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ON RIGHT ALTERNATIVE RINGS WITHOUT
PROPER RIGHT IDEALS

ERWIN KLEINFELD

It is shown that a right alternative ring R without proper
right ideals, of characteristic not two, containing idempotents
e and 1, e Φ 1, such that ex ~ e(ex) for all x eB must be alter-
native and hence a Cayley vector matrix algebra of dimension
8 over its center.

In the classification of simple right alternative rings of characteristic
not two it is still an open question whether there exist any which are
not alternative, in contrast to characteristic two, where there do exist
division rings which are not alternative [8]. A number of people have
worked on this problem and were able to prove the alternative identity
whenever they assumed an additional hypothesis such as finite dimen-
sionality [1, 3], other identities [6, 7], or internal conditions on the
ring [4, 5, 9]. It seems natural to try to tackle the case where there
exists an idempotent e Φ 1 in R such that (β, e, R) = 0. If one could
establish in this case that all simple R of characteristic not 2 are
alternative, then this would be a natural generalization of the theorem
of Albert [2] for alternative rings, in which he showed that a simple
alternative ring with idempotent e Φ 1 had to be either associative or
a Cayley vector matrix algebra of dimension eight over its center.

In this paper we do not quite achieve this result, for we need to
strengthen the hypothesis of simplicity to the assumption that the ring
has no proper right ideals. On the other hand there is a good deal
of information here that should prove useful in either romoving the
hypothesis of (e, β, R) = 0, or in constructing an example of a simple,
right alternative ring of characteristic not two which is not alternative,
if indeed such an example exists.

The main tool here is the fact that (β, e, R) = 0 allows a Peirce
decomposition into four "subspaces" Rifj, ί,j — 0,1 as in the associative
and alternative cases. The multiplication table for these subspaces
differs in six places from the same table for alternative rings. By
constructing appropriate right ideals we show in fact that the tables
are the same. In the process we reduce the problem to the one studied
by M. Humm-Kleinfeld [4], although by that time one can deduce from
our work quite readily that indeed R must be alternative.

2 Preliminary identities* In the course of the paper we require
a number of identities which are true in arbitrary right alternative
rings of characteristic not two:
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88 ERWIN KLEINFELD

( 1 ) (αδ, c, d) + (α, δ, (c, d)) = α(δ, c, d) + (α, c, d)b.
(2 ) (a?, αδ, a) = (a?, δ, α)α.
( 3 ) ([αδ]c)δ = α([δc]δ).

Proofs of these identities may be found on page 940 of [5].
( 4) (ab)e = a(bc) + a(cb) - (ac)b,

also holds as this is the linearization of the right alternative identity.

3* Peirce decomposition* Henceforth in the paper, we assume
that R is a right alternative ring of characteristic not two, and that
R contains 1 and an idempotent of e Φ 1, such that (β, e, R) = 0. If
we define Ri3 = {x e R \ ex = ix, xe = jx} and i, j = 0,1, then R may be
decomposed into a direct sum by R = Rn + R10 + R01 + R0Q. Humm-
Kleinfeld has shown on page 166 [4] that the multiplication table of
the Ri5 has the following containment properties:

Rn

Rio

Roi

Roo

Rn

Rn + Roi

0

# 0 1

0

-Rio

-Rio

jRll + -Roi

-Roo

JROI

-Roi

.Rio

Rn

Roo + -Rio

Roi

Roo

0

Rio

0

-Roo + -Rio

Thus the first entry gives the information that (Rn)
2 c Rn + RQ1,

etc. Besides, it is true that x2

H e Riiy and whenever i Φ j that x2

i5 e Ru

as well as x\ό = 0.
Throughout the paper whenever we need to refer to this result

we shall use the phrase "it follows from the table that. . ."
We should bear in mind that in an alternative ring there are six

places where stronger assertions can be made. These are: (Rn)
2czRnj

R2

0 c jβ01, -Roi c R10, (Roo)2 c Roo, RnR01 = 0, and R00RlQ — 0.

4* Main section*

LEMMA 1. In R we have (JBU)01JB10 = 0, and c Rl0.

Proof. Let xllf yn e Rn, z1Q e Rί0. From the table it is obvious that
(#m 2ioι Vn) — 0. Hence, using the right alternative identity,

0 = (Xll9 Vn, Zio) = (»ii2/n)«io ~ «u(2/n«io)

Let xuyn = α u + δ01. Then, by substituting this in the previous equation,
it follows t h a t anzι0 + b01z1Q - XuiVn^io) = 0, so t h a t δ01z10 = %n(VnZio) -

anzlQ e R1Q Π RQQ = 0, by use of the table. Hence, δ01210 = 0, thus proving
the first part. Also let zQ1eR01. Then
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(#11 > Vui 2oi) — (#ii2/ii)^oi — #n(l/ii#oi) ~ &n#oi "f" 0̂1̂ 01 #n(l/ii^oi)

From the right alternative identity it follows that

(#11, Vm S01) = - (#11, Z01, 2/π) = - (#ii«oi)l/ii + #ii(«oi2/n) = #n(«oi3/ii) € jβ1 0,

using the table. Hence solving the previous equation for b01z01, we see
that 601201 = (xιi9 yn, z01) - anz01 + XniVn^i) e 221O, using the table. This
completes the proof of the lemma.

DEFINITION. Let T01 = {x01 e R01 | #01Jβ10 = 0, and x01RQ1 c R1Q} and
form T = Toi + Γ01JR0i +•••+(••• (T01R01)RQ1 . . .)ΛOi + + where
each term except the first is obtained from the preceding by right
multiplication by R01.

LEMMA 2. T is a right ideal of R such that T czR01 + R10 + 22n.

Proof. For arbitrary ί01 G Γ01, xn e Rn, yw e R1Q and z01 e JR01 we have

V^oi#n/l/io : = V ôi> #11 > 2/io/ :=:::: v^oi> Viot #11) : = : : V^oil/io/#ii ~ι~ ^oi\l/io#ii/ ^^ " >

using the right alternative identity and the definition of Γ01, as well
as the table. Also,

(^oi#n)^oi : = \toif #11 > ^01) ~r ίoi(#n^oi) = (̂ oi> #ii» ^01/

: = (^oi j ZQ1, ί^n) — V^oi^oi/#ii ι ^oi(^oi#n/

: = : ^io#n 1" ίoiV^oi#n/ ~ ^oi(^oi#ii) ^ -"'io>

using the same reasons as before. But then t01xn e TQ1 and thus T01Rn c
Γ01. Also, from the definition of T01 it follows almost immediately that
T01i?10 = 0, and TOίR0ί(zRίO, while the table implies that TOίRoo = 0. Let
P(n) be the n + l s ί term in the sum that defines T, and let U(n) =
TOί + Γoî oi + + P(w), be the sum of the first n + 1 terms in the
definition of T. We shall prove by induction that P(n)Rn(z U(n),
P(n)R1Qd U(n) and P(n)Rma U(n). We have already seen this is true
for n = 0. Assume it is true for n and then we shall prove it true
for n + 1. We abbreviate P(n) by simply P. Then using (4), and
the table, (PR01)Rn c P(RoιRn) + P(RnRoi) + (PRn)Roi c Pi2Oi + Pi2io +
(PRn)Roι c P(w + 1) + Ϊ7(n) + Ϊ7(W)JB0I C I7(W + 1). Also similarly,

(PRQ1)RlQ c P(R01RlQ) + P(ΛloBoi) + (PR^Roi c

+ (PR10)R01 c tf(w) + Z7(^)i?01 c C

and

(PR01)R00 a P(ROίRoo) + P(R00R01) + (PR00)R01 c P# O i

4- (PRoo)Roi c P(w + 1) + t^(w)501 c
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Consequently, P(n + l ) 4 c U(n + 1) for A = Rn, R1Oί and R0Q. This
completes the induction. But then, TAaT. Of course, also TR01aT.
But then, TRcT and, hence, T is a right ideal of R. Also, P(l) =
TQ1R01c:R10 by definition of T01. Hence P(2) a R10R0ί a Rnj and so
P(3) c i ^ o i c 221O. Thence P(2n + 1) c JB10 and P(2w) c 22U, so that
ΓcΓoi + ΛJio + J?nc JBoi + Rio + #ii. This completes the proof of the
lemma.

We note that there is complete symmetry if the idempotent e is
replaced by the idempotent 1 — e. In terms of the Peirce decomposition
this has the effect of simply permuting subscripts. We shall frequently
use this play in order to obtain new results from theorems already
proved, and justify it by stating that "we may reverse subscripts...."
Thus we may assert:

COROLLARY 1. If R has no proper right ideals then R2

n c Rn.

COROLLARY 2. // R has no proper right ideals then R2

00 c Roo.

'00Proof. The right ideal T of Lemma 2 cannot be R since 1 — e e
would then have to be zero, contrary to assumption. But then T = 0,
hence T01 = 0. But Lemma 1 implies that (RlJoi 6 T01, so that (ϋϋίjoi = 0,
hence R\x c Rn. But then we may reverse subscripts and obtain the
second corollary as well.

In the remainder of the paper we shall assume tacitly that, in
addition, R has no proper right ideals, so that we may freely use
the results of the last two corollaries.

LEMMA 3. Rn is associative.

Proof. Let A = Σ (#u, #n, #n) + #n(#n, Rn, Rah Since R1QRn - 0
follows from the table, while R2

n c Rn because of Corollary 1, we can
easily verify that (JB10, Rn, Rn) = 0. Select wlu yni zni e Rn and x1Q e R1Q.
Then substitute a = wlu b = x10, c = yn, d = zn in (1), obtaining

(WnXm Vn, «n) + (Wn, X10, (Vn, ̂ 11)) = Wufeo, 2/n, «n) + K , 2/n, «ii)»io -

However, by inspection (jβu, R1Q, Rn) — 0, as a consequence of the
table, so that only one term survives in the preceding equation. Thus
(JBU, Rn, Rn)Rio = 0. We have already observed that (Rn, Rι0, Rn) = 0.
If we apply the right alternative identity in this situation then it
follows that (Rn, R1U Rl0) = 0, and hence (Rn,(Rn, Rm Ru), Rio) = 0.
Expanding the last associator, thus Rn(Rn, R1U Rn)'Rio = 0. But then,
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AR10 = 0. Since AaRn, it follows from the table that AR00 = 0.
Besides, it is well known that even if Rn where an arbitrary ring,
not necessarily right alternative, that A is always a two-sided ideal
of Rn, so that ARnc:A. Let us form

B = A + ARQ1 + (ARQ1)RQ1 + . . . + ( . . . (AR0ί)R01 •) +

where the ̂ ί Λ term is obtained from the preceding by right multipli-
cation by ROί, except for n = 1. As in the proof of Lemma 2 the
reader may easily check that B is a right ideal of R using induction.
But the odd terms in the equation defining B are contained in Rn,
while the even terms are contained in JS10, using the table. Hence,
B a R10 + Rn. Since B — R implies 1 — e — 0, we must have B — 0,
hence A = 0. Thus Rn is associative, completing the proof of the
lemma.

COROLLARY. RQQ is associative.

Proof. We may reverse subscripts in the lemma.

LEMMA 4. ( i ) Rn + jβ01 = R10R01 + R\Q + #oo#io.
( ϋ ) RQQ + i? 1 0 = RoiRlO + J?θl + -Bll-Boi

(iii) i?00 = R01R10.

(iv) i?n = i2loi2Oi

Proo/. Define inductively 22?O - ΛΓo""'^ and form A = β 1 0β 0 1 +
RLO + + i2f0 + First we aim to show that A must be a right
ideal of R. By repeated use of (4) and table we see that

(R10R01)Rn c R1Q(R01Rn + RURQI) + (R10Rn)R01 c R10R0ι + i2f0 >

(i210i20i)^io c RnRιo c: i?10, (R1QRQι)R01 c RnRoι c i?10 ,

(R10R01)R00 c RnROo ~ 0 ,

t h u s showing t h a t (R10R01)R c i210220i + JB10 + i2?0 c A. Also JS102?n = 0,

β10jR10 = i2?0> Λio^oi c î> -Rioi?oo c J210, using the table. But use of (4)

and t h e table shows t h a t

c RioiRioRn + RnRί0) + (R1QRn)R10 a R2

lQ, Rl

(Rlo)RQ1 c R1Q(R1QR01 + RoιRίQ) + (Rl0RQl)Rl0 c R1QRLl

+ RioRoo + RnRio c JB10 ,

while (i2fo)i2oo c (JBU + βOi)βOo = 0. Now define

The above calculations show that Q(2)2? c Q(2), for B = Rn, R01 and



92 ERWIN KLEINFELD

# 0 0 . Assume inductively that Rn

QBczQ(n) and we proceed to prove this
inclusion for n + 1 in place of n. Besides the induction hypothesis,
our main tools are (4) and the table. (R?QRlo)Rnc.R?o(RioRn + RuRio) +
(#r o # n )# ι o c #f o# l o + (R?oRu)Rio c #Γ0

+1 + Q(n)Rl0 c Q(n + 1). Similarly,

(#Γ c#1 0)#0i c #fo(# l o#oi + R01R10) + (#Γo#oi)-Sίio ̂  #Γo#n + #ίo#oo

+ Q(tt)Λ10 c Q(ra) + Q(ra + 1) c

Finally, (#fo#lo)#Oo c RfQ(R10RQQ + RQQR1Q) + (#fo#Oo)#io c #Γo#io + #fo#oi +
Q(w)#1 0c Q(w + 1). This completes the induction. Armed with this
information we are now ready to prove that A is a right ideal of R.
Since Q(2)JScQ(2)cA and RlB(zQ(n)czA, we see that ABaA. Since
obviously #Γo#io = #Γo+\ it follows also that AR10czA. But then ARaA,
and thus A is a right ideal of R. Let us consider first the case A = 0.
In that case, R10 = 0. Form 5 = i?00 + JBoi Using the table and
Corollary 2 of Lemma 2, we may varify that B is a right ideal. Since
egJ5, we must then have B — 0. But then iϋ = jβu, so that e — 1,
contrary to assumption. Hence the case A = 0 cannot arise. The
only open possibility is that A~R. Now from the table we see that
R2

10 c Rn + #oi, while R*Q c (i?u + i201)Λ10 c i?10 + # 0 0 , and (221O + i200)Λ10 c
#ii + #oi Consequently, R\% c Rn + # 0 1 , and #i0

%+1 c # 1 0 + # 0 0 , for all
positive integers w. Since the Peirce decomposition is direct and A = R,
it must be that Rn + ROί = Σ Λw + ̂ Λ i , and # 1 0 + # 0 0 = Σ ΛίT1.
But note that by definition #??+2 - (R%R10)R10 c ( [ # n + # 0 1 ]# 1 0 )# 1 0 c #?0 +
# 0 0 # 1 0 and so Σ ^ i ? c ^ ? o + RooRio But then from two equations back
it follows that Rn + #Oi c #?0 + #oo-Rio + RioRoi- On the other hand it
is a consequence of the table that R2

10 + #oo-Rio + 2?10i201 c 22U + JBOI, SO

that # u + R01 = R2

l0 + #oo#io + RioRoi This establishes part (i). To
obtain (ii) from (i), simply reverse subscripts. By definition

C (ES-Ή^Rio

# 0 1 # 1 0 d ( # n + # 0 1 ) # 1 0 + #oi#io CI # 1 0 + # o l # i

But then # 1 0 + # 0 0 = Σ RlΓ'aR^ + # 0 1 # 1 0 c # 1 0 + # 0 0 . But then # 1 0 +
# 0 1 # 1 0 = #io + #oo Using the directness of the Peirce decomposition
we obtain that #Oi#iO = #oo This establishes part (iii). Part (iv)
follows from part (iii) by reversing subscripts. This completes the
proof of the lemma.

LEMMA 5. For all α01 e R01 and x119 yn e # n , (aQ1xn) yn = aol(ynxn).

Proof. It follows from Lemma 4—(i) that α01 e # 1 0 # 0 i + #Io + #oo#io
Using (4) and the table we see that for

&10> C10 ̂  # 1 0 y (^10^10/^11 — ^lOV^lO^ll + ^l l^ io) (θio^ll)Cio — ^ l θ ( ^ l l C l θ )
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By repeated use of this last equation, then ([bloclo]xn)yn = (blo[xnclo])yn =
δio(2/ii[&iiCi<>]). As previously observed, (yn, xn, c10) = - (yn, c10, a?u) = 0.
Thus, b1Q(yn[xnci0\) = βiod^uXuRo) = (MioXi/iAi) using the table, Lemma
2-Corollary 1, and the previous observation we made use of just before.
Combining two previous equations, we see that ([bloclo]xn)yn = (δ10c10)
(?/iAi). Thus 610c10 has the desired property. Let bQOeR00. Then (4)
and the table imply t h a t (bQOcιo)xn = bOQ(cιoxn -f %ncιQ) - (b0Qxn)c10 = 60 0(^nc1 0).

Using the table, Lemma 2-Corollary 1, and the previous equation
repeatedly, it follows that ([booclo]xn)yn = (boO[xnclo])yn = δoo(ί/ii[a?iiCioI).
As already noted, d/n, xίU c10) = 0, so that δoo(2/ii[a?uclo]) = &oo([2/iAiRo) =
(δoo îo)(̂ ii»u). Thus 600c10 has the desired property. Finally, if s u e Rn,
then (̂ nXiJi/n — zn(y1Lxn) e Rn because of Lemma 2-Corollary 1. Hence,
(«oî ii)2/π — ̂ oi(l/iAi) € i£u, But from the table it follows that (aoixn)yn —
M2/1A1) e #01. Since #01 Π β n = 0, it must be that (aolxn)yn - a^y^x^ =
0. This completes the proof of the lemma.

LEMMA 6. Rn and Roo are commutative.

Proof. Let α01 e B01, δ10 e JR10 and xn, n n e β n . As a result of (1),
(&10α01, a?u, 2/u) + (δ10, α01, (a?n, ?/n)) = &10(α01, α?u, 2/u) + (δ10, a?u, 2/u)α01. Use of
the table reveals that (610, xn, yn) — 0, since Rn is a subring. Moreover,
Lemma 3 and the table imply that (610α01, xn, yn) = 0. Thus only two
terms survive in the first equation and we see that (δ10, α01, (xn, yn)) =

»ii, 2/u). Moreover,

(δ 1 0, α 0 1 , (a?u, 2/u)) = (δloαol)(a?u2/ii - ynXn) ~ blo[aol(xnyn - ynxn)] ,

expanding the associator. But

- blo[a0ί(xnyn - ynxn)] = - δioKαo^n)^! - aoι(ynxn)]

using Lemma 5 and the right alternative identity. Now if we compare
the last three equations we conclude that {bmaQ^(xnyn — yn%n) — 0. At
this point Lemma 4-(iv) may be utilized to conclude that for every
zneRn, zn(xnyn — yn%n) = 0. In particular we may choose zn — e.
Then because of Lemma 2-Corollary 1, xtϊyn — ynxn — 0. Thus Rn is
seen to be commutative. By reversing subscripts, it follows that Roo

is also commutative. This completes the proof of the lemma.

LEMMA 7. (Ron Rn, Rn) = 0 — (i210, i?Oo> -Boo)-

Proof. Let a01eR01 and xn,yn€Rn- Then because of Lemmas 5
and 6, (aolxn)yn = aol(ynxn) = aol(xnyn), thus establishing (α01, xn, yn) = 0.
Hence, (JB01, Rny Rn) = 0. By reversing subscripts, (JB10, JB00, ROO) = 0
follows. This completes the proof of the lemma.
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D E F I N I T I O N . We define Qoo = nilpotent elements of Roo, and Qn =

nilpotent elements of Rn.

We note, since Rn, Roo are associative, commutative, subrings of

R, t h a t Qn is an ideal of Rn and Qoo an ideal of RQ0.

LEMMA 8. / / an e Rn, b01 e R01, c10 e iί1 0, then

dn = (an601)c10 = (a n , δOi, <ao) = - (^n, c1Q, δ01)

satisfies d\x = 0, so £&a£ c?n e Qn. Similarly, if

then doo = 0 and dm e Q0Q. Thus (RnRQ1)R1Q c Qn and (R00R10)R0ί c ζ)00.

Proof. As a result of (4), (c^AiKo = ^nΦoίCio + ÎO^OI) - («n0io)6oi.

But αn(δ01c10) e iϊnJBoo = 0, from t h e table, while αn(c1060i) e Rli c i2 u ,

— (αn0io)&oi s R10R01czRny using the table and Lemma 2-Corollary. Hence

(anbQ1)c10 e Rn and so (RnR01)R10c:Rn. Let / 1 0 = α u 6 0 1 and dn = (αn60 1)c1 0.

Then / 1 0c 1 0 = d u , while ^ = (floclo)dn - Mc10dn + duc1 0) - (f1Qdn)c10, using

(4). Since -BioΛn = 0, follows from the table, two terms vanish in the

last equation, so t h a t d\γ = fQ(dncι0). But flo(dnc1Q) = flo([f1QcίO]clo) =

/10(/10[Ci0]), because of the right alternative identity. Since

/ιo(Cio) ̂  RioRn = 0 ,

as a result of the table, it follows that d\x = 0, and so du e Qu. By
interchanging subscripts we obtain the second part. This completes
the proof of the lemma.

LEMMA 9. Let

Q — Qn + Qii-^io + -BoiQn + -BoiQn-Bio + Qoo + Qoô Roi + RioQoo

+ RwQooRoi + RnRoi + (RuRoι)Roi + RooRio + (RQQRIO)RIO

Then Q is a right ideal of R.

Proof. Most of the calculations involved are routine, and (4) is
an important tool. Unless the reasoning is complicated, we shall state
the appropriate inclusions without comment. (RnR01)Rn c R10Rn — 0.
(RnR01)Rl0aQn, because of Lemma 8. (RnR01)R01(zQ. (RnR01)R00ci

Rn(R01R00 + RooRoi) + (RiiRoo)Roi c Rn(RooRoi) c RnRoi, using (4) and the

table.

([RnRoi]Roi)Rn c (

i2oi c (R11R0ί)R01 + (RnR0])R10 + ([RuRol]Rn)Roi ,
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using (4). Now (RnR01)R1Q c Qn because of Lemma 8, while we observed
earlier in the proof that (RnRoι)Rn = 0. Consequently,

H C (RIIRQI)ROI + Q

([RnR01]RQ1)R10 c (RnRoi)(RoiRio

+ ([RnR01]R10)R0ί c (RnROί)ROQ + (RnRQ1)Rn + ([RnR01]R10)R01 ,

using (4). But we have already observed that (R^R^RQQCLR^R^, and
(RnRQ1)Rn = 0, while Lemma 8 implies (RnR01)R10 c Rn, so that

([RnRQ1]Rι0)R01 c RnRoi

Combining these observations it follows that ([RnRQ1]Roι)RίO c RnR01.

([RnRoi]Roi)Roι c: (Rί0R01)RQl c RnRQl.

([RnROί]RQ1)RQO c (R1QR01)RQ0 c RnR00 = 0 .

As we have already observed, ζ)n is an ideal of JRU, and so Qiii2 ncQ u .
QnRloc:Q. QnR0laRnR01. QnR0Q = 0. (QMR^R^ = 0. In order
to obtain the desired inclusion for (Qni2io)i2lo, we observe first that
u% = 0 follows from the table, hence αί0 = 0, so that a2

10 e Qn. By
linearization, then αlo6lo + δiô io e Q u . If qn e Qn, then qna10 e R101 so
that (?11αlo)δlo + δlo(?11αlo) = 5;1eQ11. However, using (4), (610α10)gn =
Ki^Qn + ίiAo) - (δio^n)αio = &io(#iAo), since i210βπ = 0 follows from the
table. Comparing the last two equations, (^nαlo)6lo = q'n — (&KAO)#H*

But

(610α10)gn c (R2

10)Qn c (RL1 + Roι)Qn c ΛπQn + J?OiQu c Q u + JB0 1QU .

Hence (guα10)610 € Qn + ROιQn, and thus (QnRιQ)Rl0 c Q u + BOiQn. Also,

(QnR10)RQ1c:Qn(R10RQ1 + RQ1RlQ) + (QUJROI)-RIOCIQII-RII + QnRoo + (RuRoι)Rιoj

as a result of (4). But QnRnc:Qn, QnRQQczRnRQ0 = 0, and (RnR01)R10c:Qn

because of Lemma 8. Hence (QnRlo)Roi c Q l t.

(QnRLO)Roo c Qn(R10R00 + RQ0R10)

+ (QuRoo)Rιo c: QnRiQ + QuRoi c QnRίo + RuRoi >

using (4) and the table. Hence {QnR^)Rw c: Qni210 + i2ui2Oi.

(JBoiQii)Λn C RMnRn + J?uQn) + (ΛoiΛn)Qn C Λ01Oπ ,

using (4). (R01Qn)R10(zQ. (RolQn)ROo c J?OiJ?oo. To handle (R01Qn)R01,

we recall from Lemma 4-(i) that J?01 c JBU + JB?0 + ôo-Kio> so that

( 5 ) (ΛoiQπ)Jϊoi C (ΛπQΛBo! + (IΛϊolQn)βoi + ([ΛooΛio]Qn)Λoi

Next we shall work on each of the three terms in the right hand
side of (5). Thus (RnQn)R01c:QnR01c:RnR01, or
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( 6 ) (RnQn)RoιaRnROί.

As previously noted, (R%)Qn - RUQuR^aiQnR^Rio + Qllf since α10δ10 +
6i0α10 e Q11# Thus ([R2

lo]Qn)Roi c ( [ Q u ^ R o ) ^ + QnΛoi. But by use of
(4), ([QnRl0]R10)R01c:(QnR10)(R10R0ί + RoiR^ + ilQnRiolRoJRiodiQuR^Ru +
(QuRio)Roo + ([Qn#io]#oi)#io. We saw previously in the lemma that
(QuΛio)JKii - 0, (QnRio)Roo c QUΛ1O + ΛπΛoi, and ([Qn#io]#oi) c Qπ. Thus
([Qii^iol^io)^!^:©!!^^ + ΛnΛoi Putting together the various inclusions
we see that

(7 ) ([Rlo]Qn)Roι c Q u β 1 0 + RnRQi .

Using (4) it follows that

C

because of the table. But then

Qii^io])J£oi C

R00(R10Roι)

+ RoiQnRio CI J2oo(-RoiQn-Kio) + -KoiQn-Bio ,

using (4) and the table. Observe that

( i ? 0 0 , ^oi> -Rio) ^ — (-Roo> -B1 0, iϊoi) ^ (RooRio)Roi C: Qoo >

using the right alternative identity and Lemma 8. Hence

ROO(RQIQHRIO) C: (-B00i2oi)(Qiii2io) + Qoo CI RoiQnRio + Qoo

Now piecing together various inclusions we see that

( 8 ) ([RooRio]Qu)Roi C RoiQuRio + Qoo

By combining (5), (6), (7), and (8) we now see that (R0]Qn)R01(zRnRQ1 +

QnRio + RoiQuRio + Qoo (R^iQnRi^Rii^-R^Rii — 0. (i2oiQn îo)βioCIjBoo-Rio
(RQ1QnR10)R00 = Roo(RoiQuRio), as a result of Lemma 6. However, in t h e
process of establishing (8) we observed t h a t R00(R01QnR1Q)c:Q00+R01QnR10.
Therefore (RoιQnRlo)Rooc:Qoo + ROίQnRio- Because of (4),

(RoιQιιRw)Roι C CRoiQiiX-Rio-Roi +

C (RoiQu)Ru + (RoiQu)Ro

We established earlier in the proof that (RoiQiJR
Λoi c 22uΛoi + Qii«io + ΛoiQiΛo + Qoo Hence

io([RoιQn]Roi)Ri

+ (i2OiQiil2 lo)lί1o + Qoo-Rio C Qn + i?oiQn

again utilizing inclusions previously established in the proof. There-
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fore (RQίQnRί0)RQίc:Qn + ROίQn + R0QR10. We have now established half
of the necessary inclusions for proving that Q is a right ideal of R.
The others all follow from reversing subscripts. This completes the
proof of the lemma.

LEMMA 10. If Q of Lemma 9 is zero, then the table becomes the
same as that for alternative rings.

Proof. Q = 0 implies RnR0] = 0 = RmRιύ, as well as αf0 — 0 = b2

01.
Now define A — RQl + JRQI + (Rlι)RQί + RoιR io We now proceed to establish
that A is a right ideal of iϋ. R01RnaR01. R01R10dA. RQ1RoιczA. RQίR00 = 0,
follows from the table. Because of (4), (Rlί)RnaR01(R0lRn + RnROι) +
(RQlRn)R01c:R2

0ι, while ( f t ) ] ί o l c 4 . Again using (4),

R^R^ + RlQR01) + (R01R10)R01ciRQ1R0

as a result of the table. Again utilizing (4),

because of the table. Again because of (4) and the table

But we just established that (i?oi)#u c i ^ so that

Thence ([-Bw]i2oi)i2n c (RIJR^. Again because of (4),

([R2

01]RQ1)Rί0 c (R2

01)(R01R10

+ (i2?i)«u +

But we already know that (R2

ϋl)R00c:R2

01, (RlJRndRl and (E*Q1R1Q)czRQ1,
so that ([BoMJBxo^cJBSi. Hence ([R2

01]R01)R10c:R2

01. Since ^ c i200 + R10

follows from the table and RnR01 = 0,

RO! C ([R10 + i?oo]-Roi)̂ oi C (ϋ?n + ROi)Roi C: i?oi

-Koo C (JBU + R01)R00 = 0 . (R01R10)Rn c ROoRn = 0 .

(R01RlQ)R10 c RooRίo = 0 .

(RQ1R10)RQ1 d R0QRQ1 a R01 .

Because of (4), (RϋιR10)RQ0 c RQί(R10R00 + #0o#io) + (ROιRoo)Rio c #0i#io. Thus
we have proved that A is a right ideal of iϋ. If A = 0, then i?01 = 0.
But then we may verify directly that J3 = i? u + iϋ10 is a right ideal,
for J?!! c i?n, RnRί0 c i?10, RIIRQO — 0, RlQRtι = 0, R1QRι0 c ϋ?n, RιoRQQ c J210.
As 1 - e ί ΰ , then i? = 0, and jβ00 = iϊ. Since β g i200, this leads to a
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contradiction. Hence we cannot have A = 0. But then A = R. We

recall that A = R01 + Λ^ + (R2

01)R01 + Λ01Λ10, while Λ?i c Λ10 + i?00,

(Roι)Roi C (J?10 + ROQ)HOI ^ -Bn + i2Oi> RoiRio C i?Oo

But because the Peirce decomposition is direct, we must have R10c:R2

Q1 +
i?oo. And thus i ^ c C R * ^ + l^ ioCCR^JV But as a result of (4),

(Rli)Rιo C R0ί(R01R10 + i? loi2Oi) + (^oi-Rio)-Roi ^ RQIRQO + RQIRH + i2oo-Boi C JBQI
We have shown that βJoci2Oi By reversing subscripts we also obtain
i?oiCi2lo. This completes the proof of the lemma.

LEMMA 11. R01QnR10 c Qoo απd RioQJRoi c Q u .

Proo/. Note t h a t (x01qny1Q)2 = - (XoiQnVm a?Oi, fful/io) + ([«oiϊiil/io]ί»oi)
(ffn2/io). Using (3) with α = a?01, 6 = ffu2/10, c = α?Oi, we see t h a t ([a?0i?n2/io]«oi)

(0π2/io) = »oi{([ϊπ2/io]»oi)(^n2/io)}. However, ([̂ u2/io]ί»oi)(?ii2/io) = (in, 3/io, «oi)
(ffnl/io) + (?n[2/io^oi])(ffii2/io). Since tfπ^/A] e i ? u , and (Rn, Rn, R10) = 0,
we use Lemma 6 to obtain {qn[yιQ%Qi]){qnyιQ) = (??i[2/io ôJ)2/io Going back
to an earlier equation, thus

and hence

ii, l/io, «oi

We shall now establish that XoiQuVio e QOo, by induction on the degree
of nilpotency of gn. Start off by assuming q2

n = 0. Then (1), with
a = b = qn,c = ylo,d = x01 yields (q2

n, yί0, x01) + (qn, qn, yl0xOi - x^Vio) =
?ii(ffn, 2/io, »oi) + (?ii, 2/io, »oi)?u = δgπίffπ, 2/10, a?oi) as a result of Lemma 6.
However, the left hand side of the equation is zero, since Lemma 3
implies (Rn, Rιu Rn) = 0, and the table implies that (R1U Rn, Roo) = 0.
But then 2qn(qn, ym x01) = 0, and so qn(qn, y10, xOί) = 0 = (q119 y10, xol)qllm

Now in the light of this we go back to (9), which may now be
rewritten as (xQ1qny10y = - (a?Oi<7ii#io, ̂ oi, ffn^io). But - {xQlqny^ #oi, ffu^io) =
(«oi?ii2/io, ?n2/io, Soi) = ([»oiϊii2/io][?nί/iol)ί»oi as a result of the right alter-
native identity and the table. Moreover, such an element belongs to
(JBOO-KIO)̂ OI c Qoo, as a result of Lemma 8. Thus (x^q^y^f eQ00. But
then it is obvious that x01qnyio £ Qoo

Assume inductively that x^q^y^ e Qoo whenever the degree of nil-
potency of qn is k <n and let us then consider the case when qn has
degree of nilpotency n. As before, the proof that

- (XoiQuyio, tiffin 2/io) e Qoo
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goes over. Now (qn, y10, x01) e Rn so that (qn, ym xol)qn e Rn. Lemmas

3 and 6 imply that Rn is both associative and commutative so that

ί(tfn, #io, ̂ oi)#ii]2 = (?ii, #io, «oi)2??i However, as a result of Lemma 8,

we have (qlu ym x01)
2 = 0, so that (qn, ym xQl)qn e Qn and its degree of

nilpotency is 2. But then by the previous calculation, or for that

matter by the induction hypothesis, it becomes clear that

?π, #io, »oi)ffii]#io} € Qoo .

Since (Rni Rn, R1Q) — 0 has already been established,

^oi ton, #10, «oi)(

Finally, [gM#i<>αoi)]Cίn+1)/2] = 0, and \(n + l)/2] < n in our situation, so
that we may use the induction hypothesis to obtain that

Now going back to (9) we see that (a?Oitfu#io)2 € QOo, since QOo is closed
under addition. But then xQ1qnyΪO <= Qoo, as before and the induction is

completed. This proves ROίQnRio c QOo By reversing subscripts we

obtain the second part. This completes the proof of the lemma.

L E M M A 12. (QnR01)RQ1 c Qn and (QQORio)Rιo c Qoo.

Proof. Let # u e Q u and α01, 601, a?Oi» #01 € Roι. Then because of (4),

(Quβoi)K = ϊn(αOiδoi + 601̂ 01) - (tfiAiKi. But ?n(αoiδoi + 6oi«oi) € -Bu^oo = 0.
Thus

(10) (?liαθi)6θl = - (9lAlKl

Now ([ίπOJoill/oi)2 = - ([?n»oi]2/oi, ^iΛi, #01) + ({[^Ai]#oi}{tfiAi})#oi. But as

a result of Lemma 8, — ([qnxOi]Voi, ffu»on #01) e (JBU, JB10, R01) c Q u . Hence

let - ([gn^oi]#oi, ?ii«oi> #01) = <?ίi. On the other hand (3) implies t h a t

oi]#oi}{̂ iî oi})#oi = (Qrπ^oi)([#oi(ζlriAi)]#oi). But then apply (10) wi th

^01, δoi = [#oi(^n^oi)]#oi. Thus

= (?n, #01(̂ 11̂ 01), #oiKi = [(?u, ϊii^oi,

us ing (2). Now ([tfA]#oi)2 = q'n + [(? u , ?ua?oi, #oi)#oi]^oi. Let

Wll, QlΆlf #0l) = = ίll

Then as a result of Lemma 8, we have fn — 0, and

(11) ([?ii»oi]l/oi)2 = <?ίi + (*iil/oi)«oi

In (11), replace gu by ίn. Then
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(12) ([tn%oi]y»ιf = S'n + [ ( ί u , tnXQ1J yQ1)yQ1]xQί .

In an arbitrary ring one may verify the Teichmiiller identity:

(wx, y, z) — (w, xy, z) + (w, x, yz) = w(x, y, z) + (w, x, y)z .

Hence let w = x = tιu y = x01, and z = yoι. Then

(*ii, XQU yoι) (in, in#oi, you ~r (ίn, in, #oi3/oi)

~ iii'^iij #01, you i (ίn, in> #oi/2/oi

Since ί̂  = 0, the first term of the left hand side vanishes. Since
(in, in, #oi2A>i)c(jβu, JBU, 2?Oo + #io) = 0, the third term of the left hand side
also vanishes. From (1) it follows that (t2

n, x0l9 y01) + (ίn, t n , (a?Oi, 2/oi)) —
ίii(*n, »oi, 2/oi) + (in, &oi, 2/oi)*n- B u t ί?± = 0, w h i l e

(in, in, (#oi> 2/oi)) ^ (-Kiu RUJ -̂ 00 + -Rio) = 0 ,

so the left hand side of the last equation is zero. If we let (tnx01)y01 =
α u , and ίu(a?Oi2/oi) = K, then i u (a n - 610) + (α1L - 610)ίu = 0. But ίu610 =

in(iπ[#oi2/oi]) = - (in, in, α?oi2/oi) e (Λn, i?u, i?00 + i?io) = 0, while δ10ίu = 0,
from the table. Thus tnan + antn = 0. Then from Lemma 6 we have
2έ11α11 = 0, so that tnan — 0. But then tn(tn, xQ1, yQ1) = ίuίαn — δ10) = 0.
Thus what remains from the Teichmiiller identity is — (tn, tnx01, y01) =
(in, in, Xoi)yOi. Substituting this into (12) we see that ([znx01]y0iy =
S'n - {[(in, i n , a?ol)2/oi]2/oiKi = Sίi - {(in, in, »oi)2/o2i}»oi, as a result of the
right alternative identity. But y2

01 e Qoo, as a result of the table, while
(in, in, &oi) = - (in, #oi, in) e i210. Thus - {(ίu, t u , #Oi)2/oi}#oi e RloQOoRoι-
But as a result of Lemma 11, RloQooRolciQllm Thus ([iu#Oi]?/oi)2 e Q n .
But then (tnx01)y01 e Qn. Now we may go back to (11) and obtain

e Qu and so {qnxQVyQι e Qn. We have shown that

By reversing subscripts we obtain (QQύRι0)Rl() c Qoo

This completes the proof of the lemma.

LEMMA 13. S = Q u + JB0 1QU + Qui210 + Qui2Oi + Qoo + î ioQoo + Qoo#oi +
QOQRIOI is a right ideal of R.

Proof. We observe that Q, as defined in Lemma 9, has six of
the eight terms appearing in S. Indeed we can extract the following
inclusions directly from the proof of Lemma 9.

Qll-Bll ^ Qll, Qll̂ OO = 0, (-BθlQll)-Bll C -βoiQll ,

(RO1Q11)RO1C1 QnRoi + Qn-Bio + RoiQuRio + Qoo, (RoιQn)Roo — 0 ,

(QnR^Rn = 0, (QnR10)R10(z Qn + R01Qn ,

(QnRlo)Roi a Q1U (QnR1Q)Roo c : QnRw + QuRoi
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Also because of Lemma 11, i2OiQii-#io c QQ0, so t h a t in fact

(#oiQπ)22oi C QπΛoi + QiAo + Qoo C S .

Besides, QnR10(zS, and Q u Jβ 0 1 cS Thus we have proved that

Then (QUJBOI^UCJB^H = 0, because of the table. (QnRQι)RL0(zQn, as
a consequence of Lemma 8. As a result of Lemma 12, (QnJ?2oi)iίoiCQu.
Using (4) and the table,

(QιιRoι)RθQ C Qii(.Boi-Roo + Ĵ oo-Roi) + (QIIRQO)RO\ C QURQI C S .

This completes half of the required number of inclusions. The remain-
ing ones follow by reversing subscripts. This completes the proof of
the lemma.

COROLLARY. S = 0.

Proof. Assume S =£ 0. Then it follows from the lemma that
S = R. But then from the directness of the Peirce decomposition we
must have Qn = Rn. Since eίQn, while eeRn, we have reached a
contradiction. Hence, S = 0.

LEMMA 14. Q = 0.

Proof. Suppose Q =£ 0. Then as a result of Lemma 9, Q = R.
Since the corollary to Lemma 13 gives us S = 0, looking at Lemma
9 we see that i? = RnR01 + (RnRQ1)ROi + iC^io + CB0o#io)#io. Since the
Peirce decomposition is direct, then i?ni201 — R10. But from this it
follows that iϋloi?io c (RnRoi)Rio c Qn, as a result of Lemma 8. But
Q u c S = 0, hence JS10JB10 = 0. At this point form U — Rn + R1Q. Then
it follows from the table that R^R^ c Rn, RnR1Q c JB10, JBU-BOI <= -βl0,
Λiî oo - 0, Λ.oiίn - 0, i210JB10 = 0, RlQRoiC:Rn, R10R0Qc:R10, so that U must
be a right ideal. If U = R, then Roo = 0, so since 1 — e 6 RQ0, we
would have β = 1, contrary to assumption. On the other hand if
U = 0, then β — 0, also a contradiction. The contradiction was brought
about by supposing Q Φ 0. Hence, Q = 0. This completes the proof
of the lemma.

We are now ready to state and prove our main result.

THEOREM. Let R be a right alternative ring without proper right
ideals, of characteristic not two. Suppose that e, l e i ? , where e is
an idempotent other than 1, such that (e, e, R) — 0. Then R must
be alternative, hence a Cayley vector matrix algebra of dimension
eight over its center.
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Proof. Combining Lemmas 14 and 10, it follows that the table
must be the same as that for an alternative ring and that Roo and
Rn have no nilpotent elements. Then it follows from the main theorem
of [4] that R must be alternative. However, the reader can get by
with proving only Lemmas 14, 15, and 17 of that paper, since Lemma
16 coincides with our Lemma 7. Once R is alternative, the main result
of [2] makes R either associative or a Cayley vector matrix algebra.
But R cannot be associative, for having an identity element and no
proper right ideals force R to be a division ring, which in turn could
not have an idempotent e Φ 1. This completes the proof of the theorem.
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