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SYMMETRIC POSITIVE DEFINITE MULTILINEAR

FUNCTIONALS WITH A GIVEN AUTOMORPHISM

MARVIN MARCUS AND STEPHEN PIERCE

Let V be an ^-dimensional vector space over the real
numbers R and let ψ be a multilinear functional,

( 1 )

i.e., φ(xif , xm) is linear in each Xj separately, j = 1, , m.
Let H be a subgroup of the symmetric group Sm. Then φ is
said to be symmetric with respect to H if

( 2 ) φ(Xσ(l), , Xσlm)) = ψ&U ' ' ' , %m)

for all σeH and all x3 e V, j = 1, •••, m. (In general, the
range of ^ may be a subset of some vector space over R.)
Let T: V~>V be a linear transformation. Then T is an
automorphism with respect to p if

( 3) ψ{Txu , Txm) = $*(&!, •••,»„)

for all a?i € F, i = 1, , m. It is easy to verify that the set
3I(iJ, T) of all 9 which are symmetric with respect to H and
which satisfy (3) constitutes a subspace of the space of all multi-
linear functionals symmetric with respect to H. We denote
this latter set by Mm{V, H, R).

We shall say that φ is positive definite if

( 4 ) φ(x, .. f a 0 > O

for all nonzero x in V, and we shall denote the set of all
positive definite φ in %(H, T) by P(H, T). It can be readily
verified that P(H, T) is a convex cone in 2I(ίf, Γ).

Our main results follow.

THEOREM 1. // P(H, T) is nonempty then
( a) m is even

and
(b) every eigenvalue of T has modulus 1.

//, in addition, T has only real eigenvalues then
( c) every elementary divisor of T is linear.

Conversely if (a), (b) and (c) hold then P(H, T) is nonempty. More-
over, if P(H, T) is nonempty then %{H, T) is the linear closure of
P(H, T).

In Theorem 2 we shall investigate the dimension of 2ί(iϊ, T) in
the event P(H, T) is not empty. To do this we must introduce some
combinatorial notation. Let Γm,n denote the set of all sequences

119



120 MARVIN MARCUS AND STEPHEN PIERCE

a) = (α)1? . . . 9 Q)m) of length m, 1 ^ ωi ^ n, i = 1, , m. Introduce an
equivalence relation ~ in Γm,n as follows: α ~ /3 if there exists a
σ e H such that

ασ = β

where aσ — (aσω, , α:σ(Ml)). Let Δ be a system of distinct representa-
tives for —, i.e., Δ is a set of sequences, one from each equivalence
class with respect to ~ . We specify Δ uniquely by choosing each
element a e Δ to be lowest in lexicographic order in the equivalence
class in which a occurs.

THEOREM 2. If P(H, T) is nonempty and T has real eigenvalues
7i, , Ίn then Ίi = ± 1 , i = 1, , n. Suppose

yh = = Ίiv = 1 , Ύj = - 1 , j Φ iu , ip .

Let μp be the number of sequences ω in Δ such that the total number
of occurrences of iu , ip in ω is even. Then

( 5 ) dim SI(#, T) = μp .

COROLLARY. If H — Sm in Theorem 2 and T has p eigenvalues
1 and n — p eigenvalues —1 then

dim SICff, T) =
__ ^ (p — 1 + 2fc\/% - p - 1 + m — 2k

P — i A w — p — l

In case m = 2, £Γ = S2,
 SΆ(H, T) is the totality of symmetric bilinear

functionals φ for which

φ(Tx19 Tx2) = ^(a?!, a?2) , xl9 x2 e V ,

and P{H, T) is just the cone of positive definite φ in WL(H, T) i.e.,

φ(χ, x) Ξ> 0

with equality only if a; — 0. In this case we need not assume that T
has real eigenvalues in order to analyze %(H, Γ). We can easily prove
the following result by our methods, most parts of which are known
(see e.g. [1], Chapter 7).

THEOREM 3. Assume that m = 2 and H = S2. Then P(H, T) is
nonempty if and only if

( a ) T has linear elementary divisors over the complex field,
(b) every eigenvalue of T has modulus 1.

Suppose that T has distinct complex eigenvalues

Ίk = ak + ibk {and 7k = ak - ibk)
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of multiplicity ek,k = l, ,p and real eigenvalues

Ίk = rk , k = Σ,2ej + 1, - . . , t t .

// P(£Γ, JΓ) is nonempty then the elementary divisors of T over the
real field are

λ 2 — 2λak + 1 , βfc t i m e s , k = 1, •••, p ,

λ — 1 , q t i m e s ,

λ + 1 , I t i m e s ,

where

Σ,2ej + q + I = n .

Moreover, 2ί(iϊ, Γ) is the linear closure of P{H, T),

a basis E of V such that Sί(iϊ, T) consists of the
set of all φ whose matrix representations with respect to E, [φ]E

E1

have the following form:

( 6 ) [φ)E

E = Σ # (Xk 0 h + Yk (g) ί7) + Hq + If, .

In (6), the dot indicates direct sum, 0 denotes the Kronecker
product, 1^=1 i Q , Xfc is efc-square symmetric, Yk is βfe-square
skew-symmetric, Hq and if̂  are g-square and ί-square symmetric re-
spectively.

2* Proofs* Let FW(H) denote the symmetry class of tensors
associated with H[2]. That is, there exists a fixed multilinear func-
tion τ: Xf V—*Vm(H) symmetric with respect to H, for which

( i ) the linear closure of τ ( χ r V) is Vm(H)
(ii) the pair (Vm(H), τ) is universal: given any space U and

any multilinear function φ: XΐV—> U symmetric with respect to H,
there exists a (unique) linear hφ: V

m(H) —> U satisfying

( 7 ) hψτ = φ.

X V τ > Vm(H)
1 \ /

U
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We shall denote τ(x19 •••,&„) by a?!* * xm, and α?x* * # w is called
a decomposable tensor or a symmetric product of »!,•••,«„. If we
take φ(xί9 , xm) to be To?! * * Txm in (7) then /^ is denoted by
K(T) and is called the induced transformation on Vm(H).

Before we embark on the proof of Theorem 1 we can define 2ϊ(iϊ, Γ)
in terms of Vm(H). First observe that the mapping θ from the space
of multilinear functionals φ symmetric with respect to H to the dual
space of Vm(H),

θ:Mm(V,H,R) >(V

defined by

θ(φ) = hψ ,

is one-to-one linear, and onto. That is, the correspondence φ+-*hφ is
linear bijective. Now, the subspace U(H, T) of Mm (V, H, R) is
defined by

φ(TxL9 , Txm) = φ(xl9 , Xm)

or in view of (7) by

hφ{Txx* * Txm) = hφiXi* *»m) ,

for all » i G 7 , ί = l, ,m. In other words, since the decomposable
tensors span Vm(H) (see (i) above), φ e §l(iϊ, Γ) if and only if θ(φ) = fc^
satisfies

= hφ ,

or

( 8 ) hφ(K(T)-I) = 0

where I is the identity mapping on Vm(H). We have proved the

following.

LEMMA 1. 3ί(iί, T) is nonempty if and only if K(T) — I is
singular. Also,

( 9 ) dim St(fl , T) = η{K{T) - I)

where η is the nullity of the indicated transformation.

LEMMA 2. If P(H, T) is nonempty then m is even and every
eigenvalue of T has modulus 1. Moreover, corresponding to real
eigenvalues, T has only linear elementary divisors.

Proof. If φ e P(H, T) and x Φ 0 then
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φ(-X, •-., -x) = (-l

and hence ( —l) w > 0 and m is even. Suppose that 7 is a real eigen-
value of T with corresponding eigenvector x. Then

φ{Tx, , Tx) = φ(jX, , yx)

Since <p e P(fί, T), φ(Tx, , ΓB) = <£>(#, , x) > 0 and hence τ m = 1
and 7 = ± 1 . If 7 were involved in an elementary divisor of degree
greater than 1 then there would exist linearly independent vectors ux

and u2 such that Tut — yuL, Tu2 — yu2 + uL and hence

, Tu,, Tu2) = φ(yu19 , 7^!, 7^2 +

Now

, Uly U2) =

---,yul9 ΎU2)

so that

0 = <p(yu19 , 7^1, Ύu2 + ^ ) — 9>(7^i, , yu19 Ύu2)

a contradiction.
We now show that any complex eigenvalue of T has modulus 1.

Since 7 — a + i& is now assumed not to be real there exists a pair of
linearly independent vectors v1 and v2 in V such that

TV, - αvL - bv2

Tv2 = δ î + αv2 .

Let F be the extension of V to an ^-dimensional space over the
complex field. Now φ e Sί(iϊ, T) means that

(11) φ(Txlf , Γa?J - (̂ajx, , a?J = 0

is an identity in ^ , - , v If we express the vectors in V in terms
of a basis in F (using in general complex rather than real coefficients)
the identity (11) continues to hold since it is a homogeneous polynomial
of degree m in the components of x19 •••,#«, vanishing for all real
values of these components. Of course it is not true that

φ(x9 , x) > 0

continues to hold for nonzero x e V. Now define
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eί = v1 + iv2 e V

e2 = vL — %v2 e V

and observe that e1 and β2 are linearly independent in V and satisfy

Te1 = Ίeι

Te2 = Ίe2 .

Let ω — (ω^ , ωm) be a sequence for which each α>; is either 1 or
2, i — 1, , m:

where k of the a)i are 1 and m — k are 2. But by the above re-
marks

φ(Teωi, , TeωJ =

and taking absolute values we have

Thus if 17 I Φ 1 it follows that

(13) <p(eωι, •• , β ω J = 0

for all ω for which ω, is 1 or 2 for i = 1, , m. From (12) we have
^ = (βx + e2)/2 and hence using (13) we see that

... ei + eΛ
(14)

= 0 .

However v1eV and <p 6 P(ίί, T) and therefore (14) is a contradiction.
Thus 17 I = 1 and the proof of Lemma 2 is complete.

L E M M A 3. If m is even, and T has real eigenvalues r x, •••, r%1

and every elementary divisor of T is linear then P(H, T) is non-

empty.

Proof. Since T has linear elementary divisors there exists a
basis for V of eigenvectors e19 , en. Let glf , gn be a dual basis
in 7 * . Let g? denote the multilinear functional whose value for any
a?!, , xm in V is

m

Π gt(χ,)
ii
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Clearly gf e Mm( V, H, R). Set

φ = Σ 97

Then if xά = ΣJU £,-*«*, j = 1, , m, and 2X = rΛefc, fc = 1, . . , n,

w m

= Σ Π ίίtr(
ί=l i = l

_ V r m TT P— ZJL ' t 1 1 ζjt
ί = l J = l

= Σ Π ίίt
t = l 3=1
n m

= Σ Π Λ(aJi)
ί = l j = l

Hence φe%(H, T). Moreover, if ^ — Σ?=ictβt then

But m is even and hence φeP(H, T). To complete the proof of
Theorem 1 we note that if φeP(H, T) and if e19 •••, en is any basis
of V then φ(x9 x9 , x) is a homogeneous polynomial of degree m in
cx, , cn. Hence, on the compact hypersphere S defined by Σ?=i Gt — 1
in V, φ must assume a positive minimum value mψ. By a similar
argument for any φe$L(H9 T)9 \ψ\ must assume a maximum Mψ for
Σ?=i c? ~ l Now let τ/r be an arbitrary element of %{H, T) and choose
a positive constant a such that a > Mγ/m9. If 0 =£ α? e F and [| a? ||2 =

(x/\\x\\)eS and

αφίίc, . . . ,«) - φ(x, ...,α?) - α || a? |

-\\xTf

x\\ \\x\\
X X

= (I x | | \μm<p —

In other words,
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aφ - ψ e P{H, T)

so that ψ is a linear combination of elements in P(H, T).
To proceed to the proof of Theorem 2 we use Theorem 1 to con-

clude immediately that since T has real eigenvalues the elementary
divisors are all linear and thus there exists a basis of eigenvectors of
T:

Tek = Ίkek , k = 1, •••, n .

It is not difficult to show [2] that the decomposable tensors

el = eωi * * eWm , ω e A ,

constitute a basis for Vm(H).

We compute that

K(T)e* = Te ω i * ••• ̂ Γβ ω w

( 1 5 ) = ^ ! β - l * * * * * ^ . ^ m

= π τrί ( ω )β:
ί = l

where mt(ω) denotes the multiplicity of occurrence of t in ω, t —
1, •••,%. The formula (15) shows that (K(T) — I)e* is 0 or a nonzero
multiple of e* according as

Π ΎT^ω)

is 1 or —1. Now we can assume without loss of generality that the
eigenvalues TX, , Ίn are so organized that Yi = =ΎP = 1, 7̂ +1 =
. . . — 7w — ~ l . (This is of course merely a notational convenience.)
Then

/ -

Thus ΠΓ=i7Γί(ω) = 1 if and only if Σf=i wt(α>) is even. This last
statement just means that 1, , p (i.e., i l f , ip) occur altogether an
even number of times in ω.

The proof of the corollary is completed by first noting that if
H = Sm then the set Δ is the totality of nondecreasing sequences of
length m chosen from 1, •••,%. Thus by Theorem 2 if P{H, T) is
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nonempty and T has real eigenvalues 7i, , 7» then these eigenvalues
are ± 1 and we lose no generality in assuming that yι = = yp = 1,
yp+1 = ••• = 7« = — 1 . We want to count the total number of ω in
A for which

(16) Σ m((α)) Ξ 0 (mod 2) .

Now, a sequence satisfying (16) may be constructed as follows. Sup-
pose that ft is a fixed integer, 0 <̂  2 ft g m, and we count the number
of sequences in Δ in which Σ?=i m ί ( ω ) = 2ft. The total number of non-
decreasing sequences of length 2ft using the integers 1, •••,# is

+ 2k -1\ {p - 1 + 2ft

2 f t j 1 p - 1

and any one of these can be completed to a nondecreasing sequence
of length m by adjoining a nondecreasing sequence of length m — 2fc
using the integers p + 1, , n. There are a total of

n — p + m — 2ft — 1\ _ (n — p — 1 + m — 2ft

m - 2ft / V w - p - l

ways of doing this. This completes the proof of the corollary.
To proceed to the proof of Theorem 3 we remark that Theorem

1 cannot be directly applied because we are not assuming that the
eigenvalues of T are real; in general this is not the case. However
the statement (b) does follow from Theorem 1. If JE7 is any basis of
V, A is the matrix representation of T, and C = [<p]f, then to say that

φ e 5I(iϊ, T) is equivalent to the assertion that

(17) ATCA = C .

If φ e P(H, T) then C is a positive definite symmetric matrix and can
therefore be written C = K\ where K is also positive definite sym-
metric. Then (17) is immediately equivalent to the statement that
KAK~ι is a real orthogonal matrix and (a) is evident. Conversely if
(a) and (b) obtain then there exists a real nonsingular matrix S such
that S^AS is a direct sum of a diagonal matrix with ± 1 along the
main diagonal together with certain 2-square matrices of the form

(18)

Since | yk \ — 1, ft — 1, , n, the matrix (18) is orthogonal and hence
= U where U is an ^-square real orthogonal matrix. If we set
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(S7')"1^""1 = C then C is a positive definite symmetric matrix and we
compute that

ATCA = (S-ψUτSτ(Sτ)-1S

Thus if [φ\% = C then φeP(H, T). The dimension of 31 (iϊ, T) can
equally well be computed as in the general case by finding rj(K(T) — I)
where K(T) is the induced mapping on the complex space of 2-sym-
metric tensors over V, i.e., V2(S2). The mapping K(T) is just the 2nd
Kronecker power of T restricted to the second symmetric space. This
mapping is customarily denoted by P2(T)[5]. Since T has a basis of
eigenvectors v19 , vn, so does P2{T) and, for 1 <: ί ^ j ^ n,

P2(T)Vi*Vj = jffjViXVj .

Thus dim3I(H, T) is precisely the number of pairs of integers (i,j),
ί ^ i ^ j ^ ny for which

(19) yen - 1

But T has the distinct eigenvalues ak + ibk of multiplicity β/:, k = 1, ,
p. This yields a total of

pairs (ί,j) for which (19) is satisfied. Also, T has 1 as an eigen-
value q times and —1 as an eigenvalue I times and this yields an
additional

q(q + 1) , Z(? + 1)
2 2

pairs (ΐ, j») for which (19) is satisfied. This proves that

dim «(*, T) = iί«L±l) + iίLhl) + ±e).
2 2 i

We now turn to the derivation of (6). First, we assert that since
T has linear elementary divisors over the complex numbers [4] there
exists a basis E of V such that the matrix representation of T has
the following form:

(20) A = £ I β .® a[ k + / g + -It
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where Is is the s-square identity matrix. We set C = [φ\% and
partition C conformally with (20):

cdί

••• cίd

' Cdd

cq

Cΐ

z

cr

Cι

dj is 2-square, i,j = 1, , d = Σ?=iei>
Cz is Z-square symmetric. Set L = YJlJk

that for (17) to be satisfied Z must satisfy

tf-square symmetric and
akh + bkF) and observe

(21) LτZ(Iq+ -Iι) =

Now, Lτ 0 (Jg + ~Jrz) has eigenvalues ±(αfc ± iδ )̂ [3, p. 9] and none of
these is equal to 1. Hence (21) has only the zero matrix as a solu-
tion. Similarly we see that Cr = 0. Next, consider a typical Cij9 j > i9

call it K. Then K must satisfy an equation of the form

(22)

The

has

(23)

matrix

eigenvalues

(aJt

(a

- bs

(a.

F)K{aτh +

KF) 0 (a,

• KF) --

./, + K

± ibs)(ar ± ibτ).

= K

F)

If r ^ δ , (23) cannot be 1 and in this case K = 0. If r = s then pre-
cisely two of the four complex numbers (23) are 1. Thus the nullity
of the matrix

(24) (aj2 - bsF) ® (aj2 + bsF) - /4

is 2. But K = J2 and K = F are two linearly independent solutions
to (22) for r = s. Also note that since C is symmetric C« must be a
multiple of J2 It follows that the submatrix

is itself a direct sum of 2βfc-square matrices of the form
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xn 0

0 xn

^12 Vl2

Vl2 ^12

•̂ 12 2/l2

2/l2 ^12

x 2 2 0

0 x22

•

a>rr 0

0 xrr Vrs %rs

£ s s 0

0 xss

•••

This matrix is of the form Xk (g) J2 + Ffc (g) JP where Xfc = (xi5) is efc-
square symmetric and Yk = (T/^ ) is e^-square skew-symmetric. This
completes the proof of Theorem 3.

3* Some examples* Let m = 2p and let Sj, be the symmetric
group of degree p on p + 1, , m. In general if V is a Euclidean
space with inner product (x, y) then Vm(H) is also a Euclidean space
[2] in which the inner product of two symmetric products a?!* *xm

and #i * * 2/Λ is given by

* = —- Σ Π
Wll σeH i=i

(25) (a?i * * a?,

Set H = Spx Si (direct product) and define φ e Mm(V, H, R) by

(26) φ(xί9 •••,«,, a?p+1, , a?J = (a?i * * a?p, a?p+1 * . . . * a?J .

Clearly φ is symmetric with respect to H and

9>(a?, -- ,a?, x, « ,aj) = ||α; * * a; ||2

Moreover a? * * a? = 0 if and only if x — 0 [2]. Hence <p is positive
definite. Now suppose that φeP(H, T) where T: V-»V. Then

φ(Txίf p,Txp+1, . . . , Γa?m) =
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and ίrom (26) we have

(27) (Txx * * Txp, Txp+1 * * Txm) = fo *

It follows from (27) that

K(T*T) = I

* αp, a?p+1 * * xm) .

<28)

where Γ* is the adjoint of T and if(Γ) is the induced transformation
in the symmetry class VP(SP). It is not difficult to show [7] that (28)
implies that T*T=ωIυ where | ω | = l . However, since T*T is
positive definite, T*T = Iv, and hence T is orthogonal. It follows
that T must have linear elementary divisors over the complex num-
bers.

In Theorem 1 we proved only that if P{H, T) is nonempty then
T has linear elementary divisors corresponding to real eigenvalues.
We conjecture that in fact the preceding example is typical in the
sense that T always has linear elementary divisors over the complex
numbers if P(H, T) is assumed to be nonempty.

We now give an example to show that if φ e 2l(u, Γ), but φ is
not positive definite, then the elementary divisors of T over the com-
plex numbers need not be linear. Let H = S2 and let dim V = 4.
Choose T to have

(λ2 + I)2

as its only elementary divisor. Then there exists a real basis E =
{#i, •> ej of F s o that

mf =

Let A = [Γ] | . Then from (17) it suffices to determine a symmetric
matrix C such that

0
1

0

0

0
0

1

0

0
0

0

1

— 1
0

2

0

(29)

Define C as follows:

ATCA =

C =

~ 0

1

0

- 3

1

0

1

0

c

0

1

0

1

- 3

0

1

0

Then C is symmetric (but not positive definite) and (29) is easily
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verified. This example also shows that P(H, T) is empty. It is routine
to verify that dim §I(ϋΓ, T) = 1 in this case but the formula (5) pro-
duces the integer 4.
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