in the opposite direction:

t: C*(X) > C*(X) .

The definition of t is as follows: for any ^-simplex σ of X, t(σ) is
defined to be the sum of all %-simplexes σ' of X such that p${σr) = σ.
It is readily verified that t is a chain transformation. One can also
easily verify the following two relations:

(I) tpt(u)= Σ*
geG
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(II) p φ ( v ) = m v f veC

Here G denotes the group of covering transformations of X, and m
denotes the number of sheets of the covering.

If we pass to cohomology with any coefficients, we have induced
homomorphisms.

p*:H*(X) >H*(X)

t*:H*(%) >H*(X)

and the relations (I) and (II) lead to the following relations:

(III) p*t*(x) = Σ 0*0*), α e H*(Z)
geG

(IV) t*p*(y) = my, y e H*(X) .

Let us assume that we use a field for coefficients whose characteristic
does not divide the number of sheets, m. Then from (IV) we easily
deduce that p* is a monomorphism, ί* is an epimorphism, and H*(X)
breaks up into a direct sum,

(V) H*(X) = image p* 0kernel ί* .

The elements of the direct summand image p* are obviously left
fixed by the homomorphisms g* for all geG. It follows from equation
(III) that the elements of the direct summand kernel ί* satisfy the
following condition:

(VI) Σ £*(&) = 0
geG

Appendix 3 (added in proof, August, 1969). Glen Bredon has
pointed out in a letter to the author (dated May 14, 1969) that the
proof of Lemma 2 can be considerably shortened, as follows:

The last statement of Lemma 2 is an immediate consequence of
the known fact that the homomorphism p* : iϊ*(S4; R) ->fP(S'; R) is
an isomorphism onto the set of invariant elements of T*; see Theorem
19.1 on page 85 of Bredon's book (Sheaf Theory, McGraw-Hill, 1967).
The proof of this theorem depends on the fact that the notion of the
transfer homomorphism (see Appendix 2) can be generalized to cover the
case of an arbitrary action of a finite group on a Hausdorff space,
provided, one uses a Cech type cohomology theory; see Bredon's book
(loc. cit.) or Annals of Mathematics Study No. 46, Seminar on
Transformation Groups, Chapter III, §2 (by E. E. Floyd).

The first statement of Lemma 2 can be proved more directly by
use of the exact sequences of P. A. Smith (see Bredon, loc. cit., page
86, or Floyd, loc. cit., Chapter III, §4). In the case at hand this
gives the following exact sequence (Z2 coefficients):
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> H\S\ M) > H\S') > HW, M) © H\M)

> Hί+1(S\ M) > .

Also, the part Hι{M) —> Hi+1(S\ M) of the connecting homomorphism
is just the coboundary for the pair (S\ M). From this it follows
immediately that iΓ(S'; Z2) = 0 = H3(S'; Z2) and the vector space
H2(Sr; Z2) has rank n. Then one applies the universal coefficient
theorem to conclude that H2(S'; R) is also a vector space of rank n.
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