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BOUNDARY BEHAVIOR OF RANDOM VALUED
HEAT POLYNOMIAL EXPANSIONS

ROBERT B. HUGHES

This paper is concerned with random series of the form
2^=0 Xn(<o)anvn(xt t) where the Xn's are random variables, the
α/s are real numbers, and the vn

9& are heat polynomials as
introduced by P. C. Rosenbloom and D. V. Widder. The se-
quences {an} are assumed to satisfy lim supw-*oo | an \2/n(2n!e) =
1 which implies Σ~=o anVn(%, t) has 11 \ < 1 as its strip of con-
vergence, i.e., it converges to a C2-solution of the heat equa-
tion in 111 < 1 and does not converge everywhere in any
larger open strip. Associated with each sequence {an} is its
classification number from [0,1] which indicates how rapidly
an tends to zero. Assumptions are placed on the random
variables which imply that for almost every ω the series
Σ?=o Xn((o)anvn(xf t) has [ ί I < 1 as its strip of convergence.

The main results of the paper are two theorems. The
first states that if {an} has its classification number in [0,1/2),
then for almost every ω the lines t = 1 and t — — 1 form the
natural boundary for ^?=o Xn(ω)anvn(x, t). The second is con-
cerned with sequences having their classification numbers in
(1/2.1]. The conclusion implies that for almost every ω no
interval of either of the lines t — 1 or t — —1 is part of the
natural boundary for Σ~=o Xn((o)anvn(%, t).

The present work had it original motivation in the study of the
boundary behavior of random power series. These are series of the
form ΣΓ=o aΛω)zn where the an's are complex valued random variables
and z is a complex number. Reference [1] contains a history of re-
sults in this area. One of the early results which helped to motivate
the first part of the proof of our Theorem 1 is due to Paley and
Zygmund in a 1932 paper [see 6, p. 220]. In this theorem it is as-
sumed that ΣΓ-o a<nZn is an ordinary power series with a finite radius
of convergence. Letting {φn} be the sequence of Rademacher func-
tions, the conclusion is that for almost every ω in [0,1] the series
Σϊ=o Φn(ω)a<nZn has its circle of convergence as its natural boundary.

More recently [see 3] V. L. Shapiro has considered series of the
form X^=o Xn(o))Hn(x) where the Xn's are random variables and

Σ Hn{x)

is the spherical harmonic representation of a harmonic function in the
unit ball. The harmonic continuability across the boundary of the
unit ball of the functions Σ»=o XJfi))Hn(x) was investigated. This

61



62 ROBERT B. HUGHES

work further motivated the first part of the proof of our Theorem 1
and influenced our choice of the class of random variables to be con-
sidered.

2* Definitions and preliminary comments. For a point (x0, t0)
in the plane and a number p > 0 we let

S(x0, to; p) = {(x, t): I x - xQ \ < p and 11 - t0 \ < p) .

If u(x, t) is a C2-solution to the heat equation in the strip \t\ < σ we
say the line t — —σ{t = σ) is part of the natural boundary for u in
case for every x0 and every p > 0 there is no C2-solution v(x, t) in
S(x0, —σ; p) (S(x0, σ; p)) which agrees with u(x, t) where u and v are
both defined.

Let Eo be the set of all sequences {an}ζ=0 of real numbers. For
r > 0 let

Er = {{an} e Eo: | an \ (2n/e)^2 = O(e~nr) as n ~> oo} .

We call sup {r: {an} e Er) the classification number of {an}.
Explicitly, from [2, p. 222]

(2.1) vΛ(x, t) = n\ Σ * O M f | r , n = 0f 1,
AO (^ 2Λ)! k\

In [2, Th. 5.3, p. 231] it was shown that the series Σ?=o <vM#> *)
converges to a C2-solution of the heat equation in the strip 11 | < σ
where

(2.2) σ = (lim sup | an \2ln(2nle)yι

and that this strip is the largest open strip of convergence of the
series. One easily shows that sequences {an} satisfying

lim sup I an \2ln(2n/e) = 1

have their classification numbers in [0,1].
We will make repeated use of the following bounds which appear

in [4] by S. Tacklind. Assume u(x, t) is continuous on the rectangle
R = {(χ91): I x I <; £f, 0 <; t ^ Γ}, is a C2-solution to the heat equation
in the interior of R, and μ is an upper bound for | u(x, t) | on R; then
u(x, t) is in class C°° on the interior of R and for n = 2, 3, , | x \ <
^ and 0 < t ^ T

(2.3,
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3* THEOREM 1. Let {Xn}n=0 be a sequence of symmetric inde-
pendent random variables defined on the complete probability space
(Ω, _^7 P) and satisfying

( i ) there exists a number M such that

\ I Xn(ω) \2dP(ω) ^ M for n = 0,1, , and

(ii) there exists N > 0 such that

N ^ \ I Xn{ω) I dP(ω), n = 0,1, . . . .

Assume {an} satisfies lim sup | an \
2ln(2n/e) — 1 and has its classification

number in [0,1/2). Then for almost every ω in Ω the lines t — 1
and t = — 1 form the natural boundary for

oo

ujx, ί) = Σ XΛω)αΛ(£, ί) .

Proof. Letting Ω' = {ωεi3: Σ"=o Xw(ω)αίlv?1(a;, ί) converges in the
strip I ί I < 1}, we will first show P{Ω') = 1. Clearly

[ l i m s u p I Xn \21n ^ l ] Ώ U Π l \ X n \ ^ n M 1 ' 2 ]
k l k

and by the Borel-Cantelli Lemma the last set has probability 1 since
P[\ Xn I > nM112] ^ 1/n2 from (i). Hence

P{ω: lim sup | Xn(ω)an \2ln(2n/e) ^ 1} = 1

which by (2.2) shows P(Ω') = 1.
The following fact is essentially a merger of Lemma 1 from [3]

and a special case of Lemma 2 from [3]. There exist numbers Λ in
(0,1) and B > 0 with the following property: for E e J^ with
P(E) > A there is a positive integer n0 such that for n ^ nQ, every
sequence {Cj}J=0 of real numbers, and k ^ 1 we have

(3.1) Σ c} ^ β (

We will show that for almost every ω the line t — — 1 is part of
the natural boundary for uω and will use this in the proof for the
line t = 1.

Assume it is false that for a.e. ω in Ω the line t = — 1 is part
of the natural boundary for uω. The first part of the argument we
give in order to obtain a contradiction is analogous to parts of the
proof of Theorem 1 in [3] by V. L. Shapiro. We will employ (2.3),
(3.1), and an asymptotic estimate for heat polynomials from [2] in



64 ROBERT B. HUGHES

order to obtain conditions on the sequence {an} which contradict the
fact that the classification number of {an} is in [0,1/2).

Let E — {ωeΩΊ t = —1 is not part of the natural boundary for
uω}. Then either (i) EίJ^ or (ii) EeJ?" and P(E) > 0. Using the
fact that the real line is separable and the countable additivity of the
probability P, it follows that there exist a real number x0 and p0 > 0
such that Ex = {a) e E: there is a C2-solution to the heat equation in
S(x0, —l po) which agrees with uω where they are both defined} satis-
fies either (i) Eγ £ j^7 or (ii) E,e^ and P{EX) > 0. For i = 1, 2, . .
define

2ίi = \E2ίi = \ω e Ω'\
I

(x, t) ^ immm for (a?, ί) in s(x0, - 1 ; -^-1 ,
V 2

111 < 1, and m — ί, i + 1, >

and let ^ = UΓ=i -Ê ,*. ^2 is in the tail <7-field generated by the in-
dependent Xn'&. From (2.3) it follows that E, c E2. By Kolmolgorov's
zero-one law P(E2) — 1. Let A and I? be as in (3.1). Take i0 suf-
ficiently large that P{E2Λ) > A and let w0 correspond to E2>iQ as in
(3.1). Now let m ^ max {nOf %} and let (x9t) be in S(a?0, — 1; po/2)
with I ί I < 1. Then by (3.1) for k = 1, 2, . . .

v — m)!

Σ , ^
E2>io Ln=m (n — m)!

Making use of the independence and symmetry of the random varia-
bles and of condition (i) we see that the integrand of the last integral
is Cauchy in the variable k in U(Ω) and thus in L\E2>i). Hence

00 Γ w\ Ί 2

v V± anvn Jx, t)
έLL(n- m)l J

2dP(ω) ^ BiT
dxn

with the last inequality following from the definition of E2tiQ. We
conclude that for every m ^ max {n0, %}, every n^ m, and every
(x, t) in S(&0, — 1 ; po/2) with | ί | < 1; we have

(3.2)
— m)!

, ί) | ^
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It follows from Theorem 3.1 of [2] that there exist numbers A and
l0 such that for n^> lQ

sup \vn(x, - 1 ) | ^
\^~XQ\<P0I2

T h u s f r o m (3.2) w e h a v e f o r n>m + lo>m^ m a x {n0, %}

I an I V* A[2(n - m ) / e ] ( w - m > / 2 ^ Bll2i^mm .
(n — m)\

Employing Stirling's theorem we see there is a number C such that
for n>m + lQ>m^ m a x {n0, %}

(3.3) I an I (2n/ey'2 ^ Γ Cm

Let r be a number which is strictly greater than the classification
number of {an} and strictly less than 1/2. Let m be related to n by
m — [4nr] + 1 where the brackets denote the greatest integer func-
tion. Then from (3.3), for sufficiently large n,

(3.4) I an I (2n!e)nl2 ^ (1 - 4/wl"r)(*1"r/4)'8'*r .

For large enough n, (1 - 4/^-r)(wl~r/4)'2 ^ 1/β and thus from (3.4) we
have for such n, \an\ (2n/e)nl2 ^ l/en\ Hence {an} e Er which con-
trandicts the fact that r is strictly greater than the classification
number of {an} and concludes the proof for the line t — — 1.

For the last part of the proof we find it convenient to introduce
the probability space (Rω, j&", μ') which we now describe.

Rω = Π R«

where each Rn is the set of real numbers. Let J^J be the field of
all subsets of Rω of the form B x (Π.n=nQ+iRn) where n0 is a positive
integer and B is a Borel set in Πϊ=o^» Let J%? be the σ-field
generated by j*J. Let μ be the probability on (JSω, Sf) which is
induced by the Xn's. Then (Rω, jtf", μ') is the completion of (J?ω,

μh
Let {̂ }Γ=o be a sequence of ±Γs. Define T:Rω-+Rω by

Notice that

I (α,, K] x κ Π Λ ) = Πo P[Xn 6 (o., δ,J]

= Πo P[Xn e J7,(α,, 6J] = / / ( τ ( π («« 6.1 x M _Π + I Λ.
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where we have used both the independence and symmetry of the X/s.
From this it follows that for A e sf!, μ'(A) = μ\T{A)). We will make
use of this fact twice in the remainder of this proof.

To finish the proof it suffices to show that for a.e. p e Rω the
line t = 1 is part of the natural boundary for

up(x, t) = Σ πn(p)anvn(x, t)

where the πn's are the projection random variables. Suppose this is
false. From the first paragraph of the present proof we know Rwf =
{peRω:Σ^oπn(p)anvn(x, t) converges in 11 \ < 1} has ^'-measure 1.
Now let F — {peRω'ι t = 1 is not part of the natural boundary for
up}. Then either (i) Fξ s/', or (ii) Fejy' and μ\F) > 0. It follows
that there exist numbers α, b, p with a < δ and p > 0 such that Fι =
{peRω': there is a function vp(x, t) which is continuous on a ^ x <̂  6,
0 <£ t <̂  1 + p; is a C2-solution to the heat equation for a < x < 6,
0 < t < 1 + p; and agrees with up(x, t) in a ^ x ^ δ, 0 ^ t < 1} satis-
fies either (i) Fλ £ j y" , or (ii) Fλ e s/' and ^'(FO > 0. But F1 = {p e Rωr:
lim ί T l up(a, t) and \imtUupφ,t) both exist}. Fλ is in the tail σ-field
generated by the independent 7Γπ's. From the zero-one law, μ'{F^) = 1.

Either a Φ 0 or δ ^ 0 and for definiteness we assume a Φ 0.
Then F 2 = {pG 22°": l i m m up(a, t) exists} has μ\F2) = 1. Let Γ: Rω-+Rw

be defined by Γ((f0, ς :, •)) = (ς0, — ίi, ς2, ~f3, •)• % our earlier
comments concerning such mappings we have μ'(F2 Π T(F2)) = 1. For
peRωf and | ί | < 1 one checks that uτw( — a, t) — up(a,t). Hence for
peF2Π T(F2),Iimtuup( — a,t) and l im ί T 1 up(a, t) both exist. Thus for
pe F2Π T(F2) there is a function wp(x, t) which is continuous in \x\ S
&, 0 ^ t ^ 2; is a C2-solution to the heat equation in | x \ < α, 0 < t < 2;
and agrees with up in | x \ ̂  α, 0 ^ ί < 1. For p e F 2 Π ΪXi^) and 0 ^
ί ^ 2 let φv(t) = wp(0, t) and γp(t) = (dwP/dx)(0, t). Then, employing
(2.3), we see that ψp and ψp are in class C{(2n)l} on [0, 2] (a function
/ is in class C{(2n)l} on an interval / if / is in class C°° on I and
there exist constants β and B such that for every t in I, | / ( Λ )(ί) | ^
βBn(2n)l,n = 0, 1, •••).

Now let T':Rω-+Rω be defined by

r ( ( ς 0 , flf . - . ) ) = (fo, ίi, -f2, ~ ί s , ζt, ί5, - ί 6 , ~ ί 7 , •••)

Then for peRωf and 111 < 1, ^ ( 0 , t) = wΓ,(3>)(0, - ί ) and

d^p (0, ί) - ^ Γ / ( p ) ( 0 , -t) .
5 9x

For p in the almost sure set T\F2 Π Γ(F2)) we have T'(p) eF2Γ) T(F2)
and we define φp and α/r̂  on [ — 2, 0] by $,(£) = φτ>u)( — t) and
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thereby obtaining class C{(2n)l} extensions of up(0, t) and (dup/dx)(0, t)
on [-1, 0]. Thus for peT'(F2 n T(Ft))

A ' } & (2n)l 0
+ Σ

(2n)l -0 (2n + 1)!

provides a solution to the heat equation which is a C2-extension of
up into some rectangle \x\ < r, — 2 < t < 0 which contradicts the
first part of the proof.

4* THEOREM 2. Let {Xn} be a sequence of independent random
variables over a probability space (Ω,J^,P) which satisfies (i) and
(ii) of Theorem 1. Assume {an} satisfies lim sup | an \2ln(2n/e) = 1 and
has its classification number in (1/2, 1] Then for almost every ω
in Ω the following holds: \ t | < 1 is the strip of convergence of
ΣΓ=o Xn(ω)anvn(x, t) which for every £^ > 0 can be extended as a
C2-solution of the heat equation into { | ί | < l } U { |

Proof. We will first show for almost every ω in Ω that 11 | < 1
is the strip of convergence of Σ~=o Xn(<o)anvn(x, t). By (2.2) we must
show that almost surely lim sup | Xn{ω)an \2ln(2n/e) — 1. The argument
given in the first part of the proof of Theorem 1 shows that almost
surely the last limit superior does not exceed 1. Let {%} be a strictly
increasing sequence of positive integers such that

l im I an. \
21

Then lim sup | Xn(ω)an \2ln(2n/e) ^ lim s u p ^ I Xn.(ω)an. \21^(2nj/e) ^ lim
sup^oo I Xn.{o)) \21nj which by the zero-one law is equal to some number
c almost surely. Suppose c < 1. Then Xn.—>0 almost surely. By
(ii) for A > 0 and j = 0,1, .

dP(ω) + A"1 [ | Xnj(ω) \2dP(ω) .

By the Lebesgue dominated convergence theorem the next to the last
integral tends to 0 as j tends to oo. From (i) the last term is uni-
formly bounded by A~ιM. Thus for every A > 0, N £ A~XM which
is a contradiction. We conclude that c ^ 1. Thus almost surely

lim sup I Xn{ω)an \2ln(2n/e) ^ 1

which concludes the proof that almost surely this limit superior is 1.
In order to establish Theorem 2 for the line t = 1 we first con-

struct a function which is C°° on the closed strip 11 \ ̂  1 and has a
heat polynomial expansion in 11 \ < 1. Let r be a number which is
strictly greater than 1/2 and strictly less than the classification num-
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ber of {αj. For n = 0,1, define an = (2n)e~nr. Define / on
[ — 1,1] by f(t) = Σ~=o <****• We will show this definition makes sense
and obtain some bounds on the derivatives of / .

Let n be a nonnegative integer. Differentiating ΣΣU^M* term
by term n times yields Y£=nk\l{k - n)\akt

k-n. For | ί | ^ l the fcth

term of this series is dominated by 2 kn+1e~kr. One checks that

is increasing on (0, (n + l/r)1/r) and decreasing on ((n + l/r)Ur,
Hence

2)/r)/r .

We conclude that / is a C°°-function with | fin)(t) \ ^ 6Γ((rc + 2/r)/r
for w = 0,1, . . . and 111 ^ 1.

Now define

(4.1) *(*,«) = Σ
o

Because of the bounds obtained in the preceding paragraph it can be
shown that the series of (4.1) can be differentiated term by term and
that u(x, t) is a C°°-solution to the heat equation in the closed strip
111 <£ 1. Since both u(091) and du/dx(0, t), as functions of ί on ( —1,1),
are given by their Maclaurin expansions, u has a heat polynomial
expansion in \t\ < 1 (see [5]). Thus

00

u(χ, ί) = Σ
( 4 2 ) δ2 = f^

1)! .

According to the first paragraph of the proof of Theorem 1,
UΓ=i Γin=h [I -X» ^ ^M1/2] has probability 1. Let ω be in this almost
sure set. Let k0 be a positive integer such that for n ^ kQ, \ Xn(co) \ <*
nM112. Since r is less than the classification number of {an}, there
is a number K such that | an \(2n/e)nl2 ^ Ke~~%r, n — 1, 2, « . Using
Stirling's theorem we have for 2n ^ k0

Similarly for 2n +

b2n+1(2(2n + l)/β) t£

Letting JSΓ' = K(Me)ίl2 we have
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I JE,(α>)α. I ̂  K% for n ^ K .

Let .S^ > 0 . Then for 0 < ί < 1 we have

= K' Σ &«»(» - 1) I v_t(±^f, t) I
k

^ K' Σ &.Λ(Λ - 1 K

Thus limtu^=ko Xn(ω)anvn(±^ t) both exist as is easily seen from
the mean value theorem and the Cauchy criterion. Hence we can
obtain an extension of Σ~=o Xn(co)anvn(x, t) into

{(x, t): 11 |< 1} U {(«,«): 1 » l < ^ 0 < }̂

which is a C2-solution of the heat equation. (Notice at this point
that we can also obtain an extension which is a bounded C2-solution
in {(x, t): I x | < J>f, 0 ^ t}.) Since α> was from the almost sure set

U ή [I XΔ £ nM*] ,

this establishes the result for the line t = 1.
We now turn to the line t — — 1. Define {y%}Γ=o on β by F2ft =

(-l)nX2n and Γ2%+1 = (-l)nX2n+1. Then, applying the first part of
the proof, there is a set F in j ^ ~ with P(.F) = 1 such that for ω in
F and ^ > 0 the solution vjx, t) = ΣΓ=o y»(ω)α»̂ n(»> *) can be ex-
tended into {| 11 < 1} U {| x I < Jsf and 0 < t} so as to be a bounded
C2-solution of the heat equation in {(a?, t): \ x \ < <^f and 0 < t). One
easily checks that for ω in F,

Σ X%(<o)wΛ0, t) = Σ Γ n ( ω ) α Λ (0, - ί )

and Σ ^ ί . ί Φ ^ V i ί O , ί) - Σ ^ i ir,(ω)α?ι^ίl_1(0, - ί ) . Using these
facts and (2.3) we see that for ω in F and Sf > 0 the functions
*K«) = Σ:=o X.(ω)α^w(0, ί) and f (t) - Σ : = 1 X J ^ α . ^ ^ O , ί) on (-1,1)
possess sufficiently well behaved extensions φ' and ψr to (—oo,l) that

(2n + 1)!

is an extension of Σ"=o -XΓΛ(ω)αΛt;n(α;, ί) in | ί | < 1 to

{(a?, ί): I ί I < 1} U {θ£> *): I & I < ^ and - co < t < 1} .

5* Examples* The first example will show that our two theorems
are best possible with respect to the allowable values of the classifica-
tion number.
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EXAMPLE 1. We will take [0,1] with Lebesgue measure as the
probability space and the sequence of Rademacher functions, {φn}n=o,
for the random variables.

For k = 0,1, ••• define ak = e~VTc. Then, as in the proof of
Theorem 2, defining / o n [-1,1] by f(t) = Σ£U<M* yields a C°°-f unc-
tion whose wth derivative on [ — 1,1] is bounded in absolute value by
6Γ(2(2n + 1)). In the strip \t \< 1 define u(x, t) = Σ ϊ U (fk%)(t)tf%)l(2n)L
To see that this definition makes sense and that term by term partial
differentiation is permitted, we note that for every closed interval
I Q ( — 1,1), f is in class C{n\) on J. Because of the bounds on the
derivatives of / we see from the defining series for u that u may be
extended as a C°°-solution of the heat equation to

{\t\<i}\j{(x,iy.\χ\<i}.

Since u(0, t) and du/dx(0, t) are both given by their Maclaurin ex-
pansions in 111 < 1, u possesses a heat polynomial expansion in the
strip 111 < 1 (see [5]). Thus for 11 \ < 1, u(x, t) = Σ~=o αnvΛ(&, *); a^ =
(e~^n\)l(2n)\, a2n+1 = 0. One checks that lim sup | an \2ln(2n/e) = 1.
Also it is easily seen that limit | a2n j (4w/e)weVi^ = oo which implies
{an}£E1/2 and thus the classification number of {an} is in [0,1/2]. As
in the proof of Theorem 2, l i m m u ω ( ± l / 2 , t) both exist for every ω
in [0,1]. Thus for every ωe [0,1] the line t = 1 is not part of the
natural boundary for uω(#, ί). Using Theorem 1, we conclude that the
classification number of {an} is 1/2 and that in Theorem 1 we cannot
replace [0,1/2) by [0,1/2] as the allowable range for the classification
number.

We will next show that the conclusion of Theorem 2 does not
hold for Σn=o0n(G>)0n^»(#> Q Assume there is a set A in [0,1] with
m(A) = 1 such that for each ω in A no interval of the line t = 1 is
part of the natural boundary for ujx, t). Thus for ω in A, gω{x) =
limtuuω(x, t) is well defined and is the restriction of an entire func-
tion to the real axis (this last assertion can be seen by employing
(2.3)). Thus for ω in A, lim sup (\gίn)(0) \/nl)lln = 0. For ω in A,

I flr£"+1)(0) = 0 and I flr2 }(0)

lim sup

= IΣ~=* Φk(o))ak(kl/(k
Thus for ft) in 4 ,

k\ _ ,
(k — n)l

(2n)\

Let 8 > 0. For m = 0,1, - - let

I V k = n (k — W)

:g δ for ^ = m, m + 1, >

= 0 .

(2n)l
1/Λ
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and note Fm ] A. Let A and B be two numbers associated with the
sequence {φ2n}n=o as in (3.1). Let m0 be sufficiently large that m(Fmo) >
A. Let n0 be an integer larger than mQ with n0 corresponding to Fmo

as in (3.1). Thus for n ^ n0 and k ^ 1

n + k Γ A] ~I2 f /n + k f \ 2

(5.1) Σ .. J „ e-^ h g B\ ( Σ iM<») J β-^) dm(ω) .
j = n L(J — %) ! J jFmo \i = » ( j — n)\ /

As in the proof of Theorem 1, letting k tend to oo yields (5.1) with
n + k replaced by oo. Using the definition of Fm(), we have

j - n)ϊ

for n :> nQ. From this we conclude that

T °° / k\ \2-|l/2"|l/w

V Lk = n \(k — Ύl)\ / J Λ

lim sup * '- = 0 .

On the other hand, letting L denote this last limit superior, we
have

L ^ lim sup

ί Σ (k - n)2n exp (-2]/k - n) exp (-(2τ/~F -

But exp (-(2i/T - 2Vk - n)) ^ e~2^ for k ^ n and lim (e~^Yln =
1. Hence L ^ lim sup ((Σΐ=ok2ne~2Λ/~h~yβ/(2n)l)ίln. Define hn on (0, oo)
by hn(x) = α;2%e~2^. One checks that /̂ % is increasing on (0, (2^)2) and

decreasing on ((2w)2, oo). Thus Σΐ=ok2ne~2Vl ^ 1 hn(x)dx — hn(

(Γ(in + 2) - 2(4tnYne~in)/(2'42n). Thus

L > λ lim sup [ ( ^ ± ^ - - ^ P ) ((4-)!/((2.)!)2)Ί/ > 0 .
4 L\ ( A ) l (4)l J

This is a contradiction. Hence in Theorem 2 we cannot replace (1/2,1]
by [1/2,1] as the allowable range for the classification number.

The next example shows that in Theorem 1 we cannot omit the
symmetry of the random variables.

EXAMPLE 2. Let k(x, t) - e-*2/47(4ττ£)1/2 for t > 0 and define

u(x, t) = k(x, t + 1)

in the strip 111 < 1. Then [2, Th. 4.2, p. 227]
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u(x, t) = (47Γ)-1'2 Σ ^ ~ vίn{%, t).

Let {αj~=o be defined by a2n = ( — l)n/nl4n and a2n+1 = 0. One easily
checks that lim sup | an \2!n(2n/e) = 1 and that the classification number
of {an} — 0. Let Xn = 1, n = 0,1, on some complete probability
space. Then for every ω, uω can be continued above the line t = 1.
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