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SYMMETRIC POSITIVE DEFINITE MULTILINEAR
FUNCTIONALS WITH A GIVEN AUTOMORPHISM

MARVIN MARCUS AND STEPHEN PIERCE

Let V be an n-dimensional vector space over the real
numbers R and let ¢ be a multilinear functional,

(1) go:)':(V—»R

ie., ¢(x;, *+, x,) is linear in each x; separately, =1, -+, m.
Let H be a subgroup of the symmetric group S,,.. Then ¢ is
said to be symmetric with respect to H if

(2) gp(wa(l)y M) ma(m)) = §0<ny c xm)

for all s H and all z;¢V,5=1, ---,m. (In general, the
range of ¢ may be a subset of some vector space over R.)
Let T7:V—V be a linear transformation, Then 7 is an
automorphism with respect to ¢ if

(8) Ty, +ovy Tom) = @(&1, *+*, Tm)

for all ;€ V,i=1, ---,m. It is easy to verify that the set
(H, T) of all ¢ which are symmetric with respect to H and
which satisfy (3) constitutes a subspace of the space of all multi-
linear functionals symmetric with respect to H, We denote
this latter set by M,(V, H, R).

We shall say that ¢ is positive definite if

(4) @(w""»x)>0
for all nonzero 2 in V, and we shall denote the set of all
positive definite ¢ in (H, T') by P(H, T'). It can be readily

verified that P(H, T') is a convex cone in (H, T).
Our main results follow,

THEOREM 1. If P(H, T) is nonempty then

(a) m is even
and

(b) every eigenvalue of T has modulus 1.
If, in addition, T has only real eigenvalues then

(c) every elementary divisor of T is linear.
Conversely if (a), (b) and (c) hold then P(H, T) is nonempty. More-
over, 1f P(H, T) is nonempty then W(H, T) is the linear closure of
PH, T).

In Theorem 2 we shall investigate the dimension of (H, T) in
the event P(H, T') is not empty. To do this we must introduce some
combinatorial notation. Let I, , denote the set of all sequences
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i

0= (W, -,»,) of length m,1 <w,<n,2=1, .-, m. Introduce an
equivalence relation ~ in I, , as follows:a ~ 8 if there exists a
o € H such that

o’ =g

where a’ = (&, =+, Qo). Let 4 be a system of distinct representa-
tives for ~, i.e., 4 is a set of sequences, one from each equivalence
class with respect to ~. We specify 4 uniquely by choosing each
element ac 4 to be lowest in lexicographic order in the equivalence

class in which « occurs.
THEOREM 2. If P(H, T) is nonempty and T has real eigenvalues
Vit Ve then v, = +1, i =1, -+, m. Suppose
A/il:.--:'yi:]_’ 'Yj:—ly j(i’[:“o.o’ip_
Let 11, be the number of sequences w in A such that the total number
of occurrences of i, -+, 1, ih ® s even. Then
(5) dimAH, T) =y, .

CorROLLARY. If H = S, in Theorem 2 and T has p eigenvalues
1 and n — p eigenvalues —1 then

dimen, 7 = 50U R L)

k=u

In case m = 2, H = S,, A(H, T) is the totality of symmetric bilinear
functionals ¢ for which

(P(Txly Tx,) = 7’(3;1: x5) , T, 2V,
and P(H, T) is just the cone of positive definite ¢ in W(H, T) i.e.,
Pz, ) = 0

with equality only if 2 = 0. In this case we need not assume that 7'
has real eigenvalues in order to analyze (H, T'). We can easily prove
the following result by our methods, most parts of which are known
(see e.g. [1], Chapter 7).

THEOREM 3. Assume that m = 2 and H =S,. Then P(H, T) 1is

nonempty if and only +f
(a) T has linear elementary divisors over the complex field,
(b) every eigenvalue of T has modulus 1.

Suppose that T has distinct complex eigenvalues

Ve = a;, + b, (and 7, = a, — b;)
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of multiplicity e, k=1, ---,p and real eigenvalues
D
Pfk:/rk, k——‘226]~+1,~”,n.
i=1

If P(H, T) is nonempty then the elementary divisors of T over the
real field are

AN—2\a, + 1, e, times, Ek=1,---,p,
A—1, q times,
A+1, ! times,
where
2, rq+l=mn.

i=1

Movreover, A(H, T) is the linear closure of P(H, T),

dim AH, T) = (¢ +1) + W(W+1 n ie,; ’
2 2 =
and there exists a basis E of V such that W(H, T) consists of the
set of all @ whose matrix representations with respect to E, [p]Z,
have the following form:

(6) [@]E=k2=‘.l'(Xk®Iz+ Y.QF)+ H,+ H, .
In (6), the dot indicates direct sum, @ denotes the Kronecker
product, F' = _01 3], X, is e,-square symmetric, Y, is e,-square

skew-symmetric, H, and H, are ¢-square and l-square symmetric re-
spectively.

2. Proofs. Let V™(H) denote the symmetry class of tensors
associated with H [2]. That is, there exists a fixed multilinear func-
tion 7: X V— V™(H) symmetric with respect to H, for which

(i) the linear closure of z(XrV) is V™(H)

(ii) the pair (V™(H), r) is universal: given any space U and
any multilinear function ¢: X"V — U symmetric with respect to H,
there exists a (unique) linear %,: V™(H)— U satisfying

(7) hoT = .

m

XV——0 VnH)
N/
N\, he
U
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We shall denote z(,, «--, z,) by &x---x2,, and x,* ---x 2z, is called
a decomposable tensor or a symmetric product of x, «--,2,. If we
take o(x,, +++, %,) to be Tz, x-+-x T, in (7) then h, is denoted by
K(T) and is called the induced transformation on V™(H).

Before we embark on the proof of Theorem 1 we can define A(H, T')
in terms of V™(H). First observe that the mapping § from the space
of multilinear functionals ¢ symmetric with respect to H to the dual
space of V™(H),

0:M,(V, H, R) — (V™(H))* ,
defined by
ﬁ(@) = hso ’

is one-to-one linear, and onto. That is, the correspondence ¢ «— h, is
linear Dbijective. Now, the subspace W(H, T) of M,(V, H, R) is
defined by

¢(Tx19 M) Txm) = @(xu M) xm)
or in view of (7) by
ho(Ta %+« o % Twp) = hy(®y% -+ %2,,) ,

for all ;e V,2=1, ..., m. In other words, since the decomposable
tensors span V™(H) (see (i) above), ¢ € A(H, T') if and only if 6(p) = h,
satisfies

hoK(T) = h. ,

or
(8) ho(K(T)—1I)=0
where I is the identity mapping on V™(H). We have proved the
following.

LEMMA 1. A(H, T) is monempty if and only if K(T)— I is
singular. Also,
(9) dim A(H, T) = n(K(T) — I)

where 1 is the nullity of the indicated transformation.

LEmMA 2. If P(H,T) is nonempty then m 1is even and every
eigenvalue of T has modulus 1. Moreover, corresponding to real
eigenvalues, T has only linear elementary divisors.

Proof. If pe P(H, T) and z == 0 then
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QD(—'%, M) -~x): (_1)m¢(x’ ttty x)

and hence (—1)" > 0 and m is even. Suppose that v is a real eigen-
value of T with corresponding eigenvector . Then

@(Txy M) Tx) = @(A/xy Tty 7‘%)
= 7"‘@(;{;’ -..’x) .

Since pe P(H, T'), p(T%, --+, Tx) = ¢p(, -++,2) > 0 and hence v =1
and v = +1. If v were involved in an elementary divisor of degree
greater than 1 then there would exist linearly independent vectors u,
and w, such that Tu, = vu,, Tu, = Yu, + u, and hence

P(Ttyy =+, Tuy, Tws) = P(Vtyy =+ vy YUy, Yihy + U,)
Now
¢(u1, vy Uy, uz) = 7m¢(uu ey Uy, u2)
= @YUy, *+ vy Vlhyy V)
so that
0 = @(Ythy, =+ oy Yihyy, YUy + W) — @YUy, ==y YUy, VUy)
= @Yy, oy YUy, Uy)

= 7m~l¢(u17 Tty 7/61) ’

a contradiction.
We now show that any complex eigenvalue of 7' has modulus 1.
Since v = a + b is now assumed not to be real there exists a pair of

linearly independent vectors v, and v, in V such that
Ty, = av, — bv

(10) 1 1 2
Tv, = bv, + av, .

Let V be the extension of V to an nm-dimensional space over the
complex field. Now ¢ e 2A(H, T) means that

(11) P(Twy, v, Ton) — P&y <o+, @0) = 0

is an identity in ®,, -+, ®,. If we express the vectors in V in terms
of a basis in V (using in general complex rather than real coefficients)
the identity (11) continues to hold since it is a homogeneous polynomial
of degree m in the components of «,, ---, «,, vanishing for all real
values of these components. Of course it is not true that

@(xy "'yx)>0

continues to hold for nonzero x e V. Now define
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e, =v, + v,V

12 _
(12) e, = v, — W,V
and observe that ¢, and e, are linearly independent in V and satisfy

Te, = e,
Te, = e, .

Let w = (w,, +++, ®,) be a sequence for which each w, is either 1 or
2,1=1,.--,m:

@( Tewly ) Tewm) = H/kim_k(;)(ewla ) ewm) ’

where £ of the w; are 1 and m — k are 2. But by the above re-
marks

P(Te,, -, Te,,) = p(eu, ~++, €,,)
and taking absolute values we have

(" =1 [ple, -+, €, =0.
Thus if |v] = 1 it follows that
13) Peuys s €a,) =0

for all w for which w; is 1 or 2 for 2 =1, --., m. From (12) we have
v, = (¢, + €,)/2 and hence using (13) we see that

P(vy, ~--,v1):¢<6‘+32 G”LGZ)

(14) 2 T 2

=0.

However v, V and @€ P(H, T) and therefore (14) is a contradiction.
Thus |v| =1 and the proof of Lemma 2 is complete.

LemMA 3. If m is even, and T has real eigenvalues v, «--, r,,
and every elementary divisor of T is linear then P(H, T) is mon-
empty.

Proof. Since T has linear elementary divisors there exists a
basis for V of eigenvectors ¢, ---,¢,. Let g, .-+, g, be a dual basis
in V*. Let g denote the multilinear functional whose value for any
Xy, o0, X, in Vois

;f—.:ll 92;) .
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Clearly gre M,(V, H, R). Set

Thel’l if (L'j = Zz__:l Sjkek,j = 1, cee, M, and Tek = 71, k = 1, e, N,

(p(Tmlv ctty Txm) = 9: (Txa)
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Hence @ e A(H, T). Moreover, if x = 7, ¢,e, then

i

P, -+ g.)"

M: ”M*

ct .

o~
0
-

But m is even and hence @e P(H, T). To complete the proof of
Theorem 1 we note that if o€ P(H, T) and if e, -+, e, is any basis
of V then o(x, x, ---, z) is a homogeneous polynomial of degree m in
¢, ++-,¢,. Hence, on the compact hypersphere S defined by 3\r,¢/=1
in V, o must assume a positive minimum value m,. By a similar
argument for any « € A(H, T), |4 | must assume a maximum M, for
Se,ei=1. Now let 4 be an arbitrary element of A(H, T') and choose
a positive constant ¢ such that a > My/m,. If 0=2e V and ||z|*=
Sr,cithen (z/||x]))eS and

ap(@, -+ -, ©) — ¥ (o, ---,x>=““””’"g’(||in P H;{;{{)

— el «/f(” “,---,-.T;C”CT)

Z |l@||™(am, — My)
>0.

In other words,
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ap — ¥ e P(H, T)

so that + is a linear combination of elements in P(H, T).
To proceed to the proof of Theorem 2 we use Theorem 1 to con-
clude immediately that since 7' has real eigenvalues the elementary

divisors are all linear and thus there exists a basis of eigenvectors of
T:

Te, = ver E=1,:--,m.
It is not difficult to show [2] that the decomposable tensors

€, =€, * - xe, , wed,
constitute a basis for V™(H).

We compute that

K(T)el = Te,, * -+« x Te,

(15) = Yoo, * 00 %Yy €0
= 11 vpt©es
i=1

where m,(w) denotes the multiplicity of occurrence of ¢ in w,t =

1, ---,n. The formula (15) shows that (K(T) — I)e} is 0 or a nonzero
multiple of ¢} according as

H ,\/Znt(w)

t=1
is 1 or —1. Now we can assume without loss of generality that the
eigenvalues v,, +--, v, are so organized that v, = -+ =7, =1,7,, =
eee =7, = —1. (This is of course merely a notational convenience.)
Then

[ ore = I[ (—1)mw
t=1

t=p+1

_ (—_1)m—-tz§_1mt(w)
£ my(w)
= (=DE™,

Thus [r,vm =1 if and only if 32, m,(®) is even. This last
statement just means that 1, ---, » (i.e., %, +++, 7,) occur altogether an
even number of times in w.

The proof of the corollary is completed by first noting that if
H =S, then the set 4 is the totality of nondecreasing sequences of
length m chosen from 1, ---,n. Thus by Theorem 2 if P(H, T) is
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nonempty and T has real eigenvalues v,, ---, v, then these eigenvalues
are *+1 and we lose no generality in assuming thatv, =--- =v, =1,
Vo1 = -+ =7, = —1. We want to count the total number of w in
4 for which

(16) Sym(@) =0  (mod2).

Now, a sequence satisfying (16) may be constructed as follows. Sup-
pose that k is a fixed integer, 0 < 2k < m, and we count the number
of sequences in 4 in which 37, m,(w) = 2k. The total number of non-
decreasing sequences of length 2k using the integers 1, ---,p is

(p+2k—1 :(p—1+2k
2k p—1

and any one of these can be completed to a nondecreasing sequence
of length m by adjoining a nondecreasing sequence of length m — 2k
using the integers p + 1, ---, n. There are a total of

wn—p+m—2k—1\_ (mn—p—1+m— 2k
( m — 2k > < n—p-—1 )
ways of doing this. This completes the proof of the corollary.

To proceed to the proof of Theorem 3 we remark that Theorem
1 cannot be directly applied because we are not assuming that the
eigenvalues of T are real; in general this is not the case. However
the statement (b) does follow from Theorem 1. If E is any basis of
V, A is the matrix representation of T, and C = [p]Z, then to say that
peA(H, T) is equivalent to the assertion that

a7 ‘ A'CA=C.

If pe P(H, T) then C is a positive definite symmetric matrix and can
therefore be written C = K? where K is also positive definite sym-
metric. Then (17) is immediately equivalent to the statement that
KAK™ is a real orthogonal matrix and (a) is evident. Conversely if
(a) and (b) obtain then there exists a real nonsingular matrix S such
that S—AS is a direct sum of a diagonal matrix with +1 along the
main diagonal together with certain 2-square matrices of the form

a, b,
18 .
) ]
Since |7,| =1,k =1, ..., n, the matrix (18) is orthogonal and hence
S—AS = U where U is an n-square real orthogonal matrix. If we set
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(SY)='S-' = C then C is a positive definite symmetric matrix and we
compute that

A"CA = (SH'U'S"(S")'S~'SUS
— (S——l)'['S-~l
=C.

Thus if [p]; = C then e P(H, T). The dimension of W(H, T) can
equally well be computed as in the general case by finding n(K(T) — I)
where K(T) is the induced mapping on the complex space of 2-sym-
metric tensors over V,i.e., V*%S,). The mapping K(T) is just the 2nd
Kronecker power of T restricted to the second symmetric space. This
mapping is customarily denoted by P,(T)[5]. Since T has a basis of
eigenvectors v,, +--,v,, so does Py(T) and, for 1 £1 <5 £ nm,

P(TYyv;xv; = 7770,%0; .

Thus dim (H, T') is precisely the number of pairs of integers (i, j),
1<17<j5<mn, for which

19) v, =1.

But T has the distinct eigenvalues a, + b, of multiplicity e,, k =1, - -+,
p. This yields a total of

P
2.e
t=1
pairs (7,7) for which (19) is satisfied. Also, 7 has 1 as an eigen-

value ¢ times and —1 as an eigenvalue ! times and this yields an
additional

glg + 1) + Ww+1
2 2

pairs (7, 7) for which (19) is satisfied. This proves that

dim2((g, 1) = 44 ED L WA D 4 50,

We now turn to the derivation of (6). First, we assert that since
T has linear elementary divisors over the complex numbers [4] there

exists a basis £ of V such that the matrix representation of 7 has
the following form:

?, 423 b. ] . .
(20) A=3"LQ + I, 4+ —1
k=1 —b, a
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where I, is the s-square identity matrix. We set C = [p]Z and
partition C conformally with (20):

r~Cu"'Cld h

Ca++ Cu

ZT
I cr ¢

C;; is 2-square, %, =1, ---,d = 32, ¢;, C, is g-square symmetric and
C, is l-square symmetric. Set L = >7..1, ® (a,l, + b,F') and observe
that for (17) to be satisfied Z must satisfy

(21) L'Z1,4+ —-I)=Z.

Now, L™ ® (I, + —1I,) has eigenvalues +(a, + ¢b,)[3, p. 9] and none of
these is equal to 1. Hence (21) has only the zero matrix as a solu-
tion. Similarly we see that C, = 0. Next, consider a typical C;;,5 > 1,
call it K. Then K must satisfy an equation of the form

(22) (e, — b,F)K(a,I, + b,F) = K .
The matrix

(a.l, — b.F) R (a,I, + b,.F)
has eigenvalues
(23) (a, & ib,)(a, + ib,).

If s, (23) cannot be 1 and in this case K= 0. If » = s then pre-
cisely two of the four complex numbers (23) are 1. Thus the nullity
of the matrix

(24) (al, — b.F) R (a., + b.F) — I,

is 2. But K =1, and K = F are two linearly independent solutions
to (22) for » = s. Also note that since C is symmetric C;; must be a
multiple of I,. It follows that the submatrix

Cu e de

Cdl e Cdd

is itself a direct sum of 2¢,-square matrices of the form
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Ty 0, =, Yo h
0 Ty — Y2 Ly
L2 _y12: Lo 0
Y2 r, 0 L2

X 0

L 0 =, )
This matrix is of the form X, Q I, + Y, ® F where X, = (x;;) is e,-

square symmetric and Y, = (y;;) is e,-square skew-symmetric. This
completes the proof of Theorem 3.

3. Some examples. Let m = 2p and let S, be the symmetric
group of degree p on »p + 1, ---, m. In general if V is a Euclidean
space with inner product (x,y) then V™(H) is also a Euclidean space
[2] in which the inner product of two symmetric products x,* ... %2,
and y, %---*y, IS given by

s

1
(25) (T Hee ek By Yy kov ok Yy) = — 2, 1 i You) -
Mm! oeH i=1

1

Set H= S, x S, (direct product) and define p € M, (V, H, R) by
(26) @(xly ety Xpy L1y ** %, xm) = (xl*..'* Lpy Lppy ¥ 000 *mm) .
Clearly @ is symmetric with respect to H and

¢(x,'°',x,%', '°°,5X5): Hx*---*x[lz
=0.

Moreover x*---x2 = 0 if and only if ® =0 [2]. Hence @ is positive
definite. Now suppose that ¢ e P(H, T) where T:V—V. Then

(T, » -, T, Txpﬂy oy T2n) = @@y =00y Z)
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and from (26) we have

@T) (TwyxeeexTwy Toppyxeeek T,) = (Byko ook By, Bpyy koo xy,) o
It follows from (27) that

(28) KT*T)=1

where T* is the adjoint of T and K(T) is the induced transformation
in the symmetry class V7(S,). It is not difficult to show [7] that (28)
implies that T7*T = wI, where |w|=1. However, since T*T is
positive definite, T7* T = I,, and hence T is orthogonal. It follows
that T must have linear elementary divisors over the complex num-
bers.

In Theorem 1 we proved only that if P(H, T) is nonempty then
T has linear elementary divisors corresponding to real eigenvalues.
We conjecture that in fact the preceding example is typical in the
sense that T always has linear elementary divisors over the complex
numbers if P(H, T) is assumed to be nonempty.

We now give an example to show that if e U(H, T), but o is
not positive definite, then the elementary divisors of 7' over the com-
plex numbers need not be linear. Let H= S, and let dimV = 4.
Choose T to have

()\‘2 + 1)2

as its only elementary divisor. Then there exists a real basis E =
{e, <-+, e} of V so that

000 —1
iz _ |1 00 0
010 -2
001 0

Let A =[T]i. Then from (17) it suffices to determine a symmetric
matrix C such that

(29) ATCA=2C.
Define C as follows:
010 -3
1 01 0
¢= 010 1
-3 0 1 0

Then C is symmetric (but not positive definite) and (29) is easily
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verified. This example also shows that P(H, T) is empty. It is routine
to verify that dim 2(H, T) = 1 in this case but the formula (5) pro-
duces the integer 4.
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